
Contents

5 Temporal Safety Requirements 1

5.1 Logical Requirements of Reactive Modules 1

5.1.1 Observation Structures . 2

5.1.2 State Logics . 3

5.2 Safe Temporal Logic . 5

5.2.1 Syntax and Semantics of Stl 5

5.2.2 Specifying requirements using Stl 8

5.3 Model Checking . 12

5.3.1 Enumerative Stl model checking 13

5.3.2 Symbolic Stl model checking 17

5.4 The Distinguishing Power of Stl 18

5.4.1 State Equivalences . 18

5.4.2 Bisimilarity . 19

5.4.3 Requirement-preserving Equivalences 23

5.4.4 Stutter-insensitive Equivalences 26

5.5 The Expressive Power of Stl . 28

0

Computer-Aided Veri�cation

c

 Rajeev Alur and Thomas A. Henzinger October 10, 1999

Chapter 5

Temporal Safety Requirements

5.1 Logical Requirements of Reactive Modules

The invariant-veri�cation problem allows us to check if all reachable states of a

reactive module satisfy an observation predicate. Not all module requirements

can be formulated as invariants. For instance, for the mutual-exclusion proto-

cols of Chapter 2, we may wish to check the �rst-request-�rst-in requirement,

that the �rst process to request admission to the critical section is the �rst

process allowed to enter the critical section. As was discussed in Chapter 2,

the �rst-request-�rst-in requirement can be checked by composing the mutual-

exclusion protocol with a monitor and verifying an invariant of the compound

module. The introduction of monitors has the disadvantage of increasing the

state space of a module. Here we discuss the alternative of enriching the speci�-

cation language so that module requirements such as �rst-request-�rst-in can be

formulated without the use of monitors. For this purpose, we present a class of

formal languages called state logics. While invariants refer to static observation

snapshots of reactive modules, the formulas of state logics refer also to dynamic

observation sequences. The observation sequences of a module are captured by

an observation structure.

1

Temporal Safety Requirements 2

s

0

s

1

s

2

s

3

p

q

p

r

Figure 5.1: Observation structure

5.1.1 Observation Structures

An observation structure is a transition graph whose states are labeled with

observations. It is required that there are only �nitely many initial states with

a given observation, and every state has only �nitely many successors with a

given observation.

Observation structure

An observation structure K consists of (1) a transition graph (�; �

I

;!),

(2) [the observation alphabet] a set A of observations, and (3) [the observa-

tion function] a function hh�ii : �! A that maps each state s to an observa-

tion hhsii such that for every observation a 2 A, (i) the set fs 2 �

I

j hhsii = ag

is �nite, and (ii) for every state s 2 �, the set ft 2 post

G

(s) j hhtii = ag is

�nite.

Example 5.1 [] Observation structure Figure 5.1 shows an observation structure

with the state space fs

0

; s

1

; s

2

; s

3

g and the observation alphabet fp; q; rg.

We freely attribute properties and derivatives of transition graphs to observation

structures. For example, an observation structure inherits the trajectories of

the underlying transition graph, and the reachable subgraph of the underlying

transition graph gives the reachable substructure of an observation structure.

The observation structure of a module

Every reactive module P de�nes the transition graph G

P

. An observation of P

is a valuation to the set obsX

P

= intfX

P

[extlX

P

of observable variables of P .

The observation alphabet is, then, the set of all observations. The observation

function maps a module state s to the projection s[obsX

P

] to the observable

variables. There are only �nitely many ways to initialize the controlled state of

a module: for every valuation t of the external variables extlX

P

, there are only

Temporal Safety Requirements 3

�nitely many initial states s such that s[extlX

P

] = t. It follows that �

I

P

[obsX

P

]

is �nite. Similarly, there are only �nitely many ways to update the controlled

state of a module: for a state s and a valuation t of the external variables extlX

P

,

there are only �nitely many states u such that s !

P

u and u[extlX

P

] = t. It

follows that post

P

(s)[obsX

P

] is �nite for every state s of the module.

Observation structure of a module

The reactive module P de�nes the observation structure K

P

=

(G

P

;�

obsX

P

; �[obsX

P

]).

Example 5.2 [] Observation structure of Pete Recall Peterson's mutual exclusion

protocol from Chapter 2. The observable variables for the module Pete are the

location variables pc

1

and pc

2

. The observation alphabet of the observation

structure K

Pete

is

�

fpc

1

;pc

2

g

= finC ; reqC ; outCg � finC ; reqC ; outCg:

The reachable substructure of K

Pete

has the transition graph of Figure 3.4, and

each state is labeled with the value of pc

1

and pc

2

. Note that the transition

graph of the module P

1

kP

2

is identical to the transition graph of the module

Pete = hide x

1

; x

2

in P

1

kP

2

, but the observation structures K

P

1

kP

2

and

K

Pete

have di�erent observation alphabets, and thus, are nonisomorphic.

5.1.2 State Logics

The formulas of state logics are called state formulas, because they are inter-

preted over the states of observation structures; that is, a state formula is true

or false in a given state of a given observation structure. Before we study spe-

ci�c state logics, let us de�ne concepts generic to all state logics. A state logic

is de�ned by specifying the rules to build formulas of the logic, and the rules to

interpret formulas at states of an observation structure. A state logic � consists

of two components:

Syntax A set P

�

of formulas. Formulas are de�ned inductively from atomic

formulas using boolean and temporal connectives. The formulas in P

�

are called �-formulas.

Semantics Given a �-formula �, an observation structure K is said to be a

�-structure if each observation of K is a valuation for a superset of the

variables appearing in the atomic formulas of �. Every �-formula � is

interpreted over the states of the �-structures. The satisfaction relation

s j=

K

� speci�es when the state s of the �-structure K satis�es the �-

formula �.

Temporal Safety Requirements 4

The satisfaction relation speci�es the truth of a formula at a state of an obser-

vation structure. An observation structure satis�es a formula if all its initial

states do.

Satis�ability

Let � be a state formula, and let K be a �-structure with the state space

� and the initial region �

I

. The characteristic �-region of K is the region

[[�]]

K

= fs 2 � j s j=

K

�g

of states in � that satisfy the formula �. The observation structure K

satis�es the formula �, written K j= �, if all initial states in �

I

satisfy �;

that is, �

I

� [[�]]

K

. The state formula � is satis�able if there is a �-structure

that satis�es �. The state formula � is valid if all �-structures satisfy �.

The satis�ability problem for a state logic is to decide whether a given formula

is satis�able, and the validity problem is to decide whether a given formula is

valid. Let � and be two state formulas. If the observation structure K is

both a �-structure and a -structure, we say that K is a (�;)-structure. The

state formula � implies the state formula if for every (�;)-structure K, the

region [[�]]

K

is a subset of the region [[]]

K

. The two state formulas � and are

equivalent if for every (�;)-structure K, the regions [[�]]

K

and [[]]

K

are equal.

Exercise 5.1 fg [] Weak equivalence of state formulas Let � and be two state

formulas. The two state formulas � and are weakly equivalent if for every

(�;)-structure K, the formula � is K-valid i� the formula is K-valid. Prove

that � and are equivalent i� they are weakly equivalent.

The model-checking problem

The model-checking problem for � asks if � is satis�ed by a given �-structure.

Model-checking problem for state logics

An instance (K;�) of the model-checking problem for the state logic �

consists of (1) a �-formula � and (2) a �-structure K. The answer to the

model-checking problem (K;�) is Yes if K satis�es �, and otherwise No.

The veri�cation problem for a state logic is to check whether the observation

structure of a module satis�es a given formula. It can be reduced, at an ex-

ponential cost, to the model-checking problem, similar to the way in which the

invariant-veri�cation problem can be reduced to the reachability problem.

Temporal Safety Requirements 5

Veri�cation problem for state logics

An instance (P; �) of the veri�cation problem for the state logic � consists

of (1) a reactive module P with the set obsX

P

of observable variables, and

(2) a �-formula � such that the set of variables appearing in the atomic

formulas of � is a subset of obsX

P

. The answer to the veri�cation problem

(P; �) is the answer to the model-checking problem (K

P

; �).

5.2 Safe Temporal Logic

Temporal logics extend observation logic with connectives that refer to obser-

vation sequences of reactive modules.

5.2.1 Syntax and Semantics of Stl

Safe temporal logic has two temporal connectives: the unary connective possibly-

next, written 9, and the binary connective possibly-until, written 9U .

Safe temporal logic: Syntax

Safe temporal logic (Stl) is the state logic whose formulas are generated by

the grammar

� ::= p j � _ � j :� j 9 � j �9U�;

for atomic formulas p.

The satisfaction of an atomic formula p at a state s depends on the observation

of s. The meaning of the boolean connectives is the usual one. Consider two

observation predicates p and q for a reactive module P . The state s of the

observation structure K

P

satis�es the formula 9 p if some successor of s

satis�es p. The state s satis�es the formula q9Up if there is a source-s trajectory

whose states satisfy p or q, and whose sink satis�es p. In other words, the formula

9 p asserts that it is possible to execute a single round of the module P so

that the observation predicate p becomes true. The formula q9Up asserts that

it is possible to execute �nitely many rounds of P so that p becomes true, and

throughout the execution the observation predicate p _ q is true.

Temporal Safety Requirements 6

Safe temporal logic: Semantics

The satisfaction relation for Stl is de�ned inductively by the following

clauses:

s j=

K

p i� hhsii j= p;

s j=

K

� _ i� s j=

K

� or s j=

K

 ;

s j=

K

:� i� s 6j=

K

�;

s j=

K

9 � i� there is a state t 2 post

K

(s) such that t j=

K

�;

s j=

K

 9U� i� there is a source-s trajectory s

0::m

of K such that

(1) s

m

j=

K

� and

(2) for all 0 � i � m, s

i

j=

K

� _ .

where p is an atomic formula, � and are Stl-formulas, K is a (p; �;)-

structure, and s is a state of K.

The propositional connectives ^ (conjunction), ! (implication), and $ (equiv-

alence) can be de�ned using the connectives _ (disjunction) and : (negation)

of state logics, and we freely use the de�ned connectives as abbreviations.

Remark 5.1 [Until connective] Equivalently, s j=

K

 9U� i� there is a source-s

trajectory s

0::m

of K such that (1) s

m

j=

K

� and (2) for all 0 � i < m, s

i

j=

K

 .

In particular, if s j=

K

�, then s j=

K

 9U�.

Example 5.3 [] Safe temporal logic Recall the observation structure shown in

Figure 5.1. There, s

0

j= 9 q and s

0

j= (p _ q)9Ur.

When all the atomic formulas are propositional formulas, that is, boolean ex-

pressions over boolean variables, the temporal logic Stl is called propositional

Stl.

De�ned temporal connectives

Using the connectives 9 and 9U , we can de�ne additional temporal connectives

in Stl:

Inevitably-next 8 � for :9:�;

Possibly-eventually 93� for true 9U�;

Inevitably-always 82� for :93:�;

Inevitably-waiting-for �8W for :((:)9U:(� _)).

Consider two observation predicates p and q for a reactive module P . The state

s of the observation structure K

P

satis�es the formula 8 p if every successor

of s satis�es p. The state s satis�es the formula 93p if some state in the sink

region of s satis�es p, and s satis�es 82p if every state in the sink region of

s satis�es p. In other words, the formula 8 p asserts that after executing a

Temporal Safety Requirements 7

8 p

p

p9Uq

p

q

93p

p

82p

pppp

p8Wq

q

p

p pp p p

p pp

p p

p

q

ppp

9 p

p

Figure 5.2: The temporal connectives of Stl

single round of the module P the observation predicate p becomes true. The

formula 93p asserts that it is possible to execute �nitely many rounds of P so

that p becomes true, and the formula 82p asserts that p is an invariant of P . It

follows that the invariant-veri�cation problem is a special case of the veri�cation

problem for Stl: the invariant-veri�cation problem (P; p) and the Stl-veri�cation

problem (P;82p) have the same answer.

Exercise 5.2 fg [Waiting-for connective] Let � and be two Stl formulas, let K

be a (�;)-structure, and let s be a state of K. Prove that s j=

K

�8W i� for

all source-s trajectories s

0::m

of K either for all 0 � i � m, s

i

j=

K

�; or there

is a natural number j with 0 � j � m such that (1) s

j

j=

K

 and (2) for all

0 � i < j, s

i

j=

K

�. That is, in every source-s trajectory of K, a state that

violates � coincides with or is preceded by a state that satis�es .

Figure 5.2 graphically illustrates the requirements that are imposed by the tem-

poral connectives of Stl. When writing Stl formulas, we freely use the de�ned

temporal connectives as abbreviations. We suppress parentheses, assuming that

the binary connectives 9U and 8W associate to the right; that is, we write

�9U 9U� for �9U(9U�).

Exercise 5.3 fg [Nested until connectives] Let �, , and � be three Stl formulas.

Let K be a (�; ; �)-structure, and let s be a state of K. Prove that s j=

K

�9U(9U�) i� there is a source-s trajectory s

0::m

of K and a natural number

i with 0 � i � m such that (1) s

m

j=

K

�, (2) for all i � j < m, s

j

j=

K

 , and

(3) for all 0 � j < i, s

j

j=

K

�.

Prove or disprove that (�9U)9U� implies �9U(9U�), and vice versa. What

about (�8W)8W� vs. �8W(8W�)?

Temporal Safety Requirements 8

Exercise 5.4 fg [Dual version of Stl] Suppose that the Stl

8

formulas are gener-

ated by the grammar

� ::= p j � _ � j :� j 8 � j �8W�:

De�ne the temporal connectives 9 and 9U in this logic; that is, for every Stl

formula give an equivalent Stl

8

formula.

5.2.2 Specifying requirements using Stl

Example 5.4 [Mutual exclusion] Recall Peterson's mutual-exclusion protocol from

Chapter 2. The mutual-exclusion requirement is speci�ed by the Stl formula

82: (pc

1

= inC ^ pc

2

= inC); (�

mutex

)

which is equivalent to the Stl formula

:93 (pc

1

= inC ^ pc

2

= inC):

The Stl formula �

�fo

speci�es the �rst-request-�rst-in requirement that if pro-

cess P

1

attempts to enter the critical section when process P

2

is in its noncritical

section , then P

2

cannot overtake P

1

to enter the critical section:

82((pc

1

= reqC ^ pc

2

= outC) ! (pc

2

6= inC)8W(pc

1

= inC)):

The Stl formula �

dl free

speci�es the deadlock-freedom requirement that if pro-

cess P

1

attempts to enter the critical section, then there is a trajectory that

leads P

1

into its critical section:

82(pc

1

= reqC ! 93(pc

1

= inC)): (�

dl free

)

Symmetric �rst-request-�rst-in and deadlock-freedom requirements can be as-

serted for process P

2

.

Exercise 5.5 fg [Equal opportunity] Recall Peterson's mutual-exclusion proto-

col from Chapter 2. Write an Stl formula �

bd ot

that speci�es the equal-

opportunity requirement that if process P

1

attempts to enter the critical section

when process P

2

is in its noncritical section, then P

2

may enter its critical section

at most once before P

1

is allowed to enter its critical section.

Example 5.5 [Railroad controller] Recall the module RailroadSystem from Chap-

ter 3. The Stl-formula

82:(pc

W

= bridge ^ pc

E

= bridge)

speci�es the safety requirement that both trains should never be simultaneously

on the bridge. The Stl-formula

82 93 (pc

W

6= bridge ^ pc

E

6= bridge)

speci�es the requirement that from every reachable state there exists a trajectory

leading to a state in which none of the two trains are on the bride.

Temporal Safety Requirements 9

Event Stl

The logic Stl speci�es requirements of trajectories using atomic formulas that

are interpreted at states. When a module uses events for communication, it is

convenient to use formulas that refer to transitions or pairs of states. For this

purpose, we de�ne the state logic Estl. Unlike Stl, it has two sorts of formu-

las: state formulas that are interpreted with respect to states, and transition

formulas that are interpreted with respect to transitions.

Event Stl (Estl) is the state logic whose state formulas are generated by the

grammar

� ::= p j � _ � j :� j '9U':

for atomic formulas p and transition formulas '. The transition formulas are

generated by the grammar

' ::= � j � j ' _ ' j :'

for state formulas �. The semantics of the state formulas of Estl is de�ned as

follows:

s j=

K

p i� hhsii j= p;

s j=

K

� _ i� s j=

K

� or s j=

K

 ;

s j=

K

:� i� s 6j=

K

�;

s j=

K

�9U' i� there is a source-s trajectory s

0::m

of K

with m > 0 such that

(1) (s

m�1

; s

m

) j=

K

' and

(2) for all 0 < i � m, (s

i�1

; s

i

) j=

K

' _ �.

The semantics of the transition formulas of Estl is de�ned as follows:

(s; t) j=

K

� i� s j=

K

�;

(s; t) j=

K

� i� t j=

K

�;

(s; t) j=

K

' _ � i� (s; t) j=

K

' or (s; t) j=

K

�;

(s; t) j=

K

:' i� (s; t) 6j=

K

'.

Thus, the transition formulas can refer to the updated values of variables by

using the next operator. If x is a boolean variable of the event type, then we

use x? as an abbreviation for the transition formula (x 6$ x). Suppose that x

and y are two event variables. The following Estl formula asserts that no event

x is followed by an event y:

82(x? ! 82:y?):

Example 5.6 [Synchronous 3-bit Counter] Recall the synchronous module

SCountThree of Example 2.19 that models a 3-bit counter. The desired spec-

i�cation of the counter is that in every update round, if the start command is

Temporal Safety Requirements 10

present (start

0

= 1), then the counter should be reset to 0, and if the increment

command is present, then the counter should be incremented by 1 (module 8),

and otherwise, the counter should stay unchanged. The following Estl formula

expresses the desired update of the bit out

0

:

82

0

@

start ! : out

: start ^ inc ! out $: out

: start ^ : inc ! out $ out

1

A

:

The desired update of the remaining two bits can be speci�ed similarly in Estl.

Open modules

Checking existential requirements of an open module is not very meaningful.

Existential requirements over external variables are trivially satis�ed, while ex-

istential requirements over interface variables are not preserved under parallel

composition.

Remark 5.2 [] Let P be a module, and let p and q be boolean expressions over

the external variables of P . Then, for every state s of P , s j= 9p and s j= p9Uq.

Exercise 5.6 fg [] Give an example of a module P kQ and an Stl-formula � such

that the answer to the veri�cation problem (P; �) is Yes, while the answer to

(P kQ;�) is No.

If we restrict ourselves only to the universal formulas, then the compositionality

principle holds. Let 8Stl be the fragment of Stl generated by the grammar

� ::= p j :p j � ^ � j � _ � j 8 � j �8W�

The logic 8Stl is not closed under negation.

The parallel composition operation on modules ensures that the projection of

a trajectory of a compound module onto the variables of a component is a

trajectory of the component. This implies that the compositionality principle

holds for 8Stl.

Proposition 5.1 [Compositionality for 8Stl] If the module P satis�es the 8Stl-

formula �, then for every module Q that is compatible with P , the compound

module P kQ satis�es �.

Proof. Let P and Q be two compatible modules, and let � be a formula 8Stl.

Let R = P kQ. We prove that, for every subformula of �, for all states s of P ,

if s j=

P

 then for all states t of R, if t[X

P

] = s then t j=

R

 . The proof is by

Temporal Safety Requirements 11

s

0

s

1

s

3

p

q

p

r

r

p p r

s

0

s

0

s

1

s

0

s

1

s

2

Figure 5.3: Tree Semantics of Stl

induction on the structure of . Consider a state s of P such that s j=

P

 , and

let t be a state of R with t[X

P

] = s. The interesting case is when = �

1

8W�

2

.

Consider a source-t trajectory t

0

: : : t

m

of R. Then, from the properties of the

parallel composition operation, there exists a trajectory s

0

: : : s

m

of P such that

s

i

= t

i

[X

P

] for all 0 � i � m. Since s

0:::m

is a source-s trajectory of P , and

s j=

P

�

1

8W�

2

, we have either for all 0 � i � m, s

i

j=

P

�

1

; or there is a natural

number j with 0 � j � m such that s

j

j=

P

�

2

and for all 0 � i < j, s

i

j=

P

�

1

.

From induction hypothesis, it follows that either for all 0 � i � m, t

i

j=

R

�

1

;

or there is a natural number j with 0 � j � m such that t

j

j=

R

�

2

and for all

0 � i < j, t

i

j=

R

�

1

.

Tree Semantics

The semantics of Stl can, alternatively, be de�ned using trees. For an observa-

tion structure K and a state s of K, the s-rooted tree is obtained by unfolding

the source-s trajectories of K into a tree. Figure 5.3 shows the s

0

-rooted tree

for the transition structure of Figure 5.1.

Formally, for a state s of the observation structure K = (�; �

I

;!; A; hh�ii) the

s-rooted K-tree is another transition structure T

K

(s):

� The states of T

K

(s) are the source-s trajectories of K.

� The only initial state T

K

(s) is its root s.

Temporal Safety Requirements 12

� There is a transition from s

0:::m

to t

0:::n

if n = m + 1 and s

i

= t

i

for

0 � i � m.

� The observation alphabet is A.

� The observation function maps s

0:::m

to hhs

m

ii.

Verify that the structure T

K

(s) is a tree, that is, every state, except the root s,

has a unique predecessor. The formulas of Stl can be interpreted over the tree

T

K

(s) instead the structure K:

Proposition 5.2 [Tree property of Stl] Let � be a Stl-formula, let K be a �-

structure, and let s be a state of K. For every state s

0:::m

of the tree structure

T

K

(s),

s

0:::m

j=

T

K

(s)

� i� s

m

j=

K

�:

Exercise 5.7 fg [] Prove Proposition 5.2.

Proposition 5.2 implies that the satisfaction nof Stl-formulas at a state s of an

observation structure depends only upon the substructure ofK that is reachable

from s, and is insensitive to the unwinding of the structure.

5.3 Model Checking

We are given an Stl formula � and a �-structure K, and we are asked to check

if all initial states of K satisfy �. For this purpose, we �nd the characteristic

region [[�]]

K

, that is, all states of K that satisfy �. We proceed inductively on

the structure of the formula �, by �rst �nding the characteristic regions for the

subformulas of �.

Subformulas

The set Sub(�) of subformulas of the Stl formula � is de�ned inductively:

Sub(p) = fpg for an atomic formula p;

Sub(_ �) = f _ �g [Sub() [Sub(�);

Sub(:) = f: g [Sub();

Sub(9) = f9 g [Sub();

Sub(9U�) = f 9U�g [Sub() [Sub(�).

Remark 5.3 [Number of subformulas] The Stl formula � has at most j�j subfor-

mulas.

Temporal Safety Requirements 13

Given the input formula �, the model-checking algorithm for Stl calls a function

OrderedSub(�), which returns a queue with the subformulas of � such that

a formula appears only after all its subformulas. Assuming a type form for

formulas:

function OrderedSub: queue of form

Input: an Stl formula �.

Output: a queue of the formulas in Sub(�) such that if 2 Sub(�)

and � 2 Sub(), then � precedes in OrderedSub(�).

Example 5.7 [Subformula ordering] For example, the function callOrderedSub((p^

q)9U(:9 r)) may return the queue

(p; q; r; p ^ q; 9 r;:9 r; ((p ^ q)9U(:9 r))

of formulas.

Exercise 5.8 fg [Computing subformulas] Give an algorithm that, given an Stl-

formula � with ` symbols, computes the function OrderedSub(�) in O(`) time.

5.3.1 Enumerative Stl model checking

An enumerative model-checking algorithm computes an enumerative represen-

tation of the characteristic region [[�]]

K

from enumerative representations of the

characteristic regions for the subformulas of �.

Assume that the given observation structure K is �nite. An enumerative Stl

model-checking algorithm computes, for each state s ofK, the set �(s) � Sub(�)

of subformulas of � that are satis�ed by s. Initially, �(s) is empty for each

state s. Then, all subformulas of � are considered in the order given by the

function call OrderedSub(�). Consider a subformula of �. For each state

s of K, we must decide whether s satis�es , and update �(s) accordingly.

Inductively, we know that for every subformula � of and for each state s, the

formula � belongs to �(s) i� s j=

K

�. The form of leads to various cases. The

interesting case occurs when has the form �

1

9U�

2

. In this case, we de�ne a

�nite transition graph H :

The vertices of H are the states � of K. A state s 2 � is an initial

state of H i� the formula �

2

belongs to �(s). The graph H has an

edge from s 2 � to t 2 � i� (1) K has a transition from t to s and

(2) the formula �

1

belongs to �(t).

The semantics of the possibly-until connective implies that s j=

K

�

1

9U�

2

i�

the vertex s is reachable in the graph H . Consequently, the set of states that

satisfy can be computed by a depth-�rst search in H .

Temporal Safety Requirements 14

s

0

s

1

s

2

s

3

p _ q

p _ q

p _ q

r

Figure 5.4: Reachability analysis for checking possibly-until

Example 5.8 [] Consider the observation structure of Figure 5.1, and the possibly-

until formula � = (p _ q)9Ur. Let OrderedSub(�) = fp; q; r; p _ q; �g. First, the

formula p is added to the sets �(s

0

) and �(s

2

). Then, the formula q is added to

the set �(s

1

). Then, the formula r is added to the set �(s

3

). Then, the formula

p _ q is added to the sets �(s

0

), �(s

1

), and �(s

2

). To evaluate the truth of

�, consider the transition graph of Figure 5.4 with the initial state s

3

. All the

states are reachable, implying that the formula � is satis�ed in all the states,

and hence, for every state s, � is added to the set �(s).

The Stl model-checking algorithm shown in Figure 5.5 considers only the reach-

able substructure of the input structure K. For this purpose, the algorithm

calls the function Reach(K), which returns a queue with the reachable states

of K. The function Reach can be implemented using the techniques from Chap-

ter 3. The abstract type for the input structure K supports also the operations

InitQueue, PreQueue, and PostQueue (see Chapter 3). Given a state s of K,

each function call �(s) returns a set of formulas. The abstract type set for the

formula sets �(s) : set of form and the state set � : set of state supports the

operations EmptySet , Insert , and IsMember . The satisfaction of atomic formu-

las is checked by the function AtomicCheck. For an observation structure K,

a state s of K, and an atomic formula p, AtomicCheck (s; p;K) returns true i�

s j=

K

p. Checking of the possibly-until formulas employs a depth-�rst search

using the stack � and the set � that stores the states visited by the search.

Lemma 5.1 [Correctness of enumerative model checking] Let � be an Stl for-

mula, and let K be a �-structure with a �nite reachable substructure. Upon

termination of Algorithm 5.1, for every subformula of � and each state s of K,

 2 �(s) i� s j=

K

 .

Exercise 5.9 fg [] Consider the module Pete from Chapter 2, and the Stl-formula

�

�fo

of Example 5.4. Execute Algorithm 5.1 on the input (K

Pete

; �

�fo

), and

establish that the answer to the veri�cation problem (Pete ; �

�fo

) is Yes.

Temporal Safety Requirements 15

Algorithm 5.1 [Enumerative Stl Model Checking]

Input: an Stl formula �, and a �-structure K whose reachable sub-

structure is �nite.

Output: the answer to the model-checking problem (K;�).

�

R

:= Reach(K);

foreach s in �

R

do �(s) := EmptySet od;

foreach in OrderedSub(�) do

case = p for an atomic formula p:

foreach s in �

R

do

if AtomicCheck (s; p;K) then �(s) := Insert(p; �(s)) �

od

case = �

1

_ �

2

:

foreach s in �

R

do

if IsMember(�

1

; �(s)) or IsMember (�

2

; �(s)) then

�(s) := Insert(; �(s)) �

od

case = :�:

foreach s in �

R

do

if not IsMember (�; �(s)) then �(s) := Insert(; �(s)) �

od

case = 9 �:

foreach s in �

R

do

foreach t in PostQueue(s;K) do

if IsMember(�; �(t)) then �(s) := Insert(; �(s)) �

od

od

case = �

1

9U�

2

:

� := EmptySet ; � := EmptyStack ;

foreach s in �

R

do

if IsMember(�

2

; �(s)) and not IsMember(s; �) then

� := Push(s; �); � := Insert(s; �) �;

while not EmptySet(�) do

t := Top(�); � := Pop(�); �(t) := Insert(; �(t));

foreach u in PreQueue(t;K) do

if IsMember(�

1

; �(u)) and not IsMember (u; �) then

� := Push(u; �); � := Insert(u; �) �

od

od

od

end case

od;

foreach s in InitQueue(K) do

if not IsMember (�; �(s)) then return No �

od;

return Yes.

Figure 5.5: Enumerative Stl model checking

Temporal Safety Requirements 16

If the observation structure K is �nite, then K can be represented by a record

fKg

e

with two components of type enumgraph and array[state] of obs, where

obs is the type of observations. The second component is redundant if the

observation structure K is de�ned by a reactive module. In this case, the

observation of each state can be obtained from the state itself by ignoring the

values of the private variables. The enumerative structure representation fKg

e

supports the operations InitQueue, PreQueue, and PostQueue in constant time,

and Reach can be implemented in time proportional to the number of transitions

of K (see Chapter 3). The function � can be implemented in constant time

using an array � : array[state] of set of form, where form ranges over the

subformulas of �. If the abstract type set of T is represented by a boolean

array array[T] of B , then the operations Insert and IsMember require constant

time, and the operation EmptySet requires time proportional to the number of

elements in T. This representation leads to linear running time of Algorithm 5.1.

Theorem 5.1 [Stl model checking] Let � be an Stl formula with ` symbols, and

let K be a �nite �-structure with n states and m transitions. Suppose that

every call to the function AtomicCheck requires constant time. Given the input

� and fKg

e

, Algorithm 5.1 solves the model-checking problem (K;�) in O(` �

(n+m)) time.

Remark 5.4 [Space complexity of Stl model checking] Let � be an Stl formula

with ` symbols, and let K be a �nite �-structure with n states. Algorithm 5.1

requires O(` � n) space. It is possible to solve the model checking problem in

recursively top-down manner to save space. In particular, there is a nondeter-

ministic algorithm that requires space O(` � log n) space. If the Stl-formula �

is small, that is, bounded by a constant, then the complexity class of the model

checking problem (K;�) is NLOGSPACE.

The Stl-veri�cation problem (P; �), for a �nite module P and an Stl formula �,

can be solved by �rst constructing the enumerative structure representation fK

P

g

e

,

and then applying Algorithm 5.1. Since the number of states of K

P

may be ex-

ponentially larger than the description of P , the resulting cost for Stl veri�cation

is exponential. This cost is unavoidable, because already the propositional Stl-

veri�cation problem is PSPACE-hard (the propositional invariant-veri�cation

problem (P; p) and the Stl-veri�cation problem (P;82p) have the same answer,

and the former was shown to be PSPACE-hard in Chapter 3). In Section 3.2.4,

we considered two space optimizations for invariant veri�cation, using on-the-y

representations and using only the latched variables. Both these techniques are

useful for improving e�ciency of Stl model checking.

Exercise 5.10 fg [Stl veri�cation in PSPACE] Prove that the Stl-veri�cation

problem is in PSPACE.

Temporal Safety Requirements 17

Algorithm 5.2 [Symbolic Stl model checking]

Input: an Stl formula �, and a �-structure K.

Output: the answer to the model-checking problem (K;�).

foreach in OrderedSub(�) do

case = p for an atomic formula p: [[]] = [[p]]

case = �

1

_ �

2

: [[]] = [[�

1

]] [[[�

2

]]

case = :�: [[]] = [[true]]n[[�]]

case = 9 �: [[]] = PreReg([[�]];K)

case = �

1

9U�

2

:

� := [[false]];

� := [[�

2

]];

while � 6� � do

� := � [� ;

� := PreReg(�;K) \ [[�

1

]]

od

end case

od;

if InitReg(K) � [[�]] then return Yes else return No.

Figure 5.6: Symbolic Stl model checking

Exercise 5.11 fg [Reduced observation structure] Recall the de�nition of the

reduced transition graph of a module. De�ne the reduced observation structure

of a module and use it for an improved solution of the Stl-veri�cation problem,

along the lines of Theorem 3.4.

5.3.2 Symbolic Stl model checking

A symbolic model-checking algorithm computes a symbolic representation of

the characteristic region [[�]]

K

from symbolic representations of the characteris-

tic regions for the subformulas of �. The symbolic Stl model-checking algorithm

shown in Figure 5.6 assumes that the symbolic structure representation supports

the operations InitReg and PreReg , and the symbolic region representation sup-

ports, in addition to the operations [, \, and �, also the set di�erence oper-

ation n. An Stl-veri�cation problem (P; �) can be solved by �rst constructing

a symbolic representation of the observation structure K

P

, and then applying

Algorithm 5.2.

Consider the propositional Stl-veri�cation problem (P; �). The symbolic rep-

resentation of the observation structure K

P

consists of (1) the symbolic rep-

resentation of the transition graph G

P

(which consists of the initial predicate

Temporal Safety Requirements 18

q

I

over X

P

and the transition predicate q

T

over X

P

[X

0

P

), and (2) the set

obsX

P

of observable variables. Binary decision diagrams are suitable for solv-

ing the propositional Stl-veri�cation problem. All the heuristics considered in

Section 5.2.4 to improve the e�ciency of BDD-based representations are useful

in Stl-veri�cation.

Exercise 5.12 fg [Symbolic region di�erence] Write an algorithm that computes,

given the BDD representation of two propositional formulas p and q, the BDD

representation of the di�erence [[p]]n[[q]]. What is time complexity of the algo-

rithm?

Exercise 5.13 fg [Event Stl] Write a symbolic model-checking algorithm for Estl

that computes characteristic regions only over the latched variables.

5.4 The Distinguishing Power of Stl

The partition-re�nement algorithms presented in Chapter 6 can be used to

reduce the size of an observation structure, while retaining the ability of com-

puting the characteristic regions for Stl formulas. For this purpose, we need

to understand when two states of an observation structure satisfy the same Stl

formulas.

5.4.1 State Equivalences

A state equivalence ' is a family of relations which contains for each observation

structure K an equivalence '

K

on the state space of K (that is, a partition of

the state-space of K). Here are three examples of state equivalences:

1. Within each observation structure K, state equality = distinguishes any

two di�erent states: for every state s of K, s=

=

K

is the singleton set fsg.

2. Within each observation structure K, observational equivalence � distin-

guishes any two states with di�erent observations: if hh�ii is the observation

function of K, then two states s and t of K are observationally equivalent,

denoted s �

K

t, if hhsii = hhtii.

3. Within each observation structure K, universal equivalence '

U

does not

distinguish any two states: if � is the state space of K, then for every

state s of K, s=

'

U equals �.

The re�nement relation on equivalences induces a preorder on state equiva-

lences. Let '

1

and '

2

be two state equivalences. The state equivalence '

1

is

as distinguishing as the state equivalence '

2

, written '

2

v '

1

, if for all obser-

vation structures K, the equivalence '

1

K

re�nes the equivalence '

2

K

. The state

Temporal Safety Requirements 19

equivalence '

1

is more distinguishing than '

2

, if '

2

v '

1

and '

1

6v '

2

. The

two state equivalences '

1

and '

2

are equally distinguishing, if '

1

v '

2

and

'

2

v '

1

. The two state equivalences '

1

and '

2

are incomparable if '

1

6v '

2

and '

2

6v '

1

.

Remark 5.5 [State equality and universal equivalence] Let ' be a state equiva-

lence. The state equivalence ' is as distinguishing as universal equivalence, and

state equality is as distinguishing as '. In other words, the preorder v has a

bottom, the universal equivalence '

U

, and a top, the state equality =.

5.4.2 Bisimilarity

Since observational equivalence refers to static observation snapshots for distin-

guishing two states, more distinctions can be made by referring also to dynamic

observation sequences. Bisimilarity is such a state equivalence which, while less

distinguishing than state equality, is more distinguishing than observational

equivalence.

Bisimilarity

Let K be an observation structure. The coarsest stable re�nement '

B

K

=

min

K

(�

K

) of observational equivalence and the induced state equivalence

'

B

are called bisimilarity.

Remark 5.6 [Alternative de�nition of bisimilarity] Let K = (�; �

I

;!; A; hh�ii)

be an observation structure. The equivalence

�

=

on the states of K is a bisimu-

lation of K if (1) the partition �=

�

=

is a stable partition of K and (2)

�

=

re�nes

the observational equivalence �

K

. Thus, for all states s and t of K, if s

�

=

t

then

(1) hhsii = hhtii;

(2) if s! s

0

, then there is a state t

0

such that t! t

0

and s

0

�

=

t

0

;

(3) if t! t

0

, then there is a state s

0

such that s! s

0

and s

0

�

=

t

0

.

Two states s and t of K are bisimilar i� there is a bisimulation

�

=

of K such

that s

�

=

t.

It follows that bisimilarity can be characterized game-theoretically. Consider the

following two-player game on the graph of the observation structureK. Player I,

the protagonist, attempts to show that two given states s and t are bisimilar,

while Player II, the adversary, tries to distinguish the two states. If the two

given states have di�erent observations, then the adversary wins immediately.

Throughout the game, there are two active states; initially s and t are active.

Each move of the game consists of two parts |a move by the adversary followed

by a move of the protagonist. The adversary picks one of the two active states

and replaces it by one of its successors, say s

0

; the protagonist, then, must match

Temporal Safety Requirements 20

p

p

q

p

p

t

0

t

1

t

2

t

4

t

3

p

p

q p

s

1

s

3

s

0

s

2

p

p

q p

u

0

u

1

p

u

2

u

3

u

4

Figure 5.7: Bisimilarity game

the move of the adversary by replacing the other active state with one of its

successors t

0

such that hhs

0

ii = hht

0

ii. If the protagonist cannot match a move of

the adversary, then the adversary wins the game. The two initial states s and

t are bisimilar i� the adversary does not have a winning strategy; that is, all of

possible moves of the adversary can perpetually be matched by the protagonist.

Example 5.9 [Bisimilarity game] Consider the observation structure shown in

Figure 5.7. The two states s

0

and t

0

are not bisimilar. To see this using

the bisimilarity game, consider the following strategy for the adversary. The

adversary chooses s

0

and moves to s

1

. If, in response, the protagonist decides to

move from t

0

to t

1

, then the adversary moves from s

1

to s

3

, and the protagonist

cannot match this move (because no transition from t

1

leads to a state with

observation p). Similarly, if the protagonist decides to move from t

0

to t

2

, then

the adversary moves from s

1

to s

2

, and the protagonist cannot match this move

either. So the adversary has a winning strategy in the bisimilarity game, which

implies that the two states s

0

and t

0

are not bisimilar. By contrast, it is easy

to check that the two states s

0

and u

0

are bisimilar.

Exercise 5.14 fg [Fixpoint view of bisimilarity] Let K = (�; �

I

;!; A; hh�ii) be

an observation structure. Given a binary relation

�

=

� �

2

, we de�ne the binary

relation f(

�

=

) � �

2

such that for all states s and t of K, (s; t) 2 f(

�

=

) i�

(1) s

�

=

t;

(2) if s! s

0

, then there is a state t

0

such that t! t

0

and s

0

�

=

t

0

;

(3) if t! t

0

, then there is a state s

0

such that s! s

0

and s

0

�

=

t

0

.

First, prove that f is a monotonic function on the complete partial order of the

equivalences on � under re�nement (i.e., if

�

=

1

�

�

=

2

for two equivalences

�

=

1

and

�

=

2

on �, then f(

�

=

1

) � f(

�

=

2

)). Second, prove the binary relation

�

=

� �

2

is

a bisimulation of K i� (1)

�

=

is an equivalence that re�nes the observational

Temporal Safety Requirements 21

equivalence � and (2)

�

=

is a �xpoint of f . Third, conclude that bisimilarity

'

B

K

is the greatest �xpoint of f .

An in�nite hierarchy of state equivalences

Bisimilarity |a family of coarsest stable re�nements| is de�ned to be the

least distinguishing state equivalence in the set of state equivalences whose con-

stituents are stable re�nements of observational equivalence. Hence, bisimilarity

is de�ned \from below," in terms of more distinguishing state equivalences. Al-

ternatively, bisimilarity can be de�ned \from above," as the limit of a sequence

of less distinguishing state equivalences. Intuitively, two states are i-step bisim-

ilar, written �

i

for a natural number i, if in the bisimilarity game the adversary

has no winning strategy that requires at most i moves. Then, two states are

bisimilar if they are i-step bisimilar for all natural numbers i.

i-step bisimilarity

The state equivalences �

i

, called i-step bisimilarity for each natural num-

ber i, are de�ned inductively. The state equivalence �

0

coincides with

observational equivalence; that is, �

0

=�. For each natural number i, for

every observation structure K = (�; �

I

;!; A; hh�ii), and for all states s and

t of K, let s �

i+1

K

t i�

(1) hhsii = hhtii;

(2) if s ! s

0

, then there is a state t

0

such that t ! t

0

and

s

0

�

i

K

t

0

;

(3) if t ! t

0

, then there is a state s

0

such that s ! s

0

and

s

0

�

i

K

t

0

.

Remark 5.7 [] For each natural number i, the state equivalence �

i+1

is as dis-

tinguishing as �

i

, and bisimilarity is as distinguishing as �

i

.

Exercise 5.15 fg [Computation of i-step bisimilarity] Write an algorithm that,

given an observation structureK and a natural number i, computes the partition

K=

�

i

K

. What is the asymptotic running time of your algorithm for �nite input

structures?

The hierarchy of state equivalences given by i-step bisimilarity is strict and

converges towards bisimilarity.

Proposition 5.3 [Strict hierarchy] For each natural number i, the state equiva-

lence �

i+1

is more distinguishing than the state equivalence �

i

.

Proof. The proof is by induction on i. We only give the base case and indicate

the idea behind the inductive step.

Temporal Safety Requirements 22

t

p

p p p

p

s

q r q r

Figure 5.8: The observation structure K

1

For the base case, consider the observation structure K

1

shown in Figure 5.8.

To distinguish the two states s and t in the bisimilarity game, the adversary

needs a single move (the adversary chooses the successor of s). It follows that

s �

0

K

1

t and s 6�

1

K

1

t; that is, �

1

is more distinguishing than �

0

.

For the idea behind the inductive step, consider the observation structure K

2

shown in Figure 5.9. To distinguish the two states s and t, the adversary needs

two moves (with its �rst move, the adversary chooses the left successor of s;

with its second move, it chooses the rightmost successor of s

0

). It follows that

s �

1

K

2

t and s 6�

2

K

2

t; that is, �

2

is more distinguishing than �

1

.

Exercise 5.16 fg [] Give a complete proof of Proposition 5.3. Use only �nite

observation structures to distinguish �

i+1

from �

i

.

The next proposition gives establishes that bisimilarity coincides with the in-

ductive de�nition.

Proposition 5.4 [Alternative de�nition of bisimilarity] Bisimilarity '

B

equals

the intersection

S

i 2 N: �

i

of the i-step bisimilarity equivalences.

Proof. We show that the function f from Exercise 5.14 is

T

-continuous; that

is, given an observation structure K = (�; �

I

;!; A; hh�ii) and a sequence

�

=

0

;

�

=

1

;

�

=

2

; : : : of equivalences on �, if ��

�

=

0

�

�

=

1

�

�

=

2

� � � �, then f(\i 2 N:

�

=

i

) equals

\i 2 N: f(

�

=

i

). The proposition follows from the Kleene �xpoint theorem.

By the monotonicity of f (Exercise 5.14), f(\i 2 N:

�

=

i

) � (\i 2 N: f(

�

=

i

)).

Conversely, consider two states s and t of K such that for all natural numbers i,

(s; t) 2 f(

�

=

i

). Let s ! s

0

. Then for all natural numbers i, there is a state

t

i

with t ! t

i

such that s

0

�

=

i

t

i

. Since all the equivalences

�

=

i

re�ne the

Temporal Safety Requirements 23

s t

p p

p p

p p p p p p

q r q r q r q r

p

s

0

Figure 5.9: The observation structure K

2

propositional equivalence �, s

0

� t

i

for all i. That is, all the state t

i

have

identical observations. Since hhpost(s)ii is �nite, there is a state t

0

with t ! t

0

such that s

0

�

=

i

t

0

for in�nitely many natural numbers i. Since i � j implies

�

=

i

�

�

=

j

, s

0

�

=

i

t

0

for all natural numbers i. Therefore, (s; t) 2 f(\i 2 N:

�

=

i

).

Remark 5.8 [] The requirement that every state has only �nitely many succes-

sors per observation is essential for the validity of Proposition 5.4. Otherwise the

function f from Exercise 5.14 is not necessarily

T

-continuous, and '

B

K

properly

re�nes

S

i 2 N: �

i

.

5.4.3 Requirement-preserving Equivalences

Every state logic induces a state equivalence, namely, the state equivalence that

distinguishes any two states i� there is a state formula that is satis�ed by one

state but not by the other state.

�-equivalence

Let � be a state logic and let K be an observation structure. The two states

s and t of K are �-equivalent, denoted s '

�

K

t, if for all �-formulas � such

that K is a �-structure, s j=

K

� i� t j=

K

�. The equivalence '

�

K

and the

induced state equivalence '

�

are called �-equivalence.

The state equivalences induced by state logics allow us to compare the distin-

guishing power of two state logics. Let � and 	 be two state logics. The state

logic � is as distinguishing as the state logic 	 if '

	

v '

�

, etc. In other

Temporal Safety Requirements 24

words, the state logic � is as distinguishing as the state logic 	, if whenever

some 	-formula distinguishes between two states, there exists some �-formula

that distinguishes between those two states: for every observation structure K,

and for every two states s and t of K, if there exists a 	-formula � such that

s j=

K

� but t 6j=

K

�, then there there exists a �-formula such that s j=

K

but t 6j=

K

 .

Abstraction

Consider the model checking problem (K;�) for a state logic �. The notion

of abstraction de�nes the conditions under which computing the characteristic

region of K for � can be reduced to computing the characteristic region of a

quotient structure of K.

Abstraction

The state logic � admits abstraction if for every state equivalence ' as

distinguishing as '

�

, for every �-formula �, and for every �-structure K,

the characteristic region [[�]]

K

is

S

[[�]]

K=

'

. If � admits abstraction and '

�

v ', then ' is called an abstract semantics for �; if � admits abstraction,

then '

�

is the fully abstract semantics for �.

Let � be a state logic, let � be a �-formula, and letK be a �-structure. Suppose

' is an abstract semantics for �. Then, any two states that are '-equivalent

satisfy the same set of �-formulas. Hence, instead of performing model checking

on the structure K, we can perform model checking on the quotient structure

K=

'

K

. Since the logic � admist abstraction, we know that a state s of K

satis�es a �-formula � i� the '-equivalence class containing s satis�es � in the

quotient structure. Thus, the model-checking problems (K;�) and (K=

'

K

; �)

have the same answer. The latter problem may be much simpler, because the

state space of the quotient structure K=

'

K

may be much smaller than the state

space of K.

All the state logics that we study, including the logic Stl, admit abstraction.

However, it is possible to de�ne operators whose truth is not preserved by

quotients.

Proposition 5.5 [Stl abstraction] Stl admits abstraction.

Exercise 5.17 fg [] Prove Proposition 5.5.

Example 5.10 [] Consider the state logic �

na

whose state formulas are generated

by the grammar

� ::= p j � _ � j :� j [even]�:

The semantics of the operator [even] is de�ned by the clause

Temporal Safety Requirements 25

s j=

K

[even]� i� the characteristic region [[�]]

K

has even cardinality.

For instance, [even]p holds in a state of K i� even number of states of K satisfy

p. The logic �

na

does not admit abstraction. Verify that the observational

equivalence � is the �

na

-equivalence, i.e. no �

na

-formula distinguishes between

two states with identical observations. Consider an observation structureK with

states � and observations A. The characteristic region [[[even]true]]

K

equals �

if � has even cardinality and ; otherwise. The quotient K=

�

has one state

per observation of K. Consequently,

S

[[[even]true]]

K=

�

equals � if A has even

cardinality and ; otherwise. Since j�j may be even while jAj is not, �

na

does not

admit abstraction. Consequently, we cannot use quotients to solve the model

checking problem for �

na

.

Stl equivalence

To use Proposition 5.5 for Stl model checking, we need to determine abstract se-

mantics for Stl. The next proposition asserts that no Stl-formula can distinguish

between two bisimilar states.

Proposition 5.6 [Stl abstraction] Bisimilarity is an abstract semantics for Stl.

Proof. Consider an observation structure K. The bisimilarity partition '

B

K

is

the coarsest stable re�nement min(�

K

) of the observational equivalence. We

need to prove that two bisimilar states satisfy the same set of Stl-formulas. Let

� be a formula of Stl. The proof is by induction on the structure of �. Consider

two states s and t such that s '

B

t. We want to prove that s j= � i� t j= �.

The base case is when � is an observation predicate. Since '

B

re�nes the

observational equivalence, we know that s and t have identical observations.

Hence, s and t satisfy the same set of observation predicates. The inductive

case corresponding to logical connectives is straightforward.

Consider the case � = 9U�. By inductive hypothesis, bisimilar states agree

on the truth of and �. Suppose s j= �. Then, there is a source-s trajectory

s

0::m

such that s

m

j= �, and s

i

j= for 0 � i < m. Since the partition '

B

is

stable, starting with state t

0

= t, we can �nd states t

1

, t

2

; : : : ; t

m

such that each

t

i

'

B

s

i

for 0 � i � m, and t

0

t

1

: : : t

m

is a trajectory of K. From the inductive

hypothesis, t

m

j= � and t

i

j= for 0 � i < m. This implies that t j= �. From

symmetry, s j= � i� t j= �.

The remaining case � = 9 is left for the reader to verify.

This suggests that for Stl model checking, it su�ces to construct quotients with

respect to bisimilarity. Given an observation structure K = (�; �

I

;!; A; hh�ii),

we �rst consider the observational equivalence �

K

over the states �. The next

step is to construct the coarsest stable re�nement min(�

K

) using one of the

Temporal Safety Requirements 26

algorithms from Chapter 6. This yields the bisimilarity equivalence '

B

K

and the

minimal quotient K=

'

B . Then, Stl speci�cations for the observation structure

K can be checked by model checking over the quotient structure K=

'

B
.

We proceed to establish that bisimilarity is a fully abstract semantics of Stl.

In fact, if bisimilarity distinguishes two states of an observation structure, then

the two states can be distinguished by a Stl formula that employs only the next

connective. For instance, in Figure 5.7, the nonbisimilar states s and t can be

distinguished by the Stl formula 9 (9 q ^ 9 r). The fragment Stl

of Stl

contains those formulas of Stl that do not contain the until connective 9U . The

fragment Stl

U

of Stl contains those formulas of Stl that do not contain the next

connective 9. Then Stl is as distinguishing as Stl

, and also as distinguishing

as Stl

U

.

Proposition 5.7 [Stl full abstraction] The equivalence induced by Stl

coincides

with the bisimilarity '

B

.

Proof. Consider an observation structure K. We wish to prove that whenever

two states s and t of K belong to di�erent equivalence classes of '

B

K

, there

exists a formula � of Stl

such that s j=

K

� and t 6j=

K

�. We prove that, for

every natural number i, for every equivalence class � of the i-step bisimilarity

�

i

K

, there exists a formula �

�

of Stl

such that [[�

�

]]

K

= �.

Base case i = 0: for an equivalence class � of the propositional equivalence �

K

,

the formula �

�

is the observation of �.

Inductive case i = k+1: Let � be an equivalence class of �

k+1

K

. There are only

�nitely many equivalence classes � of the partition �

k

K

such that s! t for some

s 2 � and t 2 � . Then, choose

�

�

=

^

f�2�

k

j�!�g

9 �

�

^ 8

_

f�2�

k

j�!�g

�

�

:

The reader should verify that the characteristic region [[�

�

]]

K

equals �.

Exercise 5.18 fg [Event Stl] Does Estl admit abstraction? What is the state

equivalence induced by Estl? Prove your answers.

5.4.4 Stutter-insensitive Equivalences

A reactive module stutters when its observable state stays unchanged. An

asynchronous module may stutter in every update round. If the number of

rounds for which a module stutters before updating its observation is irrelevant,

then many such rounds can be combined into a single transition. This suggests

de�ning a closure operation on observation structures that adds a transition

from the state s to the state t whenever there is a trajectory from s to t along

which the observation stays unchanged.

Temporal Safety Requirements 27

Stutter closure

Let K = (�; �

I

;!; A; hh�ii) be an observation structure. For two states s

and t of K, let s !

S

t if there is an source-s K-trajectory s

0::m

such that

(1) for all 0 � i < m, hhs

i

ii = hhsii, and (2) s

m

= t. The relation !

S

is

called the stutter-closed transition relation of K. The stutter closure K

S

is

the observation structure (�; �

I

;!

S

; A; hh�ii).

Remark 5.9 [] The stutter-closed transition relation is reexive. The reachable

region of the stutter closure of the observation structure K coincides with the

reachable region of K.

Exercise 5.19 fg [Stutter closure] Let K be a �nite observation structure with

n states. Give an O(n

3

) algorithm that computes the stutter closure K

S

.

Stutter closure operation extends to state equivalences also. For instance, two

check whether states s and t of an observation structure K are equivalent ac-

cording to the stutter-closure of bisimilarity, we �rst compute the stutter-closure

of K and then check if the two states s and t are bisimilar.

Stutter closure of state equivalences

Let ' be a state equivalence, and let K be an observation structure. For

two states s and t of K, s

�

=

K

t, for the stutter closure

�

=

of ', if s '

K

S t.

The induced state equivalence

�

=

is called the stutter closure of '. The state

equivalence ' is stutter-insensitive if '=

�

=

.

Thus, the equivalence

�

=

K

is same as the equivalence '

K

S
. For instance, for the

structure K

of Figure 5.11 and the bisimilarity partition �=

'

B containing the

three singleton regions fsg, ftg, and fug, the stutter closure �=

�

=

B contains the

two regions fs; tg and fug.

Remark 5.10 [] Observational equivalence is stutter-insensitive, and bisimilarity

is not.

Proposition 5.8 [Stutter closure] Bisimilarity '

B

is more distinguishing than its

stutter closure

�

=

B

.

Exercise 5.20 fg [] Prove Proposition 5.8.

Thus, the number of equivalence classes of

�

=

B

may be much smaller than the

number of equivalence classes of '

B

, and thus, employing

�

=

B

for reduction may

improve the e�ciency of veri�cation. Observe that the stutter-closed bisimilar-

ity partition

�

=

B

K

can be computed by �rst constructing the stutter closure K

S

,

and then employing the partition re�nement algorithms using the propositional

equivalence as the initial partition.

Temporal Safety Requirements 28

Example 5.11 [Stuttering equivalence of message passing protocols] Recall the

modules SyncMsg of Figure 2.20 and AsyncMsg of Figure 2.24. Note that the

two modules have identical observations, namely, the produced message msg

P

and the consumed message msg

C

. The two modules are not bisimilar. This is

because the number of rounds it takes for the produced message to appear as

a consumed message are di�erent in the two modules. However, verify the two

modules are stutter-closed bisimilar.

For the observation structure K

of Figure 5.11, we have s

�

=

B

t, while the Stl

formula 9p is satis�ed only by the state t. Intuitively, the next operator allows

us to count the number of rounds, while stutter-closure does not care about the

number of update rounds required to change the observation. Thus, stutter-

closed bisimilarity is not an abstract semantics for Stl. The next proposition

asserts that Stl

U

formulas cannot distinguish among

�

=

B

-equivalent states. This

implies that the logic Stl

U

is stutter-insensitive, and thus, for model checking

of Stl

U

-formulas, we may use stutter-closed bisimilarity for reduction.

Proposition 5.9 [Stl

U

abstraction] Stutter-closed bisimilarity

�

=

B

is an abstract

semantics for Stl

U

.

Exercise 5.21 fg [] (1) Prove Proposition 5.9. (2) Show that stutter-closed

bisimilarity is not fully abstract for Stl

U

.

5.5 The Expressive Power of Stl

While the distinguishing powers of the logics Stl and Stl

are identical, they

have di�erent expressive powers.

Let � and 	 be two state logics. The logic � is as expressive as the logic 	

if for every formula � of 	, there exists a formula of � such that for every

observation structure K, the characteristic regions [[�]]

K

and [[]]

K

are identical.

The logic � is more expressive than the logic 	 if � is as expressive as 	, but

	 is not as expressive as �. The two logics � and 	 are equally expressive if

� is as expressive as 	, and 	 is as expressive as �. The expressive powers of

the two logics � and 	 are incomparable if � is not as expressive as 	, and 	

is not as expressive as �.

Exercise 5.22 fg [Distinguishing vs. expressive power] Let � and 	 be two state

logics. Prove that if � is as expressive as 	, then � is as distinguishing as 	.

What other relationships between the distinguishing and expressive powers of

state logics can you think of?

The following proposition establishes that the until-connective cannot be ex-

pressed by combining the next-connectives.

Temporal Safety Requirements 29

:p:p :p :p

t

0

t

1

t

2

t

k

:p:p

s

0

s

1

s

2

:p

s

k

:p

p

:p

Figure 5.10: Expressive power of the eventually operator

Proposition 5.10 [Expressiveness of Until] The logic Stl

is not as expressive

as the logic Stl

U

.

Proof. Consider the formula 93p of Stl

U

. To prove that the formula 93p is not

expressible in Stl

, we need to show that, for every formula � of Stl

, there

exists an observation structure K such that [[�]]

K

di�ers from [[93p]]

K

.

Consider a formula � of Stl

, and let k be the number of occurrences of the

operator 9 in �. Consider the structure shown in Figure 5.10. We have

s

0

j= 93p and t

0

6j= 93p. We claim that for every 0 � i � k, if is a formula of

Stl

with at most i occurrences of the temporal operator 9, then either both

s

k�i

and t

k�i

satisfy , or both do not satisfy . The proof is by induction on

i.

For i = 0, we need to consider formulas with no occurrences of 9, that is,

propositional formulas. Since the states s

k

and t

k

have same observations, they

agree on the truth of propositional formulas.

Now consider the case i = j+1 for 0 � j < k. We need to prove that the states

s

k�i

and t

k�i

agree on the truth of formulas with at most i occurrences of 9

assuming that the states s

k�j

and t

k�j

agree on the truth of formulas with at

most j occurrences of 9. The proof is straightforward using induction on the

structure of .

In conclusion, since � has only k occurrences of 9, the states s

0

and t

0

agree

on the truth of �, and hence, [[�]] 6= [[93p]].

Conversely, the next-connective cannot be expressed by combining the until-

connectives.

Proposition 5.11 [Expressiveness of Next] The logic Stl

U

is not as expressive as

the logic Stl

.

Proof. Consider the formula 9 p of Stl

, and the observation structure K

shown in Figure 5.11. We know that t j= 9p and s 6j= 9p. We claim that the

formula 9 p is not expressible in the fragment Stl

U

. It su�ces to show that,

Temporal Safety Requirements 30

s ut

:p :p p

Figure 5.11: Expressive power of the next operator

for the observation structure K

, for every formula � of Stl

U

, either both s and

t satisfy � or both do not satisfy �. The proof is by induction on the structure

of �. Since the states s and t have the same observations, they satisfy the same

set of predicates. The inductive cases for logical connectives follow immediately.

Let us consider the formula � = �

1

9U�

2

. From inductive hypothesis, the states

s and t agree on the truth of the subformulas �

1

and �

2

. This implies that both

s and t satisfy � precisely under the same conditions, namely, when they satisfy

�

2

, or when they satisfy �

1

and u satis�es �

2

.

Exercise 5.23 fg [] Prove that there is no formula � of Stl such that (1) � uses

only propositions, logical connectives, and the temporal operators 9 and 93,

and (2) for every observation structure K, [[�]]

K

= [[p9Uq]]

K

. This implies that

the until-operator is not expressible using the next and eventually operators.

Exercise 5.24 fg [Event Stl] Is Estl more expressive than Stl? Prove your an-

swer.

Exercise 5.25 fg [Strict Until] The logic STL

+

has the syntax

� ::= p j � _ � j :� j 9 � j �9U

+

�;

where the semantics of the strict-until operator is de�ned by the clause

s j=

K

 9U

+

� i� there is a source-s trajectory s

0::m

of K such that (1) m > 0

(2) s

m

j=

K

� and

(3) for all 0 � i � m, s

i

j=

K

� _ .

Thus, while p9Uq can be satis�ed in a state s by satisfying q in s, satisfaction of

p9U

+

q in a state s requires a source-s trajectory that is of at least length 2 and

leads to a state satisfying q. Is the logic Stl as expressive as the logic STL

+

? Is

the logic STL

+

as expressive as the logic Stl?

