
Contents

8 Fair Modules 1

8.1 Safety versus Liveness . 1

8.1.1 !-Words and !-Languages 2

8.1.2 The safety-liveness distinction 3

8.1.3 The safety-progress hierarchy 5

8.1.4 !-Trajectories . 12

8.2 Fairness . 13

8.2.1 Weak Fairness . 13

8.2.2 Strong Fairness . 15

8.3 Fair Graphs . 16

8.4 Fair Modules . 23

8.4.1 Operations on Fair Modules 24

8.4.2 Machine Closure and Receptiveness 26

8.5 Examples of Fair Modules . 27

8.5.1 Shared-variables Protocols 27

8.5.2 Circuits . 28

8.5.3 Message-passing Protocols 31

0

Computer-Aided Veri�cation

c

 Rajeev Alur and Thomas A. Henzinger November 16, 1999

Chapter 8

Fair Modules

8.1 Safety versus Liveness

So far, we have considered safety requirements of reactive modules. Intuitively,

a safety requirement is a requirement that can be violated by a �nite trace.

For example, the mutual-exclusion and equal-opportunity requirements can be

violated by �nite traces. More generally, all Sal requirements can be violated

by �nite traces. Why would we care about requirements that cannot be violated

by �nite traces? Such requirements would not be violated within the next year,

nor within our lifetime, nor within the lifetime of the universe. The answer is

convenience in system and requirement description.

Let us assume, for the sake of argument, that there is no truly nondeterminis-

tic physical process. Even with this assumption, the nondeterministic update

command

update x

[] true ! x

0

:= 0

[] true ! x

0

:= 1

is useful for describing systems that assign 0s and 1s to x, because the non-

determinism frees us from the responsibility of being speci�c when x is 0, and

when x is 1. The actual law that determines the value of x in each round may

be arbitrarily complex, and yet irrelevant for our purposes of proving certain

system requirements. Similarly, it is often convenient to assert that an event

will happen, without giving detailed information on when it will happen. For

example, we may want to assert that x never stays 0, and it never stays 1, with-

out being speci�c on how many rounds can expire between consecutive changes

in the value of x. No �nite trace can violate this assertion, yet an in�nite trace

1

Fair Modules 2

can violate it by having one the value of x remain unchanged after some round.

We use the notion of fair update choices for enforcing the eventual execution of

particular guarded assignments of a nondeterministic update command:

update x weaklyfair a; b

[] true

a

! x

0

:= 0

[] true

b

! x

0

:= 1

The declaration weakly fair a ensures that the update choice a, which sets x

to 0, cannot be neglected forever, and the declaration weakly fair b ensures

the same for the update choice b, which sets x to 1.

Requirements that can be violated by in�nite traces only are called liveness

requirements. Trajectories and traces of reactive modules are �nite sequences

of states and observations, respectively. In order to specify whether a module

satis�es or violates a liveness requirement, we need to de�ne in�nite trajectories

and in�nite traces, called !-trajectories and !-traces.

8.1.1 !-Words and !-Languages

Let A be a set of symbols. An !-word a = a

0

a

1

a

2

� � � over the alphabet A is

an in�nite sequence of symbols a

i

from A. We write A

!

for the set of !-words

over A. An !-language L over the alphabet A is a set of !-words over A; that

is, L � A

!

.

For a word b 2 A

�

and an !-word a, by b � a we denote the !-word that results

from concatenating the two. The word a is a pre�x of the !-word b if there

exists an !-word c such that b = a � c, and a is a su�x of b if there exists a word

c such that b = c � a. The set of pre�xes of the !-word a is denoted by pref (a).

For an !-language L, pref (L) is the language ([a 2 L: pref (a)). For a language

L � A

�

, the !-language L

!

consists of !-words a such that a = a

0

� a

1

� a

2

� � �

with a

i

2 L for all i � 0. In other words, the !-words in L

!

are obtained

by concatenating in�nitely many words in L. Consequently, we freely use the

superscript ! in regular expressions.

An !-word a is periodic if there is a word b such that a = b

!

, that is, a is

obtained by concatenating in�nitely many copies of the �nite word b. An !-

word a is eventually periodic if it has a periodic su�x. An eventually periodic

word is of the form a � b

!

for two words a and b.

The !-language L is su�x-closed if for every !-word a in L, all su�xes of a are

also in L. The !-language L is fusion-closed if for all symbols a, if b � a � c and

b

0

�a � c

0

are in L, then so is b �a � c

0

. An !-word a is called a limit of the language

L if pref (a) � L. An !-word a is a limit of the !-language L if it is a limit

of pref (L). In other words, a is a limit of L if every �nite pre�x of a can be

extended to an !-word in L. The !-language L is limit-closed if it contains all

Fair Modules 3

its limits: for all !-words a 2 A

!

, if pref (a) � pref (L), then a 2 L; that is, if

every pre�x of a can be extended to an !-word in L, then a itself is also in L.

Example 8.1 [!-languages] Let A = fa; bg. Consider the !-language L

1

con-

sisting of all !-words a 2 (a + b)

!

that contain in�nitely many a symbols:

L

1

= (b

�

a)

!

. Then, pref (L

1

) = (a + b)

�

. The language L

1

is su�x-closed and

fusion-closed. However, L

1

is not limit-closed: the !-word b

!

is a limit of L

1

,

but is not in L

1

.

Consider the !-language L

2

consisting of all !-words a such that a

i

= a for all

odd positions i: L

2

= ((a+ b)a)

!

. The language L

2

is limit-closed, but neither

su�x-closed nor fusion-closed.

The !-language L

2

contains the periodic !-word (ba)

!

. It also contains the

eventually periodic !-word bababa

!

. Not all !-words in L

2

are eventually peri-

odic, for instance, the !-word baba

3

ba

5

ba

7

ba

9

: : :.

Consider the !-language L

3

that is the complement of the language L

1

(with

respect to A

!

). The !-word a belongs to L

3

i� it contains only �nitely many a

symbols. Thus, L

3

= (a + b)

�

b

!

and pref (L

3

) = (a + b)

�

. The language L

3

is

su�x-closed, fusion-closed, but not limit-closed.

Remark 8.1 [Limit-closed !-languages] A limit-closed !-language L is com-

pletely characterized by its pre�x language pref (L): L = fa j pref (a) �

pref (L)g.

8.1.2 The safety-liveness distinction

Consider an !-language L. If for every !-word a it can be checked whether a

belongs to L by looking only at the �nite pre�xes of a, then the !-language L

is called safe. If for every !-word a it cannot be checked whether a belongs to

L by looking at any �nite pre�x of a, then the !-language L is called live.

Safety, liveness, and machine closure

Let A be a set of symbols, and let L be an !-language over the alphabet A.

The !-language L is safe if L is limit-closed. The !-language L is live if

pref (L) = A

�

. Given a safe !-language L

S

and a live !-language L

L

over A,

the pair (L

S

;L

L

) is machine-closed if pref (L

S

\L

L

) = pref (L

S

). If the pair

(L

S

;L

L

) is machine-closed and the !-language L equals L

S

\ L

L

, then the

pair (L

S

;L

L

) is said to be a machine-closed speci�cation of L.

Remark 8.2 [Safe and live language] The !-languageA

!

is the only !-language

over the alphabet A that is both safe and live.

Fair Modules 4

If L is a safe !-language, and a is an !-word, then a 2 L i� all �nite pre�xes of

a can be extended to !-words in L. If L is a live !-language, and a is a word,

then a can be extended to an !-word in L. If (L

S

;L

L

) is a machine-closed pair

of !-languages, then all �nite words that can be extended to !-words in L

S

can

also be extended to !-words in L

S

\ L

L

.

Example 8.2 [Safety, liveness, and machine closure] Let A = fa; bg. The !-

language L

1

= (b

�

a)

!

is not safe, but is live. On the other hand, the !-language

L

2

= ((a+ b)a)

!

is safe, but not live. The pair (L

2

;L

1

) is machine-closed, since

L

1

\L

2

= L

2

. The !-language L

3

= A

�

b

!

is live, but not safe. The pair (L

2

;L

3

)

is not machine-closed, since L

2

\ L

3

is the empty language.

Consider the language L

4

= a

!

+b

!

. The language L

4

is safe. The pair (L

4

;L

1

)

is not machine-closed: no pre�x of b

!

can be extended to an !-word in L

4

\L

1

.

As we will see later, the desired set of in�nite trajectories of a module will be

speci�ed by a machine-closed pair of !-languages. The safety component is

speci�ed by the transition relation, and the liveness component is speci�ed by

fairness assumptions about update choices. Machine-closure ensures that the

fairness assumptions constrain only what is allowed in the limit, and can be

ignored while verifying safety properties of the system. This aspect of machine-

closure is captured by the following proposition.

Proposition 8.1 [Safety veri�cation] Let (L

S

;L

L

) be a machine-closed speci-

�cation of the !-language L, and let L

0

be a safe language. Then, L � L

0

i�

L

S

� L

0

.

Exercise 8.1 fT2g [Safety veri�cation] Prove Proposition 8.1.

Requiring machine-closure is not restrictive since every !-language can be spec-

i�ed by a machine-closed pair:

Theorem 8.1 [Safety-liveness decomposition] Let A be a set of symbols. Every

!-language L over the alphabet A can be speci�ed by a machine-closed pair

(L

S

;L

L

) consisting of a safe !-language L

S

and a live !-language L

L

over A.

Proof. Let L

S

be the limit closure of L; that is, L

S

contains all the limits of

L. Thus, L

S

is completely characterized by pref (L), and is safe. Let L

L

be

(A

!

nL

S

) [L; that is, L

L

contains all !-words, except the limits of L not in L.

Every word is either a pre�x of L, or not a pre�x of L

S

, and hence, a pre�x

of (A

!

nL

S

). It follows that pref (L

L

) = A

�

, and L

L

is live. Since L � L

S

,

L

S

\ L

L

= L, and (L

s

;L

L

) is machine-closed.

Fair Modules 5

8.1.3 The safety-progress hierarchy

To understand the structure of !-languages, we consider various ways of building

!-languages from languages over �nite words.

Safety languages

Given a language L � A

�

, the corresponding safety language consists of all

!-words whose all pre�xes belong to L.

Safety

For a language L � A

�

over an alphabet A, safe(L) is the !-language

fa j 8i � 0: a

0::i

2 Lg. The !-language L � A

!

is a safety language if there

is a language L � A

�

such that L = safe(L).

Remark 8.3 [Safety] If L = safe(L) then L = pref (L). This implies that both

de�nitions of safety coincide: L is limit-closed i� L = safe(L) for some language

L.

While specifying requirements of a reactive module, the alphabet A corresponds

to the set of observations. A safe language safe(L), then, can be used to specify

that \nothing bad ever happens" as the speci�cation requires every possible

�nite trace to be in the set L. A classical safety property is the mutual exclusion

property of resource allocation algorithms that requires that the same resource

is not allocated to two di�erent processes simultaneously.

Example 8.3 [Safe languages] Let A = fa; bg. The !-language L

2

= (Aa)

!

is

safe, and equals safe((Aa)

�

+(Aa)

�

A). The empty language is safe: ; = safe(;).

The universal language A

!

is safe: A

!

= safe(A

�

). The !-language consisting

of !-words a such that for all i � 0, if i is a prime number, then a

i

= a, is safe.

The !-language L

1

= (b

�

a)

!

is not safe. The !-language consisting of the single

!-word a

!

is safe; however, its complement A

�

bA

!

consisting of !-words with

at least one b symbol, is not safe.

The next proposition asserts that union of two safe languages is safe, and inter-

section of two safe languages is also safe. The complement of a safe language

need not be safe, as illustrated in Example 8.3.

Proposition 8.2 [Closure for safety languages] Safety languages are closed un-

der union and intersection, but not under complementation.

Proof. Consider L

1

= safe(L

1

) and L

2

= safe(L

2

). An !-word a is in L

1

\L

2

,

i� a 2 L

1

and a 2 L

2

, i� for all i � 0, a

0:::i

2 L

1

and a

0:::i

2 L

2

, i� for all

i � 0, a

0:::i

2 L

1

\ L

2

, i� a 2 safe(L

1

\ L

2

). This establishes that L

1

\ L

2

=

safe(L

1

\ L

2

), and hence, L

1

\ L

2

is safe.

Fair Modules 6

To establish closure under union, let L

0

1

be the language fa j pref (a) � L

1

g

consisting of words all of whose pre�xes are in L

1

. Similarly, let L

0

2

= fa j

pref (a) � L

2

g. We prove that L

1

[L

2

= safe(L

0

1

[L

0

2

).

Consider an !-word a 2 L

1

[L

2

. Without loss of generality, suppose a 2 L

1

.

Then, for all i � 0, a

0:::i

2 L

1

. Hence, for all i � 0, for all 0 � j � i, a

0:::j

2 L

1

.

Hence, for all i � 0, a

0:::i

2 L

0

1

. Hence, a 2 safe(L

0

1

[L

0

2

).

Consider an !-word a 2 safe(L

0

1

[L

0

2

). Then, for all i � 0, a

0:::i

2 L

0

1

[L

0

2

.

Without loss of generality, for in�nitely many positions i, a

0:::i

2 L

0

1

. This

implies for all i � 0, a

0:::i

2 L

1

(for, if a

0:::j

62 L

1

for some j, then for all i � j,

a

0:::i

62 L

0

1

). Hence, a 2 safe(L

1

). Hence, a 2 L

1

[L

2

.

Exercise 8.2 fT2g [safe does not distribute over union] Show that safe(L

1

) [

safe(L

2

) is not necessarily equal to safe(L

1

[L

2

).

Guarantee languages

Given a language L � A

�

, the corresponding guarantee language consists of all

!-words whose some pre�x belongs to L.

Guarantee

For a language L � A

�

over an alphabet A, guar(L) is the !-language

fa j 9i � 0: a

0::i

2 Lg. The !-language L � A

!

is a guarantee language if

there is a language L � A

�

such that L = guar(L).

Remark 8.4 [Guarantee] The !-language L � A

!

is a guarantee language i�

there is a language L � A

�

such that L = L � A

!

.

While specifying requirements of a reactive module, a guarantee language guar(L)

can be used to specify that \something good eventually happens" as the speci-

�cation requires the module to produce a trace in L after executing for �nitely

many steps. A classical guarantee property is the termination requirement that

a program eventually produces an output.

Example 8.4 [Guarantee languages] Let A = fa; bg. The empty language is a

guarantee language: ; = guar(;). The universal language A

!

is also a guarantee

language: A

!

= guar(A

+

). The !-language A

�

bA

!

consisting of !-words with

at least one b symbol, is a guarantee language: A

�

bA

!

= guar(A

�

b).

The safety and guarantee languages are closely related, namely, they are duals

of each other: the complement of a safe language is a guarantee language, and

the complement of a guarantee language is a safe language.

Proposition 8.3 [Duality of safety and guarantee] The !-language L is a

safety language i� the complementary language A

!

nL is a guarantee language.

Fair Modules 7

Exercise 8.3 fT2g [Duality of safety and guarantee] Prove that L = safe(L)

i� A

!

nL = guar(A

+

nL). Proposition 8.3 follows.

Exercise 8.4 fT2g [Safe and guarantee languages] Characterize the class of

!-languages that are both safety and guarantee languages.

Since safe languages are closed under union and intersection, it follows that so

are guarantee languages.

Proposition 8.4 [Closure for guarantee languages] Guarantee languages are

closed under union and intersection, but not under complementation.

Remark 8.5 [Closure for guarantee languages] The closure properties of guar-

antee languages can be established directly also:

guar(L

1

) [guar(L

2

) = guar(L

1

[L

2

);

and

guar(L

1

) \ guar(L

2

) = guar((L

1

�A

�

) \ (L

2

�A

�

)):

Exercise 8.5 fT4g [Obligation languages] Obligation languages are obtained

by boolean combinations of safety or guarantee languages. In other words, the

set of obligation languages is the least set that contains all safety languages,

and is closed under union, intersection, and complementation. Every obligation

language can be expressed in a normal form:

S

0 � i � k:safe(L

i

) \ guar (L

0

i

).

For example, for A = fa; bg, the !-language a

�

ba

!

consisting of !-words with

precisely one b symbol, is an obligation language: safe(a

�

ba

�

+ a

�

)\ guar(a

�

b).

Show that the obligation language a

�

ba

!

is neither a safety language nor a

guarantee language.

Response languages

Given a language L � A

�

, the corresponding response language consists of all

!-words whose in�nitely many pre�xes belong to L.

Response

For a language L � A

�

over an alphabet A, recur(L) is the !-language

fa j 8j � 0: 9i � j: a

0::i

2 Lg. The !-language L � A

!

is a response

language if there is a language L � A

�

such that L = recur(L).

While specifying requirements of a reactive module, a response language recur(L)

is used to specify that \something good happens repeatedly" as the speci�cation

Fair Modules 8

requires in�nitely many traces to be in the set L. A classical response property

is the progress requirement for resource allocation algorithms: if some process

is requesting a resource then some process is eventually granted the resource.

Example 8.5 [Response languages] Let A = fa; bg, and let L = (a

�

b)

�

. Then,

recur(L) = (a

�

b)

!

is the corresponding response language, and consists of all

!-words with in�nitely many b symbols. Observe that recur(L) is neither a

safety language nor a guarantee language.

The next proposition asserts that union of two response languages is a response

language, and intersection of two response languages is also a response language.

However, the response languages are not closed under complementation.

Proposition 8.5 [Closure for response languages] Response languages are closed

under union and intersection, but not under complementation.

Proof. Consider L

1

= recur(L

1

) and L

2

= recur(L

2

). An !-word a is in

L

1

[L

2

, i� a 2 L

1

or a 2 L

2

, i� for in�nitely many i, a

0:::i

2 L

1

or for in�nitely

many i, a

0:::i

2 L

2

, i� for in�nitely many i, a

0:::i

2 L

1

[L

2

, i� a 2 recur(L

1

[L

2

).

This establishes that L

1

[L

2

= recur(L

1

[L

2

), and hence, L

1

[L

2

is a response

language.

For closure under intersection, consider the language L

12

that contains a word

a

0:::m

i� (1) a

0:::m

2 L

2

, and (2) there exits i < m such that a

0:::i

2 L

1

and

a

0:::k

62 L

2

for i < k < m. We prove that L

1

\ L

2

= recur(L

12

).

Consider an !-word a 2 recur(L

12

). There exists an in�nite increasing sequence

of integers i

0

; i

1

: : : such that for all j � 0, a

0:::i

j

is in L

12

. By de�nition of L

12

,

for all j � 0, (1) a

0:::i

j

is in L

2

, and (2) there exists i

0

j

such that i

j�1

� i

0

j

< i

j

and a

0:::i

0

j

is in L

1

. Thus, a 2 recur(L

1

), and a 2 recur(L

2

). Hence, a 2 L

1

\L

2

.

Consider an !-word a 62 recur(L

12

). Then there exists a position i such that

for all j � i, a

0:::j

62 L

12

. We wish to establish a 62 L

1

\ L

2

. Assume to the

contrary. Since a 2 recur(L

1

), there exists a position k � i such that a

0:::k

2 L

1

.

Let k

0

be the least position such that k

0

> k and a

0:::k

0

2 L

2

(such a position

exists since a 2 recur(L

2

)). By de�nition of L

12

, it contains a

0:::k

0

, leading to a

contradiction.

For non-closure under complement, let A = fa; bg. Let L = (a

�

b)

�

. The re-

sponse language recur(L) consists of all !-words with in�nitely many b symbols.

Consider the complement of recur(L), that is, the !-language L = (a + b)

�

a

!

that contains !-words with only �nitely many b symbols. We prove that L is

not a response language. Suppose, to the contrary, L = recur(L

0

). We show

that there exists a sequence of integers i

0

; i

1

; : : : such that for all j � 0, the

word a

i

0

ba

i

1

b � � �a

i

j

is in L

0

. The proof is by induction.

Fair Modules 9

The !-word a

!

is in L. Hence, in�nitely many pre�xes of it are in L

0

, and hence,

there exists an integer i

0

such that a

i

0

2 L

0

.

Assume that there exist integers i

0

; i

1

; : : : i

k

such that for all 0 � j � k, the

word a

i

0

ba

i

1

b � � �a

i

j

is in L

0

. Consider the !-word a

i

0

ba

i

1

b � � �a

i

k

b a

!

. Since it

belongs to L, it has in�nitely many pre�xes in L

0

, and in particular, there exists

an integer i

k+1

such that a

i

0

ba

i

1

b � � �a

i

k

ba

i

k+1

is in L

0

.

Now consider !-word a

i

0

ba

i

1

b � � �. It has in�nitely many pre�xes in L

0

, but it

contains in�nitely many b symbols, and is not in L.

Exercise 8.6 fT3g [recur does not distribute over intersection] Show that recur(L

1

)\

recur(L

2

) is not necessarily equal to recur(L

1

\ L

2

).

Proposition 8.6 [Hierarchy of languages] Every safety language and every guar-

antee language is a response language.

Proof. To establish that every safety language is a response language, verify

that safe(L) = recur(pref (L)). To establish that every guarantee language is a

response language, verify that guar(L) = recur(L �A

�

).

It follows that every obligation language is also a response language.

Exercise 8.7 fT4g [From guarantee to response] Prove that the !-language L

is a response language i� L is the intersection of countably many guarantee

languages.

Exercise 8.8 fT3g [!-repetition and response] Show that for every language

L � A

�

, the !-language L

!

is a response language.

Persistence languages

Given a language L � A

�

, the corresponding persistence language consists of

all !-words whose all, but �nitely many, pre�xes belong to L.

Persistence

For a language L � A

�

over an alphabet A, persist(L) is the !-language

fa j 9j � 0:8i � j: a

0::i

2 Lg. The !-language L � A

!

is a persistence

language if there is a language L � A

�

such that L = persist(L).

While specifying requirements of a reactive module, a persistence language

persist(L) is used to specify that \something good happens eventually, and

stays unchanged" as the speci�cation requires all, but �nitely many, traces to

be in the set L. A classical persistence property is the eventual stabilization

requirement for self-stabilizing algorithms: the system eventually attains the

stable state, and stays stable.

Fair Modules 10

Example 8.6 [Persistence languages] Let A = fa; bg, and let L = A

�

a

�

. Then,

persist(L) = A

�

a

!

is the corresponding persistence language, and consists of all

!-words with only �nitely many b symbols. Observe that persist(L) is neither

a safety language nor a guarantee nor a response language, and its complement

is a response language.

The response and persistence languages are closely related, namely, they are

duals of each other: the complement of a response language is a persistence

language, and the complement of a persistence language is a response language.

Proposition 8.7 [Duality of response and persistence] The !-language L is a

response language i� the complementary language A

!

nL is a persistence lan-

guage.

Exercise 8.9 fT2g [Duality of response and persistence] Prove that L = recur(L)

i� A

!

nL = persist(A

�

nL). Proposition 8.7 follows.

It follows that every safety or guarantee language is a persistence language.

Exercise 8.10 fT4g [Response and persistence languages] Show that an !-

language is both a response language and a persistence language i� it is an

obligation language. Show that the response language (a

�

b)

!

is not an obli-

gation language, and thus, the persistence language A

�

a

!

is not an obligation

language.

Since response languages are closed under union and intersection, it follows that

so are persistence languages.

Proposition 8.8 [Closure for persistence languages] Persistence languages are

closed under union and intersection, but not under complementation.

Exercise 8.11 fT3g [From safety to persistence] Prove that the !-language L

is a persistence language i� L is the union of countably many safety languages.

Reactivity languages

Reactivity languages are obtained by boolean combinations of response and

persistence languages. In other words, the set of reactivity languages is the least

set that contains all response languages, and is closed under union, intersection,

and complementation.

Fair Modules 11

Reactivity

The !-langauge L � A

!

is a 1-reactivity language if there exists a persis-

tence language L

1

and a response language L

2

such that L = L

1

[L

2

. The

!-langauge L � A

!

is a k-reactivity language, for a natural number k, if

there exist k 1-reactivity languages L

1

; : : :L

k

such that L = L

1

\ � � � \ L

k

.

The !-langauge L � A

!

is a reactivity language if it is a k-reactivity lan-

guage for some natural number k.

Remark 8.6 [Disjunctive form of reactivity] Every reactivity language L can,

alternatively, be expressed in a disjunctive normal form:

S

0 � i � k:recur(L

i

)\

persist(L

0

i

).

A typical 1-reactivity requirement is the conditional repetition: if the symbol

a repeats in�nitely often, then the symbol b also repeats in�nitely often. As

we will see shortly, reactivity languages are useful in speci�cation of fairness

requirements for reactive modules: an individual strong fairness requirement is

a 1-reactivity language.

Example 8.7 [Reactivity languages] Let A = fa; b; cg. The !-language con-

sisting of !-words with in�nitely many b symbols or only �nitely many a symbols

is a 1-reactivity language: recur((A

�

b)

�

) [persist(A

�

(b+ c)

�

). The !-language

consisting of !-words with in�nitely many b symbols and only �nitely many a

symbols is a 2-reactivity language: recur((A

�

b)

�

) \ persist(A

�

(b+ c)

�

).

Exercise 8.12 fT5g [Hierarchy of reactivity languages] Show that there is a

1-reactivity language that is neither a response language nor a persistence lan-

guage. Then, show that, for every natural number k, there is a k-reactivity

language that is not a (k � 1)-reactivity language.

By de�nition, reactivity languages are closed under all boolean operations.

Proposition 8.9 [Closure for reactivity languages] Reactivity languages are

closed under all boolean operations.

All the !-languages of interest to us will be reactivity languages. Let us recap the

construction of !-languages starting from languages of words. A safety language

is the set of limits of a language over words. Safe languages are closed under

union and intersection, but complementing a safe language gives a guarantee

language. By considering intersection of in�nitely (countable) many guarantee

languages, we obtain response languages. Response languages are closed under

union and intersection, but complementing a response language gives a per-

sistence language. Equivalently, persistence languages are obtained by in�nite

unions of safety languages. Boolean combinations of persistence and response

languages give reactivity languages. The relationship among these classes is

illustrated in Figure 8.1.

Fair Modules 12

Safety Guarantee

Obligation

Response

Persistence

Reactivity

Figure 8.1: Classes of !-languages

Exercise 8.13 fT5g [Topological characterization] Consider a metric on !-

words such that the distance between two !-words shrinks exponentially with

the length of the longest common pre�x. In particular, de�ne the metric d over

the set A

!

such that d(a; b) equals 0 if a = b, and 2

�i

otherwise, where i is the

maximum integer j such that a

0:::j

= b

0:::j

. (1) Prove that the safe languages

are precisely the closed sets of the resulting topology on !-words. (2) Prove that

the live languages are precisely the dense sets. (3) Which languages correspond

to the open sets?

Exercise 8.14 fT4g [Machine closure in safety-progress hierarchy] Prove that

every C-language is the machine-closed intersection of a safe C-language and

a live C-language, where C is one of the following classes: safety; guarantee;

obligation; response; persistence; reactivity.

8.1.4 !-Trajectories

The execution of a transition graph G for �nitely many steps results in a tra-

jectory of G, which is a �nite sequence of states. The execution of a transition

graph for in�nitely many steps results in a !-trajectory of G, which is an in�nite

sequence of states.

!-trajectory

Let G = (�; �

I

;!) be a transition graph. An !-trajectory of G is an !-

word s = s

0

s

1

s

2

: : : over the alphabet � of states such that for all i � 0,

s

i

! s

i+1

. The �rst state s

0

is the source. The !-trajectory s is initialized

if s

0

2 �

I

. The !-language L

G

of the transition graph G is the set of

initialized !-trajectories of G.

Remark 8.7 [Seriality] LetG be a serial transition graph. Then, for every state

s of G, there is a source-s trajectory of G. The !-language L

G

is nonempty.

Fair Modules 13

Remark 8.8 [Safety of graph languages] The !-language L

G

of the transition

graph G is safe, and equals safe(L

G

).

Exercise 8.15 fT3g [!-languages of transition graphs] Prove that the !-language

L

G

of a transition graph G is limit-closed and fusion-closed. Conversely, let L

be a limit-closed and fusion-closed !-language over the alphabet A. Prove that

there exists a transition graph G with states A such that L

G

= L.

Example 8.8 [!-trajectories of mutual exclusion protocol] Let us revisit the

asynchronous solution to the mutual exclusion problem (Figure 1.23). The

initialized !-trajectories of Pete can be obtained from the reachable subgraph of

G

Pete

(see Figure 2.4). One possible !-trajectory Pete is the periodic trajectory

[(o0o0)(r0o0)(i0o0)]

!

in which process P

1

repeatedly requests and enters its critical section, while

process P

2

stays idle. Another possible !-trajectory is the periodic trajectory

[(o0o0)(r0o0)(i0o0)(o0r1)(o0i1)(r1o1)(i1o1)(o1r0)(o1i0)(r0o0)(i0o0)]

!

in which both processes alternately request and enter thir critical sections. Since

all the atoms of Pete are lazy, each state has a transition to itself. Consequently,

(o0o0)

!

is also a !-trajectory of Pete. Finally, consider the eventually periodic

!-trajectory (o0o0)(r0o0)

!

in which process P

1

requests the critical section, but

never enters the critical section.

8.2 Fairness

Fair modules are obtained from modules by adding two types of fairness require-

ments.

8.2.1 Weak Fairness

A nondeterministic update command may o�er, for a given state, several choices

for updating the variables. For instance, consider the module AsyncCount :

module AsyncCount is

interface Count : N

atom controls count

init

[] true ! count

0

:= 0

update

[] true

�

! count

0

:= count + 1

[] true

�

! count

0

:= count

Fair Modules 14

The counter is initially zero. The update action of the module has two guarded

assignments. The guarded assignment � is enabled in every update round, and

increments the counter. The guarded assignment � is also enabled in every

update round, and leaves the counter unchanged. During the execution of the

module, the choice between executing � and executing � is nondeterministic.

Thus, for every natural number i, the counter may stay unchanged for the �rst

i update rounds, and get updated to 1 in the round (i+1). This is a convenient

abstraction of the assumption that the rate at which the counter is incremented

is unknown (or irrelevant). However, consider the limit !-trajectory s in which

the counter never gets updated: for every i � 0, s

i

[count] = 0. The !-trajectory

s is unfair to the update choice �; the choice � is enabled in every round, and

never executed.

De�nition of fair modules provides a way to rule out the !-trajectory s = 0

!

.

This is achieved by requiring that the resolution of the update choices be weakly

fair to the choice �. The module FairCount is a fair version of the asynchronous

counter AsyncCount :

module FairCount is

interface Count : N

atom controls count

init

[] true ! count

0

:= 0

update weaklyfair �

[] true

�

! count

0

:= count + 1

[] true

�

! count

0

:= count

The annotationweaklyfair � requires that the guarded command � is executed

in�nitely often. The !-trajectories that satisfy this requirement will be called

fair trajectories. The !-trajectory s = 0

!

is not a fair trajectory of FairCount .

The !-trajectory t = 012345

!

in which the counter is not incremented beyond

5, is also not a fair trajectory of FairCount . On the other hand, consider the

!-trajectory u = 0123 � � � in which the counter is incremented in every round.

The update choice � is always enabled, but never executed, and yet, the !-

trajectory u is a fair trajectory of FairCount . This is because FairCount makes

no assumption about fairness towards the choice �.

In general, an update choice � for an atom U of a module P is a subset of the

update action update

U

. Consider an !-trajectory s of P . For i � 1, consider the

update round i in which the state s

i

is determined from the state s

i�1

. Recall

that the atom U is executed only after the updated values of the variables in

awaitX

U

have been determined. The update choice � is said to be available in

round i, if the state s

i�1

, together with the values of the awaited variables in

state s

i

, satis�es the guard p

of some guarded assignment in �. The update

choice is said to be executed in round i, if the values of the controlled variables

Fair Modules 15

in state s

i

are determined by executing some available guarded assignment in

�. The !-trajectory s is weakly fair with respect to �, if there is no round i

such that the choice � is available in every round after i, and is not executed in

any round after i. Intuitively, a weakly fair update choice cannot be available

forever without being executed.

8.2.2 Strong Fairness

Weak fairness requires that a choice that is continuously available is eventually

executed. Suppose a choice is available in all even rounds, and unavailable in all

odd rounds, and is never executed. This scenario meets the requirement of weak

fairness, but may not be a reasonable scenario in certain cases. For example,

consider the module LossyBu�er :

module LossyBu�er is

interface y : E

external x : E

passive atom controls y reads x; y awaits x

update

[] x?

�

! y?

[] x?

�

!

In every round in which the external event x is present, both the update choices

� and � are available. If the choice � is executed, then the interface event y is

issued, and if the choice � is executed, then the module stutters without issuing

the event y. The module LossyBu�er can be viewed as an abstraction of a lossy

bu�er, that either outputs the input event, or loses the input event. Consider

the periodic !-trajectory

s = [(y = 0; x = 0)(y = 0; x = 1)]

!

;

in every update round the external event x is present, but the module always

executes the update choice �. Requiring weak fairness for the choice � will rule

out the !-trajectory s. Now consider the periodic !-trajectory

t = [(y = 0; x = 0)(y = 0; x = 0)(y = 0; x = 1)(y = 0; x = 1)]

!

;

the external event x is present only in alternate rounds, and the module always

executes the update choice �. Note that the !-trajectory t is weakly fair with

respect to the choice �, because the choice � is unavailable in in�nitely many

rounds. If we wish to model the assumption that only some, but not all, mes-

sages are lost, then we would like to rule out the !-trajectory t also. This can be

achieved by requiring that the resolution of the update choices be strongly fair

to the choice �: if � is available in in�nitely many round, then � is executed

Fair Modules 16

in in�nitely many rounds. The module FairBu�er is a fair version of the bu�er

LossyBu�er :

module FairBu�er is

interface y : E

external x : E

passive atom controls y reads x; y awaits x

update stronglyfair �

[] x?

�

! y?

[] x?

�

!

The annotation stronglyfair � classi�es an !-trajectory to be fair if either

the update choice � is executed in�nitely often, or is available only �nitely

often. Consequently, the !-trajectory t is not a fair trajectory of FairBu�er .

Intuitively, a strongly fair update choice cannot be available in�nitely often

without being executed.

A fair module may declare, for each atom, some of its choices to be weakly fair,

and some to be strongly fair. An update choice of a reactive module P is a

subset of the update command update

U

, for some atom U 2 atoms

P

.

Fair module

A fair module P consists of (1) a reactive module P , (2) [weak fairness] a

�nite set WeakF

P

of update choices of P , and (3) [strong fairness] a �nite

set StrongF

P

of update choices of P .

Since one of the components of a fair module is a reactive module, we freely

attribute the properties of a reactive module to a fair module. For instance,

every fair module P = (P;WeakF

P

;StrongF

P

) de�nes the transition graph

G

P

= G

P

. Di�erent classi�cations of modules, such as �nite versus in�nite,

closed versus open, apply to fair modules also. For instance, an asynchronous

fair module is a fair module all of whose interface variables are controlled by

lazy atoms.

8.3 Fair Graphs

We de�ne the semantics of a fair module by associating a fair graph with it.

In Chapter 6, we de�ned automata by augmenting observation structures with

accepting regions. The accepting region of an automaton classi�es trajecto-

ries into accepting and non-accepting, and consequently, automata can de�ne

languages that are not necessarily pre�x-closed. Now we wish to augment a

transition graph with an accepting condition that will classify its !-trajectories

into accepting and non-accepting. By considering only accepting !-trajectories,

we will be able to de�ne live !-languages.

Fair Modules 17

s t

�

�

�

�

Figure 8.2: Fair graph

Let G = (�; �

I

;!) be a transition graph. An action of G is a subset of the

transition relation!. For an action � of G, we write s

�

! t if the transition (s; t)

belongs to �. A fairness constraint f for a transition graph G is a pair (�; �)

of actions of G, and a fairness assumption F for G is a �nite set of fairness

constraints for G.

Fair graph

A fair graph G consists of (1) a transition graph G, and (2) [fairness] a

fairness assumption F for G.

Intuitively, a fairness constraint (�; �) requires that if the action � repeats

in�nitely often then the action � also repeats in�nitely often. Fair trajectories

of a fair graph are those !-trajectories that meet the requirements stipulated

by all the fairness constraints.

Fair trajectory

Let G be a transition graph. An !-trajectory s of of G is �-fair , for an

action � of G, if s

i

�

! s

i+1

for in�nitely many natural numbers i. The !-

trajectory s is f-fair, for a fairness constraint f = (�; �) of G, if either

s is not �-fair, or s is �-fair. The !-trajectory s is F -fair, for a fairness

assumption F of G, if s is f -fair for all fairness constraints f in F . A fair

trajectory of a fair graph G = (G;F) is an F -fair !-trajectory of G. The

fair language L

G

of a fair graph G is the set of initialized fair trajectories of

G.

Remark 8.9 [Fair graphs] Let G = (G;F) be a fair graph. The !-language L

G

is a subset of the safe language L

G

. Furthermore, if the fairness assumption F

is an empty set then every !-trajectory is fair, and L

G

equals L

G

.

Fair languages are not necessarily safe languages, and di�erent fairness assump-

tions can be used to identify di�erent subsets of the !-trajectories of a transition

graph.

Example 8.9 [Fair graph] Consider the two-state transition graph shown in

Figure 8.2. Both states are initial. The actions � and � contain two transitions

Fair Modules 18

each, as shown. An !-trajectory t is �-fair if it contains in�nitely many visits

to the state s, and t is �-fair if it contains in�nitely many visits to the state t.

Consider the fairness constraint f

1

= (!; �). The !-trajectory t is f

1

-fair if it

contains in�nitely many visits to the state t. Thus, the fair language of the fair

graph (G; ff

1

g) is (s

�

t)

!

(note that this is a response language).

Di�erent fairness constraints can de�ne the same language. For instance, for

the fairness constraint f

2

= (�; �), the !-trajectory t is f

2

-fair i� it is f

1

-fair.

Thus, the fair languages of (G; ff

1

g) and (G; ff

2

g) coincide.

Let f

3

= (!; �). Then, an !-trajectory is f

3

-fair if it contains in�nitely many

visits to the state s. The fair language of the fair graph (G; ff

1

; f

3

g) contains

!-trajectories that have in�nitely many visits to both the states, and equals

(s

�

t)

!

\ (t

�

s)

!

(note that this is a reactivity language).

Consider the fairness constraint f

4

= (�; ;). Observe that there is no ;-fair

trajectory. Thus, an !-trajectory t is f

4

-fair i� it is not �-fair; that is, if it

contains only �nitely many visits to the state s. The fair language of the fair

graph (G; ff

4

g) is (s+ t)

�

t

!

(note that this is a persistence language).

The above example shows that fair languages of fair graphs can be reactivity

languages. Can fair graphs de�ne more complex languages? The answer is no.

Proposition 8.10 [Languages of fair graphs] If G is a fair graph, then the

language L

G

is a reactivity language.

Proof. Let G be a transition graph. For an action �, let L

�

be the set of

initialized trajectories s

0:::m

of G such that s

m�1

�

! s

m

. Now, an initialized !-

trajectory s of G is �-fair i� s belongs to the response language recur(L

�

). For

a fairness constraint f = (�; �), an initialized !-trajectory s of G is f -fair i� it

is either �-unfair or �-fair; that is, i� it belongs to (�

!

nrecur(L

�

))[recur(L

�

).

Thus, the set of f -fair !-trajectories is a union of a persistence and a response

language, that is, a 1-reactivity language.

Consider the fair graph G = (G;F). Verify that L

G

equals

\

(�; �) 2 F: (�

!

nrecur(L

�

)) [recur(L

�

):

It follows that if F has k fairness constraints then L

G

is a k-reactivity language.

Types of fairness constraints

We consider three types of fairness constraints.

Fair Modules 19

Weak-fair constraint

Let G = (�; �

I

;!) be a transition graph. A fairness constraint (�; �) for

G is a weak-fair constraint if � equals !. A weak-fair graph is a fair graph

(G;F) such that F contains only weak-fair constraints.

While a fairness constraint speci�es in�nite repetition of an action conditioned

upon the repetition of another, a weak-fair constraint speci�es unconditional

repetition of an action.

Remark 8.10 [Weak-fair constraints] For a weak-fair constraint f = (!; �),

f -fair trajectories are precisely the �-fair trajectories. For a weak-fair graph

G = (G;F), L

G

is the response language

\

(!; �) 2 F: recur(L

�

):

Sometimes we consider actions that are de�ned by regions. For a region � of

a transition graph G, the action �

�

= f(s; t) j s 2 � and s ! tg contains

all transitions with source in �. Consequently, we will use regions in place of

actions when there is no cause for confusion. For instance, an !-trajectory s is

�-fair, for a region �, if it is �

�

-fair, or equivalently, if s

i

2 � for in�nitely many

i. For two regions � and � , the fairness constraint (�

�

; �

�

) will be denoted,

more concisely, as (�; �).

Machine closure

A fair graph G is said to be machine-closed if every trajectory of G can be ex-

tended to a fair trajectory. Machine closure ensures that a stepwise simulator for

fair graphs cannot paint itself into a corner from which the fairness constraints

cannot be satis�ed. Machine closure for fair graphs is the analog of seriality for

transition graphs.

Machine-closed fair graph

A fair graph G is machine-closed if for every state s of G there exists a

source-s fair trajectory of G.

Remark 8.11 [Machine-closed fair graph] If G = (G;F) is machine-closed then

pref (L

G

) = pref (L

G

) = L

G

.

Remark 8.12 [Machine-closure] Recall the de�nition of machine-closure from

Section 8.1.2: for a safe language L

S

and a live language L

L

, the pair (L

S

;L

L

) is

machine-closed if every pre�x of L

S

can be extended to an !-word in L

S

\ L

L

.

Fair Modules 20

The above de�nition of machine-closure has the same spirit. To be precise,

consider a fair graph (G;F). Let L

S

be the set of all !-trajectories of G (this

is a superset of L

G

that contains only initialized !-trajectories). Verify that

the set L

S

is safe. Let L

L

be the set of all !-words s over the alphabet �

G

that are f -fair for every fairness constraint f 2 F . This set includes all fair

trajectories of G, along with !-words that are not necessarily !-trajectories of

G. Alternatively, the set L

L

is the fair language of a fair graph with state-space

�

G

, initial region �

G

, transition relation �

G

��

G

, and fairness assumption F .

Verify that the set L

L

is live. Now, the pair (L

S

;L

L

) is machine-closed, that is,

pref (L

S

\ L

L

) = pref (L

S

) i� the fair graph G is machine-closed, that is, every

state is the source of some fair trajectory.

Exercise 8.16 fT3g [Intersection and machine-closure] Suppose f

1

and f

2

are

two fairness constraints for a transition graph G. Prove or disprove the claim

that (G; ff

1

; f

2

g) is machine-closed i� both the fair graphs (G; ff

1

g) and (G; ff

2

g)

are machine-closed.

Local fairness

A local fairness constraint is a type of fairness constraint that, intuitively, stip-

ulates a fair resolution of choice, and nothing more.

Local fairness

Let G = (�; �

I

;!) be a transition graph. A fairness constraint (�; �) is

local if for all s

�

! t, there is a state u 2 � such that s

�

!u. A locally-fair

graph is a fair graph (G;F) such that (1) G is serial, and (2) F contains

only local fairness constraints.

For a locally-fair constraint f = (�; �), whenever the action � is available, so is

�. Consequently, in every �-fair !-trajectorry, the choice to execute � is also

available in�nitely often, and thus, an f -unfair trajectory can be produced only

by continuously ignoring the choice to execute �.

Figure 8.3 shows an interpreter for producing fair trajectories of a locally-fair

graph. The input to the interpreter is a locally-fair graph G, and a state s of

G. The algorithm uses two subroutines. The subroutine Available(�; s) takes

an action � and a state s as input, and returns Yes if there is a state u such

that the pair (s; u) belongs to the action �. The subroutine Execute(�; s) takes

an action � and a state s such that Available(�; s) holds, and returns a state u

such that the pair (s; u) belongs to the action �.

The algorithm maintains a queue of the fairness constraints. The queue is

initialized to contain all the fairness constraints of G in some arbitrary order.

Let us say that a fairness constraint f = (�; �) is enabled in a state if the action

Fair Modules 21

Algorithm 8.1 [Execution of locally fair graph]

Input: a locally fair graph G = (�; �

I

;!; F) and a state s;

Output: a source-s fair trajectory s of G.

Queue: a queue of fairness constraints

Initialization

s

0

:= s;

Queue contains all the fairness constraints in F in some order.

Update rounds.

for i := 0 to 1 do

Let Queue be f

1

f

2

: : : f

n

with f

k

= (�

k

; �

k

) for 1 � k � n;

if Available(�

k

; s

i

) for some 1 � k � n then

j := minfk j Available(�

k

; s

i

)g;

s

i+1

:= Execute(�

j

; s

i

);

Queue := f

1

: : : f

j�1

f

j+1

: : : f

n

f

j

else s

i+1

:= Execute(!; s

i

)

�

od.

Figure 8.3: An interpreter for locally fair graphs

Fair Modules 22

� is available. At every step, the algorithm checks if there is some fairness

constraint that is enabled at the current state. If no such constraint exists, an

arbitrary successor of the current state is chosen to be the next state (since G

is serial, each state has at least one successor). If there are one or more enabled

fairness constraints, then the algorithm chooses the constraint f = (�; �) such

that f is enabled, and all the constraints that appear before f in the queue are

disabled. Since f is local, availability of � implies availability of �, and the

algorithm extends the trajectory by choosing some �-successor of the current

state. Finally, the constraint f is moved from its current position in the queue to

the end of the queue so that the other constraints get priorities in the subsequent

rounds.

Proposition 8.11 [Execution of locally fair graph] Given a locally-fair graph

G and a state s, Algorithm 8.1 produces a source-s fair trajectory of G.

Proof. Let s be the !-trajectory produced by the algorithm of Figure 8.3 in

the limit. For every fairness constraint f = (�; �) of G, and for every natural

number i, let Unfair (f; i) be true i� (s

i

; s

i+1

) 62 �; let StrongUnfair(f; i) be true

i� Unfair (f; i) and Available(�; s

i

); and let Rank(f; i) be the position 1 � k � n

of the constraint f in the queue at the beginning of round i. Observe that if

Unfair (f; i) then, in round i, the constraint f is not moved to the end of the

queue, and thus, its rank cannot increase.

(1) For all f 2 F and i � 0, if Unfair (f; i) then

Rank(f; i+ 1) � Rank(f; i).

If a fairness constraint f is enabled in round i, then it is executed unless some

other constraint f

0

with Rank(f

0

; i) < Rank(f; i) is also enabled, in which case

the constraint with least rank among the enabled constraints is executed, and

moved to the end of the queue, which decreases the rank of f . This leads to:

(2) For all f 2 F and i � 0, if StrongUnfair(f; i) then

Rank(f; i+ 1) < Rank(f; i).

We wish to establish that s is a fair trajectory of G. Consider f = (�; �). We

prove that if s is not �-fair then it is not �-fair. Suppose s is not �-fair. Then,

there exists i � 0 such that for all j � i, Unfair (f; j) holds. By (1), for all j � i,

Rank(f; j + 1) � Rank(f; j). Since for all j � 0, Rank(f; j) � 1, there can be

only �nitely many rounds j such that Rank(f; j + 1) < Rank(f; j). By (2),

there can be only �nitely many rounds j such that StrongUnfair(f; j). Hence,

the action � is available only in �nitely many rounds, and s is �-unfair.

The execution strategy to produce fair trajectories also implies the following

proposition.

Proposition 8.12 [Machine closure of local fairness] Every locally-fair graph

is machine-closed.

Fair Modules 23

Exercise 8.17 fT3g [Execution of weak-locally-fair graphs] Let G be a locally-

fair weak-fair graph. Show that, to produce a fair trajectory of G, it su�ces to

maintain a modulo-jF j counter, instead of the queue used by the interpreter of

Figure 8.3.

8.4 Fair Modules

We associate a fair graph with every fair module by mapping the weak and

strong fairness constraints of the module to the fairness constraints for the

associated transition graph. Towards this goal, we associate with every update

choice a of P , two actions of the graph G

P

. The availability action of an update

choice a contains a transition s!

P

t if the choice a is enabled according to the

values of the read variables in s and the awaited variables in t. The execution

action of an update choice a contains a transition s !

P

t if the values of the

controlled variables in t are assigned by executing the choice a.

Actions of an update choice

Let P be a module, and a be an update choice of an atom U of P . The

availability action avail

a

contains a transition s !

P

t of P i� there is a

guarded assignment in a such that

(readX

U

[s] [awaitX

0

U

[t

0

]) 2 [[p

]]:

The execution action exec

a

contains a transition s !

P

t of P i� there is a

guarded assignment in a such that

(readX

U

[s] [awaitX

0

U

[t

0

]; ctrX

0

U

[t

0

]) 2 [[a]]:

Remark 8.13 [Actions of an update choice] For every update choice a of a

module P , the action exec

a

is a subset of the action avail

a

.

Example 8.10 [Actions of an update choice] Consider the update choice � of

the module AsyncCount . The availability action avail

�

contains all transitions

of AsyncCount . The execution action exec

�

contains the transition s ! t if

count [t] = count [s] + 1.

Consider the update choice � of the module LossyBu�er . The availability action

avail

�

contains the transition s ! t i� x[t] 6= x[s]. The execution action exec

�

contains the transition s! t i� x[t] 6= x[s] and y[t] 6= y[s].

Weak fairness for a choice a requires that the choice cannot be available forever

without being executed, and strong fairness for a choice a requires that if the

choice is available in�nitely often then it is executed in�nitely often.

Fair Modules 24

Fairness constraints of an update choice

Let P be a module, and a be an update choice of P . The weak-fairness

constraint f

W

a

of a is the pair (!

P

; exec

a

[(!

P

navail

a

)). The strong-

fairness constraint f

S

a

of a is the pair (avail

a

; exec

a

).

An !-trajectory s of P is weakly fair to the update choice a precisely when it

is f

W

a

-fair: for in�nitely many rounds i � 0, (s

i

; s

i+1

) 2 exec

a

or (s

i

; s

i+1

) 62

avail

a

. An !-trajectory s of P is strongly fair to the update choice a precisely

when it is f

S

a

-fair: if for in�nitely many rounds i � 0, (s

i

; s

i+1

) 2 avail

a

, then

for in�nitely many rounds j � 0, (s

j

; s

j+1

) 2 exec

a

.

Remark 8.14 [Strong fairness implies weak fairness] Let P be a module, a be

an update choice of P , and s be an !-trajectory of P . If s is f

S

a

-fair then s is

f

W

a

-fair. The converse does not hold.

Remark 8.15 [Local fairness] Let P be a module, and a be an update choice

of P . Both the fairness constraints f

S

a

and f

W

a

are local fairness constraints on

the transition graph G

P

.

The fair graph of a reactive module is obtained by adding all the fairness con-

straints corresponding to the declaration of weak and strong fair update choices.

Fair graph of a fair module

For a fair module P = (P;WeakF

P

;StrongF

P

), the fairness assumption F

P

is the set

ff

W

a

j a 2WeakF

P

g [ff

S

a

j a 2 StrongF

P

g

of fairness constraints of G

P

. The fair module P de�nes the fair graph

G

P

= (G

P

; F

P

).

A fair trajectory of a fair module P is a fair trajectory of the fair graph G

P

.

Remark 8.16 [Fair trajectories of a fair module] The set of fair trajectories of

a fair module P is a reactivity language. Furthermore, if the module employs

only weak fairness, that is, for every atom U , the set StrongF

U

is empty, then

the graph G

P

is weak-fair, and the set of fair trajectories of a fair module is a

response language.

8.4.1 Operations on Fair Modules

As in case of reactive modules, we combine fair modules using three operations

|parallel composition, variable renaming, and variable hiding.

Fair Modules 25

Parallel Composition

The composition operation combines two fair modules into a single fair module

whose behavior captures the interaction between the two component modules.

Again, composition is the key operation that allows modular descriptions of

complex systems. Two fair modules can be composed only if their modules are

compatible. Observe that for compatible reactive modules P and Q, an update

choice of P is also an update choice of PkQ. Consequently, to compose two

compatible fair modules, we simply compose their reactive modules, and take

union of the respective weak and strong fairness constraints.

Fair module composition

If P = (P;WeakF

P

;StrongF

P

) and Q = (Q;WeakF

Q

;StrongF

Q

) are com-

patible fair modules, then the parallel composition PkQ is the fair module

(PkQ;WeakF

P

[WeakF

Q

;StrongF

P

[StrongF

Q

).

The composition operator over fair modules has all the properties listed for the

composition operator over modules in Chapter 1. For instance, the composition

operator is commutative and associative.

Variable Renaming

As in modules, we can rename variables to avoid name-conicts among private

variables, and to create multiple copies. To apply a variable renaming to a fair

module, we simply apply the renaming to each of its components.

Renaming of fair module

Given a fair module P = (P;WeakF

P

;StrongF

P

), and a renaming � for the

set X

P

of module variables, the renamed module P [�] is the fair module

with the module P [�], the set fa[�] j a 2 WeakF

P

g of weakly-fair update

choices, and the set fa[�] j a 2 StrongF

P

g of strongly-fair update choices.

Variable Hiding

The hiding of interface variables of a fair module allows abstractions at di�erent

levels of details. Hiding of an interface variable of fair modules changes only its

variable declaration.

Hiding of fair module

Given a fair module P = (P;WeakF

P

;StrongF

P

), and a typed variable x, by

hiding x in P we obtain the fair module (hide x in P;WeakF

P

;StrongF

P

),

denoted hide x in P .

Fair Modules 26

8.4.2 Machine Closure and Receptiveness

We know that the transition graph of a module is serial. This means that a step-

wise interpreter of a module never gets stuck, and can always extend a trajectory

by adding one more step. The analog of seriality in the case of !-trajectories is

machine-closure. It says that every �nite trajectory can be extended to a fair

trajectory. In particular, there is a strategy to systematically resolve the choices

so that the limit !-trajectory is a fair one. Proposition 8.12 asserts that every

locally-fair graph is machine-closed. Since the fairness constraints of an update

choice are local, it follows that the fair graph of a fair module is locally-fair, and

hence, machine-closed.

Proposition 8.13 [Machine closure of fair modules] The fair graph G

P

of a

fair module P is locally-fair, and hence, machine-closed.

Exercise 8.18 fP2g [Fair module execution] Recall the interpreter for reactive

modules from Chapter 2. Using the strategy outlined in Figure 8.3 for executing

locally-fair graphs, write an interpreter for fair modules. The input to the

interpreter should be a fair module P , and it should produce a fair trajectory

of P , if we let it execute forever.

For reactive modules, the property of seriality is preserved under parallel com-

position. It means that every trajectory of a module can be extended by adding

another state no matter how the environment updates the external variables.

The same applies to machine-closure also. Every �nite trajectory of a fair mod-

ule can be extended to a fair trajectory, no matter how the environment updates

the external variables in each round. Thus, the ability to produce a fair trajec-

tory does not demand cooperation from the environment. This fact is captured

by the next proposition.

Proposition 8.14 [Receptiveness] Let P be a fair module, s be a state of P,

and Q be a module that is compatible with P. There exists an !-trajectory t of

the composition PkQ such that X

P

[t

0

] = s and X

P

[t] is a fair trajectory of P.

Proof. By de�nition of composition, there is a state t of PkQ such thatX

P

[t] =

s. By Proposition 8.13, the fair module PkQ is machine-closed, and hence, has

a source-t fair trajectory.

The ability to produce a fair trajectory in the face of an adversarial environment

is known as receptiveness. Consider a module P and a set L of !-trajectories

of P . Consider a two-player game in which the protagonist attempts to produce

an !-trajectory in L, while the adversary tries to prevent this. Initially, the ad-

versary chooses a trajectory s

0::m

of P . In each round, the adversary chooses the

new external state, and then the protagonist extends the current trajectory by

choosing the new controlled state. The choices of the protagonist are constrained

Fair Modules 27

by the transition relation of the module P . The protagonist wins the game if the

resulting in�nite !-trajectory belongs to L. The !-languageL is receptive for the

module P if the protagonist has a winning strategy. Now, Proposition 8.14 can

reformulated to assert that for every fair module P = (P;WeakF

P

;StrongF

P

)

the set L

P

of fair trajectories is receptive for P .

8.5 Examples of Fair Modules

We revisit examples of modules, and add appropriate fairness constraints.

8.5.1 Shared-variables Protocols

Our canonical example of a shared-variable protocol is mutual exclusion. So far

we have considered only the mutual exclusion requirement of such protocols,

namely, that the two processes are not inside their critical sections simultane-

ously. When we consider !-trajectories, the parallel composition of the two

processes should also meet the deadlock-freedom requirement: if some process

requests an entry to its critical section, then some process eventually enters

its critical section. Consider a protocol that never allows any process to enter

the critical section; that is, none of its guarded assignments assign the value

inC to pc. Such a protocol satis�es the mutual exclusion requirement, but

not the deadlock-freedom requirement, and hence, is not an acceptable solu-

tion to the problem. An even stronger requirement for the problem is the

starvation-freedom property that: if a process requests an entry to its critical

section, then the same process eventually enters its critical section. Thus, while

deadlock-freedom admits solutions that always prefer one process over the other,

starvation-freedom requires a fair resolution of the choice.

Both deadlock-freedom and starvation-freedom are liveness properties, and can-

not be violated by trajectories. Requiring all !-trajectories to satisfy such re-

quirements is too strong, as it would rule out asynchronous solutions like Pete.

For instance, the eventually periodic !-trajectory (o0o0)(r0o0)

!

of Pete does

not meet the deadlock-freedom requirement. Instead, we will add reasonable

fairness assumptions, and require that all the fair trajectories satisfy the live-

ness properties.

Our formulation of the problem allows each process to remain outside the critical

section for an arbitrary number of rounds, and to remain inside the critical

section for an arbitrary number of rounds. Consequently, the update of pc

from outC to reqC is nondeterministic. We do not add any fairness on the

resolution of this choice: an !-trajectory in which some process never requests

an entry, is an acceptable scanario. The update of pc from inC to outC is also

nondeterministic. To model the assumption that a process may not stay inside

its critical section forever, we add weak fairness for the choice to exit the critical

section.

Fair Modules 28

Synchronous mutual exclusion

For the synchronous solution SyncMutex the update from reqC to inC is de-

terministic. Consequently, the only fairness assumption concerns the choice

to leave the critical section. The resulting fair modules are shown in Fig-

ure 8.4. In Chapter 9, we will present an algorithm to verify that the module

FairSyncMutex satis�es both the liveness requirements of deadlock-freedom and

starvation-freedom.

Asynchronous mutual exclusion

The asynchronous solution Pete uses nondeterminism to model the assumption

that the two processes execute at independent speeds. We would like to add

fairness to rule out executions in which stuttering is always preferred over an-

other available choice. For instance, if a choice to update pc from reqC to inC

is available, then it should eventually be executed. The resulting fair modules

are shown in Figure 8.5.

8.5.2 Circuits

Synchronous circuits

Recall the de�nitions of the logic gates SyncAnd and SyncNot from which all

combinational circuits can be built. Both these modules are deterministic: in

every round, once the values of the awaited external variables are determined,

precisely one guarded assignment is available. Consequently, there is no need to

add fairness constraints in the de�nitions of the logic gates. Our basic unit for

memory cell is the module SyncLatch (Figure 1.17) with two boolean inputs set

and reset . In every round, if the updated values of both the inputs set and reset

are 1, then the private state of the latch is updated nondeterministically. In this

case, both the guarded assignments are available, and the next state may be

either 0 or 1. Nondeterminism, in this context, models the fact that the behavior

of the latch is unknown, and we expect the latch to be used in an environment

that never sets both set and reset simultaneously to 1. Consequently, we do not

add any fairness constraint to SyncLatch.

Asynchronous circuits

Recall the modeling of asynchronous logic gates from Section 1.3.4. An asyn-

chronous logic gate is unstable when its output is not according the desired

function of the inputs. The gate can stay unstable for an arbitrary number

of rounds, and then, it becomes stable by changing its output. Now, we can

use fairness to ensure that the gate does not stay unstable forever. The asyn-

chronousAnd gate with fairness is shown in Figure 8.6. It requires weak fairness

Fair Modules 29

module Q

1

is

interface pc

1

: foutC ; reqC ; inCg

external pc

2

: foutC ; reqC ; inC g

atom

controls pc

1

reads pc

1

; pc

2

init

[] true ! pc

0

1

:= outC

update weaklyfair �

1

[] pc

1

= outC !

[] pc

1

= outC ! pc

0

1

:= reqC

[] pc

1

= reqC ^ pc

2

6= inC ! pc

0

1

:= inC

[] pc

1

= inC !

[] pc

1

= inC

�

1

! pc

0

1

:= outC

module Q

2

is

interface pc

2

: foutC ; reqC ; inCg

external pc

1

: foutC ; reqC ; inC g

atom

controls pc

2

reads pc

1

; pc

2

init

[] true ! pc

0

2

:= outC

update weaklyfair �

2

[] pc

2

= outC !

[] pc

2

= outC ! pc

0

2

:= reqC

[] pc

2

= reqC ^ pc

1

= outC ! pc

0

2

:= inC

[] pc

2

= inC !

[] pc

2

= inC

�

2

! pc

0

2

:= outC

FairSyncMutex = Q

1

kQ

2

Figure 8.4: Fair synchronous mutual exclusion

Fair Modules 30

module P

1

is

interface pc

1

: foutC ; reqC ; inCg; x

1

: B

external pc

2

: foutC ; reqC ; inC g; x

2

: B

lazy atom

controls pc

1

; x

1

reads pc

1

; pc

2

; x

1

; x

2

init

[] true ! pc

0

1

:= outC

update weaklyfair �

1

; �

1

[] pc

1

= outC ! pc

0

1

:= reqC ; x

0

1

:= x

2

[] pc

1

= reqC ^ (pc

2

= outC _ x

1

6= x

2

)

�

1

! pc

0

1

:= inC

[] pc

1

= inC

�

1

! pc

0

1

:= outC

module P

2

is

interface pc

2

: foutC ; reqC ; inCg; x

2

: B

external pc

1

: foutC ; reqC ; inC g; x

1

: B

lazy atom

controls pc

2

; x

2

reads pc

1

; pc

2

; x

1

; x

2

init

[] true ! pc

0

2

:= outC

update weaklyfair �

2

; �

2

[] pc

2

= outC ! pc

0

2

:= reqC ; x

0

2

:= :x

1

[] pc

2

= reqC ^ (pc

1

= outC _ x

1

= x

2

)

�

2

! pc

0

2

:= inC

[] pc

2

= inC

�

2

! pc

0

2

:= outC

FairPete = hide x

1

; x

2

in P

1

kP

2

Figure 8.5: Fair asynchronous mutual exclusion

Fair Modules 31

module FairAnd is

private pc : fstable; unstable; hazardg

interface out : B

external in

1

; in

2

: B

lazy atom controls out reads pc; out

update weaklyfair �

[] pc = unstable

�

! out

0

:= :out

[] pc = hazard ! out

0

:= :out

passive atom controls pc reads pc; out awaits in

0

1

; in

0

2

; out

0

init

[] And(in

0

1

; in

0

2

; out

0

) ! pc

0

:= stable

[] :And(in

0

1

; in

0

2

; out

0

) ! pc

0

:= unstable

update

[] pc = stable ^ :And(in

0

1

; in

0

2

; out

0

) ! pc

0

:= unstable

[] pc = unstable ^ And(in

0

1

; in

0

2

; out

0

) ^ out

0

6= out ! pc

0

:= stable

[] pc = unstable ^ And(in

0

1

; in

0

2

; out) ^ out

0

= out ! pc

0

:= hazard

Figure 8.6: Fair asynchronous And gate

for the update choice to toggle the output when the state variable pc equals the

unstable value.

8.5.3 Message-passing Protocols

Our canonical example of a distributed system of agents communicating via

messages consists of a sender and a receiver.

Synchronous communication

Let us �rst consider the module SyncSender of Figure 1.25. The messages

are produced by the asynchronous atom Producer, which requires an unknown

number of rounds to produce a message. The atom Producer has two choices,

one to produce a message and another to stutter, available in every round. We

do not impose any fairness on the resolution of this choice, because a scenario in

which no message is ever produced is acceptable. On the other hand, consider

the atom Consumer of the receiver that consumes the messages. Again, the

atom Consumer is asynchronous, and requires an unknown number of rounds

to consume a message. We would like to use fairness to ensure that once the

message is ready to be consumed (pc = consume), the event done

C

is eventually

issued and the message is copied into msg

C

. Weak fairness su�ces for this

purpose. Similarly, we use fairness to rule out a scenario in which the receiver

is ready for reception of the message (pc = receive), but delays issuing the

Fair Modules 32

module FairReceiver is

private pc : freceive; consumeg; msg

R

: M ; done

C

: E

interface ready : E ; msg

C

: M

external transmit : E ; msg

S

: M

passive atom

controls pc;msg

R

reads pc; transmit ; done

C

awaits transmit

0

;msg

0

S

; done

0

C

init

[] true ! pc

0

:= receive

update

[] pc = receive ^ transmit? ! msg

0

R

:= msg

0

S

; pc

0

:= consume

[] pc = consume ^ done

C

? ! pc

0

:= receive

lazy atom controls ready

update weaklyfair �

[] pc = receive

�

! ready !

lazy atom Consumer

controls done

C

;msg

C

reads pc; done

C

;msg

R

update weaklyfair �

[] pc = consume

�

! done

C

!; msg

0

C

:= msg

R

FairSyncMsg = hide ready ; transmit ;msg

S

in SyncSender kFairReceiver

Figure 8.7: Fair synchronous message passing

event ready forever. The receiver with these fairness assumptions is shown in

Figure 8.7. The fair module FairSyncMsg is obtained by composing the fair

receiver with SyncSender and hiding the variables used for communication.

Exercise 8.19 fP2g [Fair asynchronous sender] What are the appropriate fair-

ness constraints for the module AsyncSender of Figure 1.30. De�ne the fair

version of the modules AsyncSender and AsyncMsg .

Exercise 8.20 fP3g [Fair timed message passing] The protocol for timed mes-

sage passing (Figure 1.32) refers to the external clock AsyncClock for mea-

suring time. De�ne a fair version of the clock AsyncClock so that every !-

trajectory contains in�nitely many tick events. De�ne a fair version of the

module TimedMsg by adding appropriate fairness assumptions to TimedSender

and TimedReceiver .

Fair Modules 33

module FairStick is

private pc : ffree; left ; rightg

interface grant

L

; grant

R

: E

external req

L

; release

L

; req

R

; release

R

: E

passive atom

controls pc; grant

L

; grant

R

reads pc; req

L

; grant

L

; release

L

; req

R

; grant

R

; release

R

awaits req

0

L

; release

0

L

; req

0

R

; release

0

R

init

[] true ! pc

0

:= free

update stronglyfair �

L

; �

R

[] pc = free ^ req

L

?

�

L

! grant

L

!; pc

0

:= left

[] pc = free ^ req

R

?

�

R

! grant

R

!; pc

0

:= right

[] pc = left ^ release

L

? ! pc

0

:= free

[] pc = right ^ release

R

? ! pc

0

:= free

Figure 8.8: A fair chopstick for the dining philosophers

Dining philosophers

Recall the problem of dining philosophers from Exercise 1.13, and consider the

module Stick . When both the philosophers on the two sides of a chopstick re-

quest the chopstick simultaneously, it is granted to either one of them nondeter-

ministically. To model the assumption that if some philosopher requests a par-

ticular chopstick repeatedly, it is eventually granted, we can use strong fairness.

Such a fair chopstick is shown in Figure 8.8. Observe that even if the philosopher

reissues the request in every round until the chopstick is granted, the choice to

grant the request is not always available (due to the conjunct pc = free in the

guard). Consequently, the weaker assumption that some philosopher requests

a particular chopstick continuously, it is eventually granted, is not captured by

requiring weak fairness for the choices �

L

and �

R

.

Exercise 8.21 fP3g [Fair dining philosophers] Consider your de�nitions of the

modules that describe philosophers, together with guards, in Exercise 1.13. Re-

place the chopstick by the fair chopstick of Figure 8.8. Add fairness assumptions

to each philosopher to ensure that once the philosopher has both the chopsticks,

(s)he will eventually release both of them. De�ne the fair module FairDine4

consisting of four copies of fair chopsticks and fair philosophers. Does your so-

lution satisfy starvation-freedom, that is, is there fair trajectory of FairDine4

in which some philosopher, after some round, waits forever?

