
Foundations of Infinite-State Verification

Rupak MAJUMDAR
Max Planck Institute for Software Systems, Germany; Email: rupak@mpi-sws.org.

Abstract. These lecture notes give an introduction to the field of infinite-state
model checking. We take a language-theoretic view, and focus on a few founda-
tional results.

Keywords. Infinite-state model checking, verification.

1. Introduction

The initial applications and successes of model checking techniques were in verify-
ing finite-state hardware circuits or finite-state descriptions of communication protocols.
Since then, it has been applied to many different domains, such as software implementa-
tions, real-time and hybrid systems, and parameterized families of circuits and protocols,
which are not finite state. For example, software implementations contain potentially un-
bounded data (counters, or heap data structures) and control (function stack, dynamically
allocated threads of execution), real-time systems manage clocks, hybrid systems model
interactions with continuous physical processes, and parameterized protocols define an
infinite family of protocols, one for each setting of the parameters. Unlike the finite-state
case, one cannot expect a generic decidable model checking algorithm for infinite-state
systems: the reachability problem for Turing machines is undecidable, and many infinite
state systems can simulate Turing machines.

The purpose of these lecture notes is to understand how model checking techniques
can be extended to the infinite-state setting, to identify special cases where the model
checking problem remains decidable, despite the infinite state space, and to describe use-
ful heuristics that work well in practice, even if the underlying problem is undecidable.
Throughout, I have tried to emphasize the language-theoretic connections that underlie
the decidability (and approximation) results.

The material is structured as follows. Section 2 sets up the stage for infinite-state
model checking, and gives a general condition for termination (bisimulation relations
of finite index). Section 3 covers abstract model checking, arguably the most common
approach to infinite-state model checking, as well as counterexample-guided abstraction
refinement. Section 4 introduces well-structured transition systems, and gives a general
decidability result for reachability analysis. Section 5 considers pushdown reachability,
which underlies interprocedural analysis of programs. I take a language-theoretic view
and connect the results to well-known results in formal language theory. Finally, Section
6 looks at model checking concurrent programs. I show how the different techniques
from Sections 3-5 come together to prove a decidability result for the safety verification
of asynchronous programs with Boolean data.

In these notes, I assume familiarity with basic model checking, e.g., at the level
of Clarke, Grumberg, and Peled’s Model Checking, or Baier and Katoen’s Principles of
Model Checking. I also assume familiarity with formal language theory, at the level of
Sipser’s An Introduction to the Theory of Computation. For brevity, “proofs” are really
“proof sketches” (with pointers to references), and we omit some standard definitions
that may be found in the above text books.

Acknowledgments. These lecture notes grew out of a series of lectures presented at the
Marktoberdorf Summer School in Summer 2013. I thank the organizers for inviting me to
the event and for the participants in the summer school for commenting on the material.

2. A Quick Recap: Transition Systems and Invariants

Let me start by recalling some basic terminology from model checking.
A transition system S = (S, S0, A) consists of a (not necessarily finite) set S of

states, a set S0 ⊆ S of initial states, and a set A of transitions. Each transition a ∈ A is a
binary relation on S. We write s a−→ t if (s, t) ∈ a. When S is finite, we say S is a finite
transition system. Given a state s ∈ S and a transition a ∈ A, we call the set {t | s a−→ t}
the a-successors of s. For a set T ⊆ S of states and transition a ∈ A, we define the two
operations

post(T, a) = {s | ∃s′ ∈ T.s′ a−→ s}

which describes the set of states reachable from a set T in one step by executing transition
a, and

pre(T, a) = {s | ∃s′ ∈ T.s a−→ s′}

which describes the set of states that can reach T in one step by executing transition a.
A run of a transition system is a (possibly infinite) sequence s0, s1, . . . such that

s0 ∈ S0, and for each i ≥ 0, there is an ai ∈ A such that si
ai−→ si+1. A state s ∈ S is

reachable if there is a run s0, s1 . . . , sk such that sk = s. Let Reach denote the set of all
reachable states.

For a transition system S = (S, S0, A), a set T ⊆ S of states is an invariant of S
if every reachable state belongs to T , that is, if Reach ⊆ T . The invariant verification
problem asks, given a transition system S and a set of states T , whether T is an invariant
of S . Invariant verification is a fundamental problem in system verification, and it can
be shown that any safety property of the system (intuitively, properties that assert that
nothing bad happens) can be reduced to invariant verification.

Example: Programs and Control Flow Graphs We model sequential programs using
control flow graph representations. A program P = (x, locs, `0, T) consists of a set x
of variables, a set locs of control locations, an initial location `0 ∈ locs, and a set T
of transitions. Each transition τ ∈ T is a tuple (`, ρ, `′) where `, `′ ∈ locs are control
flow locations, and ρ is a constraint over free variables from x ∪ x′, where the variables
from x′ denote the values of the variables from x in the next state.

Algorithm 1 Enumerative reachability algorithm
Input: transition system S = (S, S0, A), set of states T ⊆ S
Output: “yes” if T is an invariant, “no” otherwise

1: set Reachable, multiset Frontier
2: Reachable = ∅;
3: Frontier = S0

4: while Frontier 6= ∅ do
5: choose s from Frontier; Frontier = Frontier \ {s}
6: if s 6∈ T then
7: return “no”
8: end if
9: if s 6∈ Reachable then

10: Reachable = Reachable ∪ {s}
11: foreach a ∈ A, add all t ∈ S such that s a−→ t to Frontier
12: end if
13: end while
14: return “yes”’

As concrete examples of the relation ρ, consider an imperative programming lan-
guage with assignment operations y := exp and conditionals assume(bexp), for expres-
sions exp and predicates bexp. The relation ρ for the assignment statement is

y′ = exp ∧
∧

z∈x,z 6=y

z′ = z

and for the conditional statement is

bexp ∧
∧
y∈x

y′ = y

A program defines a transition system in the following way. A state of the program
P consists of its location ` ∈ locs and a valuation of the variables from x. The set of
initial states consist of the initial location `0 and an arbitrary valuation to the variables.
Each edge e = (`, ρ, `′) in the control flow graph gives rise a transition (`, v)

e−→ (`′, v′)
where ρ(v, v′) holds.

2.1. Enumerative Reachability

One way to check if T is invariant is to explicitly compute the set Reach of reachable
states and check that each reachable state belongs to T . In case S is finite, one can
compute Reach by a graph reachability algorithm. Figure 1 gives a simple description of
such an algorithm.

The graph reachability algorithm maintains two data structures: a set data structure
Reachable to store the set of states already found to be reachable, and a multiset data
structure Frontier to store the states that need to be explored. Initially, Frontier contains
all the initial states from S0 and Reachable is empty. The reachability algorithm is a
loop that runs while Frontier is not empty. The algorithm maintains the property that

every state in Reachable as well as every state in Frontier is reachable. In each iteration,
the algorithm removes a state s from Frontier and checks if s ∈ T . If not, T cannot
be an invariant. Otherwise, it checks if s is already known to be reachable (i.e., if s ∈
Reachable). If so, it proceeds to the next iteration. Otherwise, if s 6∈ Reachable, the
algorithm adds s to Reachable and for all a ∈ A, adds all a-successors of s to Frontier.
On termination, Reachable consists of the set of reachable states, and since the check s 6∈
T never failed, all these states are known to be a subset of T . Different implementations
of the data structures gives graph traversal strategies such as depth-first search (Frontier
maintained as a stack) or breadth-first search (Frontier maintained as a queue).

The graph reachability algorithm runs in linear time in the size of the graph. Of
course, if the transition system is not finite, then there is no guarantee that graph reacha-
bility will terminate (it terminates in the simple case when the set of reachable states is
finite). Even when the transition system is finite, going over the states one at a time can
be extremely time consuming. This motivates the use of symbolic techniques which look
at sets of states at a time.

2.2. Symbolic Reachability

The core idea of symbolic techniques is to represent sets of states of a transition system
using formulas in some logic, and performing operations on sets of states by manipulat-
ing logical formulas.

We define symbolic transition systems using a set of predicates and functions com-
ing from a state vocabulary S and a fixed set D on which the vocabulary will be inter-
preted. A state formula is a formula over the state vocabulary. For a state vocabulary S ,
we write S ′ for the vocabulary in which each symbol x from S is given a new name
x′. We extend the priming notation to formulas: the S ′-formula ϕ′ is obtained from the
S-formula ϕ by substitution each symbol x ∈ S by the primed version x′.

A symbolic transition system S? = (〈S,D〉, Init,A) consists of a state vocabulary S
and a set D, a state formula Init (called the initial condition), and a set A of (symbolic)
actions. Each symbolic action a ∈ A is a formula over the vocabulary S ∪ S ′.

A symbolic transition system represents a transition system (S, S0, A) in the follow-
ing way. The set S of states consists of all interpretations to the vocabulary S in the set
D. A state is initial if it satisfies the initial condition Init. The set of actions A consists
of the binary relations induced by the formulas a in A. That is, for two states s, t and
an action a ∈ A, we have s a−→ t if 〈s, t′〉 satisfies the S ∪ S ′-formula a, where t′ is an
interpretation of all symbols in S ′ obtained by assigning the value t(x) to each symbol
x′ ∈ S ′ on a copy of D. Under this interpretation, state formulas define sets of states of
the underlying transition system; for a state formula ψ, we write [[ψ]] to denote this set of
states.

We write ϕ |= ψ to denote the set of states represented by ϕ is a subset of the set of
states represented by ψ, and we use standard logical connectives. For a state formula ϕ
and action a ∈ A, we define post(ϕ, a) and pre(ϕ, a) as the state formulas

post(ϕ, a) ≡ (∃S.ϕ ∧ a)[S/S ′]

pre(ϕ, a) ≡ ∃S ′.a ∧ ϕ′

where the existential quantifer “∃S” quantifies out all symbols in S, and the substitu-
tion “[S/S ′]” substitutes all symbols in S ′ with their unprimed version from S. Seman-

tically, [[post(ϕ, a)]] = Post([[ϕ]], a) and [[pre(ϕ, a)]] = Pre([[ϕ]], a). We write ϕ〈a〉ψ as
shorthand for post(ϕ, a) |= ψ, or equivalently, ϕ ∧ a |= ψ′.

A state formula ϕ is an invariant if every reachable state of the underlying transition
system satisfies ϕ. The invariant verification problem asks, given a symbolic transition
system S? and a state formula ψ, if ψ is an invariant of S?.

Given a symbolic transition system, one can compute the set of reachable states
as follows, assuming decision procedures for the underlying logic. The set of states
reachable in at most 0 steps, Reach0, is just the set of initial states. So we define
Reach0 = Init. Having defined Reachi, we define the set of states reachable in at most
i + 1 steps as Reachi+1 = Reachi ∨

∨
a∈A post(Reachi, a). If for some N , we find

that ReachN+1 |= ReachN , then we have reached a fixed point in the iteration, and
Reach = ReachN . For a state formula ψ, we have that ψ is an invariant iff Reach |= ψ.

Reachability analysis defined using the post operator is called forward analysis, as
it starts with the initial states and explores the transition graph “forward.” An analogous
backward analysis can be defined as follows. We define Breach0 = ¬ψ, the set of “bad”
regions, and iterate Breachi+1 = Breachi ∨

∨
a∈A pre(Breachi, a). To ensure that ψ is

an invariant, we check that the fixed point of the iteration does not intersect the initial
states; i.e., ψ is an invariant iff ∪i∈NBreachi ∩ Init is not satisfiable.

Instead of full reachability analysis, which checks if there is a path of some length,
sometimes one is interested in checking if a path of length exactly k ≥ 0 can reach a state
not in ψ. This problem can be reduced to the satisfiability problem for the underlying
logic in the following way. Let T (S,S ′) =

∨
{a(S,S ′) | a ∈ A}, where we have

explicitly indicated the vocabulary S ∪ S ′ in the formula. We introduce the priming
notation: the vocabulary S ′(n) is a disjoint copy of the vocabulary S with n primes
attached to each non-logical symbol. We can construct the formula

Init(S) ∧ T (S,S ′) ∧ . . . ∧ T (S
′(k−1),S

′(k)) ∧ ¬ψ[S
′(k)/S] (1)

and ask if it is satisfiable (over the vocabulary S ∪ . . .S ′(k)). The above formula unrolls
the transition relation for k steps, and checks if the last state along the run is outside
ψ. This idea of reducing the search for bad paths to satisfiability of formulas is called
bounded model checking, and has been very successfully applied to bug finding in hard-
ware and software [7].

It can happen that each Reachi is representable in the logic, but their (infinite) union,
the set of reachable states, is not. In that case, the iterations can continue forever. This
is not surprising, since reachability analysis for most models is undecidable, even if the
k-step reachability relation is decidable.

2.3. Examples of Symbolic Transition Systems

Boolean Systems and BDDs Let X be a set of Boolean variables. A transition sys-
tem whose states consist in valuations to variables in X can be encoded symbolically
using propositional formulas and using satisfiability procedures for propositional logic.
The encoding of symbolic transition systems using propositional logic represented using
binary decision diagrams (BDDs) [8] was a key step in the industrialization of model
checking, and in fact, symbolic model checking was synonymous with model checking
Boolean symbolic transition systems using BDDs [9,28]. For bounded model checking,

one can use propositional satisfiability checkers to check if the formula in Equation (1)
is satisfiable.

Timed Automata Timed automata [2] are models of timed systems that incorporate dis-
crete automata with real-valued clocks. At each location of the automaton, the clocks
increase in value at a constant rate. Based on the values of the clocks, discrete edges can
be taken to new locations, and on taking a discrete edge, some clocks can be reset. A
symbolic representation for clock values of timed systems can be given using difference
constraints of the form x − y ∼ c, where x, y are real-valued variables, c is a constant,
and ∼∈ {≤, <,=, >,≥}. A set of states is then represented as a list of pairs, the first
part of the pair is the discrete location and the second part is a conjunction of difference
constraints over the clock variables.

2.4. Termination: Bisimulation

For finite-state systems, invariant verification is trivially decidable. In some infinite mod-
els, reachability remains decidable. One way to prove decidability is to build a quotient
transition system based on an appropriate equivalence relation on states.

Let S be a transition system and T a set of states. Two states s and t are related by
a bisimulation relation if the following conditions hold: (a) either both s ∈ T and t ∈ T
or both s 6∈ T and t 6∈ T , and either both s ∈ S0 and t ∈ S0 or neither, (b) for each s′

such that s a−→ s′ there is a t′ such that t a−→ t′ and s′ and t′ are related by a bisimulation
relation, and (c) for each t′ such that t a−→ t′ there is a s′ such that s a−→ s′ and s′ and t′

are related by a bisimulation relation.

Exercise 1 Bisimulation is an equivalence relation on states.

Given an equivalence relation ≡ on states, define the quotient transition system S≡
as follows. The states of the quotient are equivalence classes of ≡. The initial states are
the equivalence classes of states in S0, i.e., {[s]≡ | s ∈ S0}, where [s]≡ denotes the
equivalence class of s. The transition relation takesX a−→ Y iff there is some state s ∈ X
and some state t ∈ Y such that s a−→ t.

Theorem 1 Let S be a transition system and ≡ an equivalence relation on states. Let
T be a set of states. Then T is reachable in S if [T] = {[t]≡ | t ∈ T} is reachable in
S≡. If ≡ is a bisimulation relation, then T is reachable in S iff [T] = {[t]≡ | t ∈ T} is
reachable in S≡.

Now, if ≡ is a bisimulation relation with a finite number of equivalence classes,
then the quotient is a finite-state system on which reachability can be performed. The
reachability analysis would decide reachability on the original system. The existence
of bisimulation relations of a finite index is used to prove that backward reachability
analysis terminates for timed automata [2,22,21].

In fact, the existence of a bisimulation relation of finite index can be used to model
check more expressive logics (see [21] for details).

3. Abstraction

3.1. Inductive Invariants and Abstract Reachability Graphs

In general, reachability does not terminate for programs (indeed, just two integer valued
variables is enough for undecidability [30]). Hence, we turn to heuristics that, while
incomplete in general, work well in practice.

First, notice that computing the set of reachable states is often overkill to solve the
invariant verification problem. Instead of computing the exact set of reachable states, and
checking that this set is contained in ψ, one can prove that ψ is an invariant by devising
an inductive invariant φ and checking the following conditions:

(I1: Initiation) Init |= φ;
(I2: Inductiveness) for each a ∈ A, we have φ〈a〉φ; and
(I3: Safety) φ |= ψ.

By induction, it is easy to show that for any φ satisfying (I1) and (I2), we have that
Reach |= φ. Together with condition (I3), this entails that ψ is an invariant.

Given a candidate inductive invariant φ, the checks (I1)-(I3) can be discharged using
a decision procedure for the underlying logic. The invariant synthesis problem is to con-
struct a suitable inductive invariant. We introduce abstract reachability graphs as a first
step toward invariant synthesis.

Let S? = (〈S,D〉, Init,A) be a symbolic transition system and let ψ be a state
formula. An abstract reachability graph (ARG) G = 〈V,E, r,Φ〉 is a rooted, directed,
labeled graph with a set V of nodes, a set of transition edges E ⊆ V ×A× V , a special
root node r ∈ V , and a node-labeling function Φ mapping each node in V to a state
formula.

We write n
a−→ n1 for (n, a, n1) ∈ E. For a node n ∈ V , we say n is reachable from

r and write r
?−→ n if there is some ` ≥ 0 and a path r

a1−→ n1
a2−→ . . .

a`−→ n of E-edges
from r to n.

An ARG is well-labeled if the following conditions hold:

WL1 Init |= Φ(r);
WL2 For each edge n

a−→ n1 in E, Φ(n)〈a〉Φ(n1); and
WL3 For each n such that r ?−→ n, we have Φ(n) |= ψ.

An ARG is complete if for each node n ∈ V such that r ?−→ n and for each transition
a ∈ A, there is a n1 ∈ V such that n a−→ n1 is in E.

Theorem 2 Let S? be a symbolic transition system and ψ a state formula. If there exists
a well-labeled and complete ARG for S? and ψ, then ψ is an invariant of S?.

PROOF. We claim that ∨
{Φ(n) | n ∈ V, r ?−→ n}

satisfies conditions I1, I2, and I3. Condition I1 holds because Init |= Φ(r) by the well-
labeling condition. Condition I2 holds because (by well-labeling) Φ(n)〈a〉Φ(n1) holds
for each edge n a−→ n1 for each n reachable from r, and moreover, by completeness, each

node reachable from the root node has an outgoing edge for each a ∈ A. Condition I3
holds because Φ(n) |= ψ for each n reachable from r by the well-labeling condition. �

3.2. Abstraction

The key observation that makes the ARG useful is that for any edge n
a−→ n1, the label

Φ(n1) need not be exactly post(Φ(n), a), but should contain post(Φ(n), a). This opens
up the possibility of approximate, or abstract, computations of reachable sets. As long as
the abstractions do not lose too much precision, in the sense of condition WL3, one can
use the approximations to check if ψ is an invariant.

We now give an algorithm to construct ARGs through a non-deterministic algorithm,
Algorithm AbstractSafety. Its inputs are a symbolic transition system S? and a state
formula ψ. We assume that Init |= ψ (otherwise, we stop immediately and return that ψ
is not an invariant).

Initially, the algorithm starts with an ARG with one node: the root node r labeled
Init. Initially, there are no edges, i.e.,E = ∅. This graph is well-labeled, but not complete
if A 6= ∅.

In each step, it picks a node n in the ARG and a transition a ∈ A such that n has
no outgoing edge labeled with a. It picks a state predicate φ such that Φ(n)〈a〉φ holds.
If φ ∧ ¬ψ is satisfiable, the algorithm stops with an error.

Otherwise, if there is already a node n1 in the ARG labeled φ, the algorithm adds
the edge n

a−→ n1 to E. Otherwise, if there is no such node, it adds a new node n2 to the
ARG and labels it with φ.

Each step of the algorithm makes the graph “more complete.” The algorithm termi-
nates, and states ψ is an invariant, if there is no node n and action a such that node n has
no outgoing a-edge in E.

Proposition 1 [Soundness] If Algorithm AbstractSafety, on input S? and ψ, terminates
and states ψ is an invariant, then ψ is an invariant of S?.

The proof of the proposition follows by checking the properties WL1-WL3 of the
ARG at the end of the computation. When the algorithm returns an error, we can addi-
tionally produce a possible counterexample: a list of transitions labeling the path from
the root node until the node at which error was raised, together with the transition for
which the error was raised. Note that a possible counterexample need not be a “real”
counterexample of the system: the process of choosing φs introduces approximations,
and the counterexample produced by the algorithm may not be feasible in S?.

We must answer two key steps to implement the algorithm: what strategy should we
use to expand nodes, and how do we choose φ? The first question is technically not very
deep (choose any graph traversal strategy), but can have practical consequences on the
efficiency and scalability of the algorithm.

The theory of abstract interpretation [10] formalizes the second question in terms
of fixing abstract domains and computing “best” approximations relative to the abstract
domains. Instead of giving the general theory, we give two examples.

Polyhedral Abstraction In polyhedral abstraction, we look for state formulas defined
by linear constraints over constants in the vocabulary, that is, polyhedral sets in the n-
dimensional space of program variables. Using efficient algorithms for polyhedral ma-
nipulation, one can implement the logical operations effectively: the conjunction oper-
ation is polyhedral intersection, the disjunction operation either keeps an explicit list of
polyhedra or, to make the algorithm efficient, takes the convex hull of the operands, and
satisfiability checking determines if a polyhedron is non-empty. If the transition relations
are defined by linear constraints, then one can compute the pre and post operations using
intersections and projections of polyhedra.

Polyhedral abstractions have been successfully used to verify properties of pro-
grams, such as array bounds checks or error bounds in numerical computations. Notice
that the ARG construction need not terminate when using a polyhedral abstraction. To
ensure termination, a widening operation, that guarantees syntactically that increasing
chains stabilize in a finite number of steps, is used.

Faster, but less expressive, abstract domains that can represent a subclass of poly-
hedra, such as intervals (of the form c1 ≤ x ≤ c2), difference constraints (of the form
x− y ≤ c), or octagons (of the form x± y ≤ c) have been used as well.

Predicate Abstraction In predicate abstraction, we fix a finite set Π of first order for-
mulas over the vocabulary S and consider of the lattice of Boolean formulas over Π or-
dered by implication. The predicate abstraction of a state formula ψ with respect to the
set Π of predicates is the smallest (in the implication ordering) state formula Abs(ψ,Π)
which contains ψ and is representable as a Boolean combination of predicates from Π:

Abs(ψ,Π) =
∧
{φ | φ is a Boolean formula over Π ∧ ψ ⇒ φ}

The region Abs(ψ,Π) can be computed by recursively splitting as follows [11]:

Abs(ψ,Π) =

true if Π = ∅ and ψ satisfiable
false if Π = ∅ and ψ unsatisfiable

(p ∧ Abs(ψ ∧ p,Π′))
∨

(¬p ∧ Abs(ψ ∧ ¬p,Π′))
if Π = {p} ∪Π′

The satisfiability checks can be discharged by a decision procedure [31,13,12]. In the
worst case, the computation is exponential in the number of predicates, and several
heuristics with better performance in practice have been proposed [34,16].

Using incremental decision procedures, the predicate abstraction Abs(ψ,Π) can be
computed as follows. For each predicate p ∈ Π, introduce a Boolean variable bp, and
consider the formula

ψ ∧
∧
p∈Π

bp ↔ p (2)

If the formula is not satisfiable, then the predicate abstraction is false . Otherwise, con-
sider a satisfying assignment to the formula (2), and project the satisfying assignment
to the Boolean variables {bp | p ∈ Π}. By replacing bp with p in the assignment, we

get a minterm in the predicate abstraction. We can now conjoin the complement of the
assignment to the formula (2) and ask for a different satisfying assignment, until there
are no more. Incremental decision procedures based on conflict clauses can implement
the sequence of queries efficiently. The predicate abstraction is the disjunction of all the
satisfying assignments found in this way.

Many implementations of predicate-based software model checkers implement an
over-approximation of the predicate abstraction that can be computed efficiently in or-
der to avoid the exponential cost. Cartesian predicate abstraction is one such precision-
efficiency tradeoff: it can be computed more efficiently than full predicate abstraction
but can be quite imprecise in the worst case. Cartesian abstraction formalizes the idea of
ignoring relations between components of tuples, and approximates a set of tuples by the
smallest Cartesian product containing the set [6]. Formally, the cartesian abstraction of
ψ with respect to the set Π of predicates is the smallest (in the implication ordering) re-
gion CartAbs(ψ,Π) which contains ψ and is representable as a conjunction of predicates
from Π. The region CartAbs(ψ,Π) can be computed as:

CartAbs(ψ,Π) =

{
true if Π = ∅
p ∧ CartAbs(ψ,Π′) if Π = {p} ∪Π′ and (ψ ∧ ¬p) unsatisfiable

Cartesian predicate abstraction was implemented for C programs as part of SLAM in a
tool called c2bp [5], and since then in other software verifiers. While it is sufficient for
checking state-machine like properties, it is usually too imprecise in the presence of data
structure reasoning.

3.3. Abstraction Refinement

Algorithm AbstractSafety is sound — if it claims ψ is an invariant, then ψ is indeed an
invariant — but can produce spurious counterexamples. That is, it can stop with an error
even though ψ is an invariant. This can happen if the choice of φ in the expansion step
is too coarse (so that φ ∩ ¬ψ is satisfiable). As a trivial example, we can always choose
true as a candidate φ. The idea of an abstraction refinement algorithm is to start with
some abstraction, and then analyze the counterexamples produced by the abstract model
checker to see whether they can be replayed on the concrete system, or if not, to devise
a new abstraction that rules out this counterexample (and ideally many more).

We modify the ARG construction in the following way. We augment an ARG with
an additional node-labeling function Cex, called the counterexample labeling, mapping
each node in V to a formula representing, intuitively, the subset of Φ(n) from which a
path to some state not satisfying ψ is possible.

Initially, the ARG consists of two nodes: a root node r with Φ(r) = Init and Cex(r) =
false , and a “top” node top with Φ(top) = true and Cex(top) = ¬ψ.

The construction algorithm has two kinds of steps. First, as before, an expansion step
adds a-successors of nodes for transitions a ∈ A (making the graph “more complete”),
In addition, a refinement step refines the labelings Φ and Cex on nodes (creating new
nodes if necessary) to establish, if possible, the condition that all nodes reachable from
the root satisfy condition (WL2) and have a counterexample label false .

The refinement step considers bad edges n ·−→ n1 inE, for which n is reachable from
r, Cex(n) ≡ false , but Cex(n1) 6≡ false .

EXPAND

pick n ∈ V , a ∈ A, r ?−→ n n has no outgoing a-edge in E Cex(n) = false

add n
a−→ top to E

ERROR
Cex(r) 6= false

raise Error

BACK

pick bad edge n
a−→ n1 in E pick formula β s.t. β |= Φ(n) and β〈a〉Cex(n1)

update Cex(n) to β

SWITCH

pick bad edge n
a−→ n1 in E, n2 ∈ V

Cex(n2) ≡ false Φ(n2) |= Φ(n1) Φ(n)〈a〉Φ(n2)

Remove n
a−→ n1 from E, add n

a−→ n2 to E

REFINE

pick bad edge n
a−→ n1 in E, formula α Φ(n)〈a〉α α |= ¬Cex(n1)

create fresh node n2 in V , set Φ(n2) = Φ(n1) ∧ α, Cex(n2) = false

remove n
a−→ n1 from E, add n

a−→ n2 to E

Figure 1. Rules for a non-deterministic model checking algorithm

We give a non-deterministic description of the algorithm using a set of inference
rules shown in Figure 1. The algorithm builds an ARG (V,E,Φ) by application of the
inference rules (we omit mentioning the graph explicitly in the rules in Figure 1). The
algorithm non-deterministically applies the expansion and refinement steps until they
are not applicable or until the root node gets a non-empty counterexample label (i.e.,
Cex(r) 6≡ false).

The expansion step is implemented using the rule (Expand) which expands existing
nodes with unexplored transitions. The (Error) rule raises an error if the root node gets a
non-empty counterexample label.

The refinement step is implemented by the rules (Switch), (Back), and (Refine).
These rules take a bad edge and try to fix the labeling to either establish that all nodes n
reachable from r have Cex(n) = false or to “push” the counterexamples toward the root.

The applicability of the (Back) rule and the (Switch) and (Refine) rules are comple-
mentary. Let n a−→ n1 be a bad edge, and consider the formula Φ(n)∧a∧Cex(n1). If this
formula is satisfiable, then (Back) applies. If not, then either (Switch) or (Refine) —or
possibly both— applies.

The (Back) rule propagates a counterexample label Cex(n1) up to its predecessor.
If a counterexample can be pushed up to the root, then the (Error) rule raises an error.
The (Switch) rule replaces a bad edge out of a node n with a good edge out of n to an
existing node. The (Refine) rule adds a new node n2 to the graph whose label Φ(n2) is
stronger than Φ(n1) such that Cex(n2) ≡ false . The (Back) and (Refine) rules require
the discovery of formulas β and α, respectively.

The algorithm NonDetSafety, on input S? and ψ, non-deterministically applies the
rules until either error is produced or no rule is applicable or the algorithm goes on for-
ever. During its execution, it builds an ARG (additionally labeled with counterexample
labelings).

Theorem 3 1. [Soundness] On input S? and ψ, if Algorithm NonDetSafety termi-
nates because no rules are applicable, then ψ is an invariant of S?.

2. [Validity of Counterexamples] If Algorithm NonDetSafety terminates with
“error” then ψ is not an invariant of S?.

PROOF. In the first case, we show that the ARG (V,E,Φ) computed by the algo-
rithm is well-labeled and complete for S? and ψ. We use the invariant that for each edge
n1

a−→ n2, if r ?−→ r and Cex(n2) ≡ false then Φ(n1)〈a〉Φ(n2). If no rules are applica-
ble, then every node n reachable from r has Cex(n) ≡ false (otherwise, either (Back) or
(Switch) or (Refine) is applicable). Further, the graph must be complete (otherwise, the
(Expand) rule should be applicable at some node).

In the second case, we argue that there is a path from some initial state to a state
not in ψ: consider the path in the ARG from the root to top, such that for each node n
along the path, Cex(n) is not empty. By the property of (Back), for each edge ni

a−→ ni+1

along this path, we have that every state in Cex(ni) has an a-successor to some state in
Cex(ni+1). �

Since invariant verification is undecidable in general, the algorithm is not guaranteed
to terminate. For finite-state systems, the algorithm is guaranteed to terminate on each
run in which we prioritize (Switch) over (Refine), that is, if we apply (Refine) only when
(Switch) is not applicable. We refer to the instance of Algorithm NonDetSafety that
prioritizes (Switch) over (Refine) as Algorithm SRSafety.

We now make some concrete choices in the ARG construction, leading to some
well-known algorithms.

Implementation: Lazy Abstraction In lazy abstraction [20], the expansion and refine-
ment steps use predicate abstraction in the following way. The algorithm maintains a
global set of predicates Π and performs predicate abstraction w.r.t. predicates in Π. It
maintains the invariant that the labels of each node can be represented as a Boolean
combination of predicates from Π.

For n ∈ V and a ∈ A, the (Expand) and (Switch) steps are combined in the follow-
ing way. First, the algorithm computes Abs(post(Φ(n), a),Π). If there is already a node
n1 ∈ V such that Abs(post(Φ(n), a),Π) |= Φ(n1) and Cex(n1) ≡ false , it adds n a−→ n1

to E. Otherwise, it introduces a new node n2 and sets Φ(n2) to Abs(post(Φ(n), a),Π)
and Cex(n2) to Abs(post(Φ(n), a),Π) ∧ ¬ψ.

The β in the (Back) rule is computed as pre(Cex(n1), a) (without any abstraction).
The (Refine) procedure introduces new predicates to Π through the use of inter-

polants. Let ϕ1 and ϕ2 be first-order formulas such that ϕ1 ∧ ϕ2 is unsatisfiable. A for-
mula ψ is called an interpolant for (ϕ1, ϕ2) if (a) ϕ1 ⇒ ψ, (b) ψ ∧ ϕ2 is unsatisfiable,
and (c) ψ is over the common language of ϕ1 and ϕ2. Interpolants always exist for first-
order logic (extended with recursively enumerable theories), and can be computed from
first-order proofs of unsatisfiability (e.g., in a resolution-based proof system).

The (Refine) rule computes an interpolant α′ between Φ(n)∧ a and ¬Cex(n1)′, and
adds all (unprimed) atomic formuals from α′ to Π. It then removes the edge n

a−→ n1

and adds a new node n2 labeled with Abs(post(Φ(n), a),Π) (with the updated Π) and
Cex(n2) = false .

The lazy interpolation algorithm of McMillan [29] dispenses with the predicate ab-
straction, and solely uses interpolants in the node labelings. That is, it computes α′ as the
interpolant between Φ(n) ∧ a and ¬Cex(n1)′ and uses α as the new label.

Tools based on Abstraction Refinement Several academic and industrial tools have been
developed using the ideas of abstraction refinement. We have already mentioned SLAM
[4], which pioneered much of the research in the area. SLAM was closely followed by
Blast [20], a tool that introduced several ideas such as on-the-fly construction of abstract
state spaces and interpolation-based refinement. The tool F-Soft [23] developed at NEC
research combined abstraction refinement ideas with bounded model checking.

4. Well-Structured Transition Systems

4.1. A Puzzle with Boxes and Coins

Suppose you are given six boxes, B1, B2, . . ., B6, and initially, each box contains one
coin. You are allowed two types of operations:

1. Pick a box Bi, i = 1, . . . , 5. Remove a coin from Bi and add two coins to Bi+1.
2. Pick a box Bi, i = 1, . . . , 4, remove a coin from Bi and exchange the contents

of the boxes Bi+1 and Bi+2.

Exercise 2 Show that no matter how you apply the two operations, you will eventually
terminate, i.e., get to a configuration where you cannot apply any move. [Hint: lexico-
graphic ordering.]

Exercise 3 Show that you can get to a configuration in which B1, . . ., B5 are empty
and B6 has at least 2↑↑118 coins. Here, a↑↑b is Knuth’s up-arrow notation for iterated
exponentiation (or tetration). That is,

a↑↑b = a ↑ (a ↑ (. . . ↑ a) . . .)︸ ︷︷ ︸
b times

where a ↑ b denotes exponentiation ab.

We will soon see a general theorem that shows that reachability questions of the
kind asked in Exercise 3 are decidable. However, the size of the numbers involved might
indicate that decidability would not immediately imply practical algorithms. We will
come back to this example in Section 4.5.

4.2. Well-quasi Orderings

A binary relation �⊆ S × S over a set S is a quasi-order if it is reflexive and transitive.
A quasi-order � is a well-quasi-order (wqo) if for every infinite sequence

s0s1s2 . . .

of elements from S, one can always find an i and a j with i < j and si � sj .
For example, the ≤ relation on natural numbers is a well-quasi ordering. For any

finite set S, the equality relation is a well-quasi ordering.

Exercise 4 Are the following well-quasi orders? (Z,≤)? (N, |), where a | b iff a divides
b? (2N,⊆)?

Proposition 2 (S,�) is a wqo iff every infinite sequence x1, x2, . . . from S has an infinite
increasing subsequence, i.e., there exist i1, i2, . . . such that

xi1 � xi2 � . . .

PROOF. (If) The definition of wqo is weaker than this requirement.
(Only if) Consider the subsequence of all elements xj such that there is no xj′ ,

j < j′ with xj � xj′ . This subsequence must be finite. Let us say that xJ is the last such
element. We construct an infinite increasing sequence as follows. Pick xJ+1. Pick xK
such that xJ+1 � xK . Continue. �

Exercise 5 (From Schmitz and Schnoebelen) A linear order is a wqo iff it is well-founded.
A quasi-order is a wqo iff all linearizations of it are well-founded. (A linearization ≤ of
a qo � is a linear order such that x � y implies x ≤ y.)

We can construct new wqos from existing ones.

Proposition 3 Dickson’s Lemma Let (S,�S) and (T,�T) be two wqos. Then (S×T,�),
where (s, t) � (s′, t′) iff s �S s′ and t �T t′, is a wqo.

As a collorary, consider the set Nk of k-vectors of natural numbers. The pointwise
comparison ordering (u ≤ v if for each i ∈ {1, . . . , k} we have ui ≤ vi) is a well-quasi-
order.

Exercise 6 Let Σ be a finite set. A multiset m : Σ→ N maps elements of σ to the natural
numbers. Define the ordering m ≤ m′ iff for each σ ∈ Σ, we have m(σ) ≤ m′(σ).
Show that ≤ is a wqo. Is ≤ a wqo if Σ is infinite?

Proposition 4 Higman’s Lemma Let (S,�) be a wqo. Then (S∗,�∗) is a wqo, where
s1 . . . sn �∗ t1 . . . tm iff

∃1 ≤ i1 < i2 < . . . < in ≤ m. si1 � ti1 ∧ . . . ∧ sin � tin

The ordering�∗ is called subword ordering. As a special case, the set of strings over
a finite alphabet, ordered by subword ordering, is a wqo.

Exercise 7 We prove Higman’s lemma based on a proof by Nash-Williams. Suppose,
toward a contradiction, that (S,�) is a wqo, but (S∗,�∗) is not. Then there is some bad
sequence over S∗ of the form w1, w2, . . . where for each i < j, we have wi 6�∗ wj . Of
all possible words that start such bad sequences, choose a shortest one. Call this word
v0.

Now consider all possible bad sequences starting with v0, and all possible words
that follow v0 in such bad sequences. Pick a shortest one and call it v1. Repeat the
process by choosing, at stage i, a shortest word that continues the sequence v0, . . . , vi−1

and can be extended to a bad sequence.

1. Show that the process can be continued forever and yields an infinite sequence
v0, v1, . . . which is bad.

2. Now write each vi = aiui, where ai ∈ S is the first letter of the word vi, and ui
is the rest of the word. This is always possible, since no bad sequence contains
ε. Since S is a wqo, we can pick an infinite sequence ai0 � ai1 � . . . from the
sequence {ai}.
Consider the sequence ui0 , ui1 , . . . of the suffixes of the bad sequence. Show
that if this sequence is good (i.e., satisfies the wqo condition), then the sequence
vi0 , vi1 , . . . is also good.
Thus, ui0ui1 . . . is a bad sequence. Show that this is a contradiction to the choice
of v0v1
Conclude that (S∗,�∗) is a wqo.

Exercise 8 Let (S,�) be a wqo. Let w1, w2, . . . be an infinite sequence of elements from
S∗ such that |wi| < |wi+1| for all i ≥ 1. Show that there exists some i, j ∈ N, i < j, and
elements si, s1

j , s
2
j ∈ S such that si occurs in wi, s1

j and s2
j occur in distinct positions in

wj , and si � s1
j and si � s2

j .

4.3. Upward Closure and Finite Bases

Let (S,�) be a wqo. Call a set U ⊆ S upward closed if whenever u ∈ U and u � v we
have v ∈ U . For a set T ⊆ S, we define the upward closure, T ↑= {s ∈ S | ∃t ∈ T.t �
s}.

Proposition 5 (S,�) is a wqo iff any increasing chain of upward closed sets U0 ⊆ U1 ⊆
. . . eventually stabilize, i.e., there is some k such that Uk = Uk+1 =

Exercise 9 Prove Proposition 5.

Upward closed sets can be represented finitely using basis elements. An element
s ∈ U is called minimal if there is no t ∈ U distinct from s such that t � s. The set of
all minimal elements of an upward closed set is called its basis.

Proposition 6 Every upward closed set has a finite basis.

PROOF. If not, we can find an infinite sequence of elements that violate the wqo
condition. �

Call a set D ⊆ S downward closed if whenever u ∈ D and v � u we have v ∈ D.
For a set T ⊆ S, we define the downward closure, T ↓= {s ∈ S | ∃t ∈ T.s � t}.

Exercise 10 Let Σ be an alphabet and let ≤ be a well-quasi-ordering over Σ∗.

1. For any language L ⊆ Σ∗, show that L ↑ and L ↓ are regular.
2. For a language L, show that L is empty iff L ↓ is empty. Conclude that the

construction in part (1) is not effective in general.

Exercise 11 Let Σ be a finite alphabet and ≤ the subword ordering.

1. For a regular language L, give effective constructions for L ↑ and L ↓.
2. For a context-free language L, give effective constructions for L ↑ and L ↓.
3. What is the state complexity of computing L ↓ and L ↑ for context-free languages
L? The best known results show a tight singly exponential bound for L ↑, and a
double exponential upper bound and a single exponential lower bound for L ↓
[19].

Exercise 12 Let Σ be a finite alphabet and let� be defined as w1 � w2 if Parikh(w1) ≤
Parikh(w2), where Parikh : Σ∗ → NΣ maps a word to a vector in NΣ counting the
number of occurrences of each letter in w. Show that � is a wqo. For any CFG G, show
that an NFA for L(G) ↓ is at most exponentially larger in |G| and there is a family of
CFGs G for which the NFA is 2Ω(|G|).

4.4. Well-structured Transition Systems (WSTS)

Let S be a transition system with a well-quasi-ordering� defined on its set of states, and
assume that S has the following monotonicity property: s � s′ and s → t implies there
exists a t′ such that t � t′ and s′ → t′. We call such a transition system well-structured.

Proposition 7 Let S be a monotonic transition system w.r.t. the wqo � and let U be an
upward closed set. Then pre(U) is upward closed.

If S is a monotonic transition system with respect to a wqo �, and U an upward
closed set of states of S, then the sequence of iterations

U0 = U,Ui+1 = Ui ∪ pre(Ui)

stabilizes in a finite number of steps, using Proposition 5. Each set Ui in the sequence is
upward-closed, and if the sequence did not terminate, we could construct an infinite se-
quence of elements violating the well-quasi-ordering assumption on �. Thus, backward
reachability analysis terminates for any upward closed target set.

The “reachability to an upward closed set” is usually formulated as the coverability
problem. Given a WSTS S and two states s and t, the coverability problem asks if there
exists a state t′ such that t � t′ and t′ is reachable from t. Clearly, this reduces to
checking if s ∈ pre∗({t} ↑).

In order to get an algorithm out of the backward fixpoint computation, we need
to make some effectiveness assumptions. We assume that the relation � is decidable.
In addition, we assume effective predecessor computations, usually summarized as an
effective pred-basis requirement as follows. A WSTS has effective pred-basis if there is
a recursive procedure that takes any state s and returns a minimal basis of pre({s} ↑).

Theorem 4 For a WSTS S with effective � and effective pred-basis, and an upward
closed set U , we can effectively compute a basis for pre∗(U).

Even though backward reachability terminates, the bound on the number of itera-
tions of backward reachability can be extremely high (non-primitive recursive).

Consider again the puzzle from Section 4.1. Each state of the system is given by
a six-tuple of natural numbers. Both operations are monotonic with respect to (N6,≤).
Thus, we can effectively determine if any upward closed set (for example, the one in
Exercise 3) can be reached from the initial configuration.

In general, forward analysis for coverability need not terminate even though the
backward reachability terminates. For Petri nets, we shall show below that a forward
construction of the coverability set does terminate.

The existence of well-quasi-orderings is, in some sense, a canonical requirement
for coverability analysis to terminate. For example, from the existence of a bisimulation
relation of finite index, one can define a well-quasi-ordering on the state space, and more
generally, from the termination of a backward reachability procedure, one can define a
suitable well-quasi-ordering on the state space that demonstrates the termination of the
reachability analysis.

The power of well-quasi-orderings comes from a large number of natural models
of computation on which (simple) well-quasi-orderings can be defined [1,15]. More-
over, these well-structured systems satisfy the effectiveness constraints required to de-
sign backward reachability algorithms. We now give some examples.

Petri Nets A Petri net (PN for short) N = (S, T, F = 〈I,O〉) consists of a finite non-
empty set S of places, a finite set T of transitions disjoint from S, and a pair F = 〈I,O〉
of functions I : T →M[S] and O : T →M[S].

To define the semantics of a PN we introduce the definition of marking. Given a
PN N = (S, T, F), a marking m ∈ M[S] is a multiset which maps each p ∈ S to a
non-negative integer. For a marking m, we say that m(p) gives the number of tokens
contained in place p.

A transition t ∈ T is enabled at marking m, written m [t〉, if I(t) �m. A transition
t that is enabled at m can fire, yielding a marking m′ such that m′ ⊕ I(t) = m⊕O(t).
We write this fact as follows: m [t〉m′. Here, we write m⊕m′ for the multiset that maps
each p ∈ S to m(p) + m′(p).

Thus, Petri nets define an infinite state transition system, where the states are mark-
ings, and there is an edge from m to m′ labeled t iff m [t〉m′. Moreover, Petri nets are
WSTS, using the natural wqo m ≤m′ if for each p we have m(p) ≤m′(p).

Petri nets are WSTS, but why is this interesting? It turns out that Petri nets are able
to model many concurrency constructs in programming languages. Thus, decidability
results on Petri nets yields, by reduction, decidability results on these concurrency con-
structs. We give an example now, and come back to more examples in the next section.

Simple Programs with Dynamic Thread Creation Let us extend our control-flow graphs
with a concurrency operation spawn(`). Informally, control-flow graphs with spawn
model multi-threaded shared memory programs with dynamic creation of threads. When
a spawn operation is performed, a new thread of control is created. The new thread starts
executing at location `, and runs in parallel with all existing threads.

Formally, a configuration of the system is a pair (m, v), where m is a multiset
of locations and v is a valuation to all variables in x. There is a transition (m, v)

a−→

(m′, v′) if either (a: multithreaded execution) there is `1 ∈ m, (`1, ρ, `2) ∈ T , such
that m′ = m 	 {`1} ⊕ {`2} and ρ(v, v′), or (b: thread creation) there is `1 ∈ m,
(`1, spawn(`), `2) ∈ T , such that m′ = m	 {`1} ⊕ {`2, `} and v = v′.

The transition system is infinite-state even when all variables in x range over finite
domains. However, in case variables in x are finite-state, we can compute a Petri net that
is bisimilar to such a program. Let us assume all variables are Boolean. Informally, the
Petri net maintains two places for each variable —one for the value “0” the other for
the value “1”. Additionally, there is a place for each ` ∈ locs. The number of tokens at
place ` encodes the number of threads in location `. A spawn operation (`1, spawn(`), `2)
removes a token from `1 and adds a token each to ` and `2. A “normal” operation moves
a token from `1 to `2 and updates the tokens in the variables to reflect the new state.

Exercise 13 Show how the Petri net can model an assignment (`, c := a ∧ b, `′) or a
conditional (`, a ∨ b, `′).

The Petri net encoding shows that control state reachability (can a location ` ∈ locs
be reached?) is decidable, by reduction to the coverability problem.

Lossy Channel Systems Lossy channel systems consist of parallel compositions of
finite-state machines that communicate through sending and receiving messages via a
finite set of unbounded lossy FIFO channels. A channel is “FIFO” if the messages are
ordered. It is “lossy” if messages can be arbitrarily dropped.

Formally, a Lossy Channel System (LCS) L is a tuple (S, s0, C,M,Σ, δ), where S
is a finite set of (control) states, s0 ∈ S is an initial state, C is a finite set of channels,
M is a finite set of messages, Σ is a finite set of transition labels, and δ is a finite set of
transitions, each of which is of the form (s1, l, op, s2), where s1 and s2 are states, l ∈ Σ,
and op is a mapping from C to (send or receive) operations. An operation is either a send
operation !a, a receive operation ?a, or an empty operation ε, where a ∈M .

The control states of a system with n finite-state machines is formed as the Cartesian
product S = S1 × . . .× Sn of the control states of each finite-state machine. The initial
state of a system with n finite-state machines is a tuple s01, . . . , s0n of initial states of the
components. A configuration (s, w) of L consists of a (global) control state s ∈ S, and a
mapping w : C → M∗ giving the contents of each channel. The initial configuration of
L is the pair s0, λc.ε.

Channel systems define an infinite labeled transition system, where there is a transi-
tion (s, w)

l−→ (s′, w′) iff there is a transition (s, l, op, s′) ∈ δ and
w′(c) = w(c) · a if op(c) =!a, and w(c) = a · w′(c) if op(c) =?a.
In addition, lossiness means that messages can be lost. Let�∗ be the subword order-

ing on M∗. For maps w,w′ : C → M∗, we write w �∗ w′ iff for each c ∈ C, we have
w(c) �∗ w′(c). We encode lossy transitions by adding the following additional transi-
tions. We add s, w l−→ s′, w′ iff there are w1 and w2 such that w1 �∗ w, w′ �∗ w2, and
s, w1

l−→ s, w2. That is, s, w l−→ s′, w′ means that s′, w′ can be reached from s, w by first
losing messages from the channels and reaching s, w1, then performing the transition
s, w1

l−→ s′, w2, and finally losing further messages from channels to reach w′.

Exercise 14 1. The reachability problem for perfect channel systems is undecid-
able. [Hint: You can encode a Turing machine using a finite state machine and a
queue.]

2. Show that lossy channel systems are well-structured.

Lossy channel systems turn out to be a suitable formalism to encode verification
problems for weak memory models [3].

4.5. Karp Miller Trees

For Petri nets, one can actually compute a finite structure that represents the coverability
set: the downward closure of the set of reachable markings. The finite structure is called
the coverability tree, and is similar to a reachability tree in that nodes represent sets
of markings and edges represent firings of transitions. In order to represent downward
closed sets exactly, we first introduce a completion Nω = N ∪ {ω} of N and extend the
usual ordering on naturals with n < ω for all n ∈ N. Note that (Nω,≤) is a wqo, and so
is (Nkω,≤).

A tuple in NPω is called an ω-marking. Intuitively, an ω in a place is used to in-
dicate that the place can have arbitrarily many tokens. We extend the firing relation to
ω-markings, and use n+ ω = ω + n = ω for all n ∈ Nω .

The Karp-Miller tree for a Petri net is a rooted directed tree, where nodes are labeled
with ω-markings and edges labeled with transitions. The root is labeled with the initial
marking m0. The tree is constructed in the following way.

Suppose we have a node in the tree marked with the ω-marking m, and let
m0,m1, . . . ,mk = m be the sequence of markings from the root to this node. For each
transition t ∈ T such that m [t〉, we do the following. Let m [t〉m′.

If m′ ≤ mi for one of the nodes along the path to the root, we do not add a new
node labeled with m′. (Why?)

Otherwise, if m′ >mi for some mi, we build m′′ from m′ as follows:

m′′(p) =

{
ω if m′(p) >mi(p)

m′(p) otherwise

We add a new child to the node labeled with m′′, and the edge between them is labeled
t.

Otherwise, m′ is incomparable with all m0,mk, and we add a new child to the node
labeled with m′, and label the edge t.

Theorem 5 The tree construction terminates. Let Cov(N) be the set of node labels of
the Karp-Miller tree. For any m reachable from m0, there is a m′ ∈ Cov(N) such that
m ≤ m′. For any m ∈ Cov(N), there is a sequence m1,m2, . . . , in Reach(N) such
that m = limmi.

The Karp-Miller tree can be used to answer coverability queries: a marking m is
coverable iff there is an ω-marking m′ in Cov(N) such that m ≤ m′. In fact, it can be
used to answer other decision problems as well.

Exercise 15 Termination A Petri net N terminates from an initial marking m0 if every
transition sequence starting from m0 is finite. A Petri net N is bounded from an initial
marking m0 if there is some K ∈ N such that every reachable marking m satisfies
m ≤ (λp.K).

1. Show that N does not terminate from m0 iff there is a run
m0 [·〉 . . . [·〉m [·〉 . . . [·〉m′ such that m ≤ m′. How will you use the KM tree to
check termination?

2. Does termination imply boundedness? Does boundedness imply termination?
3. Show that N is bounded from m0 iff there is only a finite number of markings

reachable from m0.
4. How will you use the KM tree to check boundedness?

How big can the Karp-Miller tree be? The rough answer is “very big.” Formally,
define the functions

A0(x) = x+ 1, An+1(0) = An(1) An+1(x) = An(An+1(x))

and define the Ackermann function A(n) = An(n). It is known that the Ackermann
function is not primitive recursive.

Theorem 6 Mayr and Meyer For each n ∈ N, there is a bounded Petri net Nn of size
O(n) that generates A(n) tokens on some place.

Using this net, the Karp-Miller construction can produce a tree of non-primitive
recursive size.

It turns out that an alternate proof of this result can be obtained by generalizing
the puzzle from Section 4.1 to n boxes. First, by Exercise 2, we know that the number
of coins in any box is bounded along each execution (and all executions terminate).
Second, we can show the following transitions (e.g., by induction). First, starting with a
configuration with N tokens in one box, one can get to a configuration with 0 tokens in
that box and 2N tokens in the next, by repeatedly applying operation 1:

(N, 0)
op 1
−−−→ (0, 2N)

Similarly, when starting with a box with N tokens with two empty boxes to its right, we
can put 2N+1 tokens in the rightmost box. Begin with

(N, 0, 0)
op 1
−−−→ (N − 1, 2, 0)

op 1
−−−→ (N − 1, 0, 4)

op 2
−−−→ (N − 2, 22, 0)

and show by induction that

(N, 0, 0)
∗−→ (0, 2N , 0)

op 1
−−−→ (0, 0, 2N+1)

Continuing in a similar vein, with four boxes, we can get to 2↑↑N :

(N, 0, 0, 0)
∗−→ (0, 2↑↑N, 0, 0)

and in general, starting with N tokens in the leftmost box of a sequence of n boxes, we
can put 2↑↑n−2N coins in the second box, where a↑↑nb is defined as a↑↑1b = ab, and
for n > 1,

a↑↑nb = a↑↑n−1(a↑↑n−1(. . . ↑↑n−1a) . . .)︸ ︷︷ ︸
b times

Thus, in the puzzle, we can get to very large number of coins, and one can show that the
growth of this function is the same as the Ackermann function.

Finally, why is this a Petri net? An initial idea is to have places for boxes and imple-
ment the two operations as transitions. While the first operation is easily encoded, notice
that the second kind of operation (exchange the contents) is not allowed in a Petri net.
However, we can encode the puzzle as a Petri net in the following way. Given n boxes,
we add a place for each box (the coins are tokens), and add an additional n2 places. The
idea is that these additional places encode the “name” of a box in unary. There are n
places for each box, and we maintain the invariant that exactly one such place has one
token and the rest have zero tokens at each point. If the ith place has a token, the corre-
sponding box is now calledBi. We implement exchange by exchanging the names of two
boxes. (With a little care, and a lot of Petri net hacking, one can do the same reduction
with O(n log n) additional places.)

4.6. Complexity Bounds

The termination argument based on wqo only guarantees termination, but it does not
immediately provide a complexity bound.

For coverability of Petri nets, an upper bound is obtained using an argument of
Rackoff, which provides a bound n such that if a marking is coverable, it is coverable in
n steps.

Theorem 7 1. (Rackoff) Let N be a Petri net and m a marking. m is coverable
from m0 iff it is coverable by a path of length at most O((|N | · |m|)2|N| log |N|).

2. Coverability for Petri nets is EXPSPACE-complete.

Membership in EXPSPACE follows from the doubly exponential bound of Rackoff
and a non-deterministic log-space procedure for reachability. Hardness is proved in [26],
and uses a clever encoding of counter machines where counters are bounded by a doubly
exponential function.

The EXPSPACE algorithm is based on a non-deterministic traversal of the state
space and is usually not implemented. What about the backward reachability algorithm?
Using the Rackoff boundR(N), one can show that backward reachability must terminate
in R(N) iterations. Moreover, the size of the constants in the bases computed is then
bounded above by R(N) times a parameter dependent on the size of the net. Thus, the
backward reachability algorithm can be implemented in doubly exponential time.

Thus, the backward algorithm can be much more efficient than the Karp-Miller con-
struction.

Unfortunately, for other classes of systems, the backward reachability algorithm can
be non-primitive recursive.

Theorem 8 [35] Coverability for lossy channel systems is Ackermann-hard.

Coverability is also Ackermann-hard for extensions of Petri nets with transfer or
reset arcs.

Exercise 16 Prove Theorem 8. (See [35] for a proof.)

4.7. EEC and Bounds

The backward reachability algorithm is (almost) optimal but the forward Karp-Miller
construction for reachability is very expensive. This is a pity: in many problems, forward
algorithms tend to perform better. We now present a very elegant forward algorithm
for Petri net coverability (although the technique can be generalized for all WSTS) that
combines search with abstraction. Moreover, we show that the asymptotic complexity of
the algorithm is again EXPSPACE, so that the worst case complexity is not affected.

The algorithm is called expand, enlarge, and check [18]. It proceeds in rounds. In
each round, it computes an under-approximation and an over-approximation of the reach-
able states. The under-approximations are used to find witnesses in case the target mark-
ing is coverable. The over-approximations are used to find a witness in case the target
marking is not coverable. Since one of the two situations hold, the algorithm is guaran-
teed to terminate.

The sequence of under- and over-approximations are as follows. In iteration i, the
under-approximation restricts reachability analysis to {0, . . . , i}P . That is, if during the
forward reachability analysis, we encounter a marking with some co-ordinate exceed-
ing i, we remove it from consideration. Similarly, the over-approximation performs for-
ward reachability analysis over ω-markings in {0, . . . , i, ω}P . The under-approximation
checks if some marking lower than the target is reachable (return “coverable”). That
is, if during the forward reachability analysis, we encounter a marking with some co-
ordinate exceeding i, we immediately set that co-ordinate in the marking to ω. The over-
approximation checks if the set of abstractly reachable markings is disjoint from the tar-
get (return “not coverable”). The correctness of the EEC algorithm shows that the algo-
rithm is sound, complete, and terminating.

What is the complexity of EEC? If the target is coverable, by the Rackoff bound, we
know that it must terminate inR(N) iterations. On the other hand, if the target is not cov-
erable, again using the Rackoff bound, we can show that theR(N)th over-approximation
is precise enough to prove non-coverability. We omit the proof, see [27] for details.

5. Recursive Procedures and Context-Free Reachability

So far, our model of programs has ignored recursion. Transition systems can be used as
a model for recursive programs as well, by explicitly encoding the program stack in the
state. As the stack can be unbounded, the resulting transition systems are not going to be
finite-state in general, even if we interpret the vocabulary over a finite structure, and a
“generic” reachability algorithm may not terminate. Instead, we now show how one can
get a reachability algorithm by modeling a recursive program as a context-free process
(and using algorithms for context free grammars).

Background: Context-free grammars and pushdown automata We recall some concepts
from language theory.

A context-free grammar (CFG) G = (X ,Σ,P,X0) consists of a set X of non-
terminal symbols, a disjoint set Σ of terminal symbols, a set P ⊆ X × (X ∪ Σ)∗ of
production rules, and a starting symbol X0 ∈ X . We writeX ⇒ w if (X,w) ∈ P . Given

two strings u, v ∈ (Σ ∪ X)∗, we define the relation u ⇒
G
v, if there exists a production

(X,w) ∈ P and some words y, z ∈ (Σ ∪ X)∗ such that u = yXz and v = ywz. We
use ⇒

G

∗ for the reflexive transitive closure of ⇒
G

. A word w ∈ Σ∗ is recognized from

the non-terminal X ∈ X if X ⇒
G

∗ w. We sometimes simply write ⇒ instead of ⇒
G

if G is clear from the context. We define the language of a CFG G, denoted L(G), as
{w ∈ Σ∗ | X0 ⇒∗ w}. A language L is context-free (or CFL) if there exists a CFG G
such that L = L(G).

A regular grammar R is a context-free grammar such that each production is in
X ×

(
(Σ · X) ∪ {ε}

)
. It is known that a language L is regular iff L = L(R) for some

initialized regular grammar R.
A grammar is a generator of languages. As with regular languages and automata,

there are “acceptor” machines for context-free languages. These machines are automata
with an auxiliary stack.

A pushdown automaton (PDA) A = (Q,Σ,Γ, δ, q0, F) consists of a finite set Q of
states, an input alphabet Σ, a stack alphabet Γ, a transition function δ : Q× Σε × Γε →
P(Q× Γε), a start state q0 ∈ Q, and a set F ⊆ Q of accepting states.

A PDA computes as follows. An input word w ∈ Σ∗ is accepted by A if w can
be written as w1w2 . . . wm, where each wi ∈ Σε, and there exist a sequence of states
r0, r1, . . . , rm fromQ and a sequence of stack contents s0, s1, . . . , sm from Γ∗ such that
(1) r0 = q0 and s0 = ε, that is, the machine starts in the initial state with an empty stack,
(2) rm ∈ F , that is, the machine is in an accepting state at the end, and (3) for each
i ∈ {0, . . . ,m − 1}, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at and si+1 = bt
for some a, b ∈ Γε and t ∈ Γ∗. The third condition states that the states and the stack
contents are updated according to the transition function.

The language of a PDA is the set of all input words accepted by the PDA. It turns
out this class is exactly the class of context free languages.

Theorem 9 For every CFG G there is a pushdown automaton P of size polynomial in G
such that L(G) = L(P). Conversely, for each pushdown automaton P , there is a CFG
G of size polynomial in P such that L(P) = L(G).

Control flow graphs with recursion We represent programs using control flow graphs,
one for each procedure. The set of procedure names is denoted Σ. For each σ ∈ Σ, the
control flow graph for σ is a labeled, directed graph (Vσ, Eσ), together with a unique
entry node veσ ∈ Vσ and a unique exit node vxσ ∈ Vσ . We assume the program has (global)
variables from some set Y of variables and that each variable y ∈ Y ranges over a finite
domain. Each edge in Eσ is labeled with either a constraint ρ over the free variables
Y ∪ Y ′ or a procedure call to a procedure σ′ ∈ Σ (which can be σ itself). The nodes
of the control flow graph correspond to control locations of the program, the entry and
exit nodes represent, respectively, where execution of a procedure starts and returns. We
assume that each node v ∈ Vσ is reachable from veσ and can reach vxσ , and that execution
of the program begins at the entry node vemain of a special procedure main ∈ Σ.

The program representation defines a context-free grammar G = (V,Σ ∪
stmts,P, vemain), where V =]{Vσ | σ ∈ Σ} is the disjoint union of all control flow
nodes, stmts is the set of constraints labeling program edges, and the set of productions
P is the smallest set such that

• (X → ρY) ∈ P if the edge (X,Y) in the control flow graph is labeled with the
operation ρ,

• (X → veσY) ∈ P if the edge (X,Y) in the control flow graph is labeled with a
call to procedure σ ∈ Σ, and

• (vxσ → ε) ∈ P for each σ ∈ Σ.

To capture the effect of constraints on program edges on the program variables, we define
an NFA R = (D, d0, stmts, δ) where D is the set of valuations to variables in Y , d0 is
the initial valuation, and δ = {(d, ρ, d′) | d, d′ ∈ D, (d, d′) |= ρ}. (For the moment, we
omit the final states.)

Intuitively, a leftmost derivation of the grammar G starting from vemain defines an
interprocedurally valid path in the program. A possible global state of the program is
given by a state in D obtained by executing the NFA R along the path (note that the
constraints can be non-deterministic, and there can be several global states).

We can take a product of the grammarGwith the NFAR to construct a grammarGR
in the following way. The grammar GR = (VR, ∅,PR), where VR = {[dvd′] | d, d′ ∈
D, v ∈ V } and PR is the least set such that:

• if (X → ε) ∈ P then ([dXd]→ ε) ∈ PR,
• if (X → ρY) ∈ P , (d, ρ, d′) ∈ δ, and d′′ ∈ D, then ([dXd′′]→ [d′Y d′′]) ∈ PR,

and
• if (X → veσY) ∈ P , and d0, d1, d2 ∈ D, then ([d0Xd2] → [d0v

e
σd1][d1Y d2]) ∈

PR.

The product construction ensures the following invariant: if [dXd′] →∗ ε then there
exists w ∈ stmts∗ such that d w−→ d′ in R and X →∗ w in G, and conversely, if d w−→ d′

in R and X →∗ w in G then [dXd′]→∗ ε in GR.
Without loss of generality, we can reduce the invariant verification problem to check-

ing if the program has an execution leading to a special state d? ∈ D when the control lo-
cation is at vxmain. This reduces to the question if [dvemaind?]→∗ ε, which can be checked
using a “marking algorithm” for context-free language emptiness. Moreover, the algo-
rithm can be made symbolic by keeping track of sets of data values, and manipulating
them symbolically.

Pushdown reachability Context free grammars and pushdown automata provide two
different characterizations for the context free languages. We now present an alternate
algorithm for model checking programs with recursion that uses the automaton view.

As a first step, we model programs as pushdown systems (PDS), which intuitively
are pushdown automata without inputs. A pushdown system P = (Q,Γ, δ) consists of
a finite set Q of control locations, a finite stack alphabet Γ, and a finite set of transition
rules δ ⊆ (Q × Γ) × (Q × Γ∗). We write (q, γ) ↪→ (q′, w) if ((q, γ), (q′, w)) ∈ δ. A
configuration of P is a pair (q, w) ∈ Q× Γ∗.

Let (q, γ) ↪→ (q′, w). For each w′ ∈ Γ∗, the configuration (q, γw′) can go to
(q′, ww′) in one step. Thus, (q, γw′) is an immediate predecessor of (q′, ww′) and
(q′, ww′) is an immediate successor of (q, γw′). We can lift the immediate predecessor
relation to sets of configurations in the usual way. Define pre : 2Q×Γ∗ → 2Q×Γ∗ as
follows. For a set of configurations C, we have that a configuration c ∈ pre(C) iff c is
the immediate predecessor of some configuration in C.

We are interested in the reachability question: given two configurations c and c′,
is c′ reachable from c? Note that we cannot simply iterate pre, starting from c′, and
hope that it converge. Consider for example the PDS with one state q, one stack symbol
γ, and a single rule (q, γ) ↪→ (q, ε). If we start with (q, ε), then pre(q, ε) = (q, γ),
pre2(q, ε) = {(q, γ), (q, γγ)}, and so on.

Instead, we will use a symbolic representation using automata. The automata will
capture, for a given state q of the PDS, all possible stack configurations w such that
there is a way to reach the target configuration starting from (q, w). The use of automata
depend on the following result about stack languages of a PDA.

Let P be a PDA, let c be a configuration, and let q be a state. The backward stack
language L(q) is defined as the set of all stack configurations w such that (q, w) can
reach the configuration c.

Theorem 10 The backward stack language of a PDA is regular.

PROOF. Let P be a PDA, and we assume that P accepts on reaching the state qf
with empty stack. For each q ∈ Q, we show the language

L(q) = {w ∈ Γ∗ | (q, w)
∗−→ (qf , ε)}

is regular. Any computation of P starting with (q, w1 . . . wk) can be broken into:

(q, w1 . . . wk)
∗−→ (q1, w2 . . . wk)

∗−→ · · · ∗−→ (qk−1, wk)
∗−→ (qf , ε)

where the first symbol is definitely consumed, the second symbol is definitely consumed,
and so on. We describe an automaton that has one state for each state of P , i.e., the set
of states is Q. The alphabet is Γ. The state q is initial. The state qf is the only final state.
Finally, we define (q1, γ, q2) ∈ δ iff in P , we have

(q1, γ)
∗−→ (q2, ε)

Note that this check is decidable (in fact, polynomial time, by reduction to emptiness).
�

Exercise 17 The forward stack language Lf (q) of a PDA for a state q is defined as the
set of all stack configurations w such that (q, w) is reachable from (q0, ε). Show that the
forward stack language is regular. [Hint: Consider states Q× Γ.]

We use multi-automata to represent sets of configurations. A multi-automaton A =
(QA,Γ, δA, IA, FA) for a PDS P is a finite-state automaton over the stack alphabet Γ,
but which has one initial state for each state of the PDS, i.e., IA is a map from Q to QA.
The configuration (q, w) is accepted by the multi-automaton A if there is an accepting
run of A on w starting from IA(q). The language L(A) of a multi-automaton is the set
of configurations accepted by A. A set of configurations is regular if there is a multi-
automaton that recognizes the set.

Now suppose we are given a multi-automaton A. We view it as a (regular) set of
configurations, and would like to compute pre∗ for this set. Instead of computing pre∗ by
direct iteration, which need not converge, we construct a sequence {Y }i of regular sets
of configurations such that

1. prei(L(A)) ⊆ Yi for all i ≥ 0,
2. Yi ⊆ pre∗(L(A)) for all i ≥ 0, and
3. there is an i such that Yi+1 = Yi.

Properties (1) and (2) ensure that the sequence {Y }i computes pre∗(L(A)), and (3) en-
sures termination.

We will compute the sequence {Y }i using a saturation procedure on A. That is, the
sets Yi will be accepted by a multi-automaton Ai that has the same set of states as A but
possibly more transitions. Since a multi-automaton with n states and alphabet of size m
can have at most n2m transitions, we enforce termination.

Without loss of generality, we assume that no transitions lead into the initial states
of A. We start with Y0 = L(A). Given a multi-automaton Ai that accepts Yi, we com-
pute Ai+1 as the automata that has all the transitions in Ai, and adds the following new
ones. For every transition rule (q, γ) ↪→ (q′, w) in δ, and every state r of Ai such that
IA(q′)

w−→ r in Ai, we add the transition (IA(q), γ, r) to Ai+1 if it does not exist.
Why is this sound? Note that (q, γw′) is an immediate predecessor of (q′, ww′) by

the transition rule. So, for any w′, if Ai accepts the word ww′ from IA(q′) in Ai, we
ensure that in Ai+1, the word γw′ is accepted from IA(q).

Theorem 11 Given a PDS P and a multi-automaton A for P , there is an effectively
constructible multi-automaton pre∗(A) such that L(pre∗(A)) = pre∗(L(A)).

Exercise 18 What is the complexity of this procedure?

6. Concurrency

What happens if we combine recursive programs and multithreading? Unfortunately, the
analysis of multi-threaded recursive programs communicating through some mechanism
is undecidable. The proof uses a reduction from the problem of checking intersection
of two context free languages, which is undecidable. Intuitively, each language is repre-
sented as a recursive “thread”, and there is a common execution to some target state iff
there is a common word in their intersection.

Theorem 12 Reachability analysis for multi-threaded recursive programs is undecid-
able.

The undecidability holds (by minor modifications) for most synchronization mech-
anismsm, such as shared memory, rendezvous, etc. One somewhat surprising decidable
case is when the threads communicate solely based on nested locking [24].

6.1. Under-approximation: Context-bounded Reachability

While the general reachability problem is undecidable, a variant of the problem, which
computes an under-approximation of the reachable states, is decidable. The under-

approximation is called context-bounded reachability. Context-bounded reachability
takes a recursive multi-threaded program, a target state, and a parameter k, and checks
if there is an execution that reaches the target in which the “context” switches from one
thread to the other at most k times. For a fixed k, the problem is decidable (even though
the problem of finding an execution is undecidable).

Of course, the fact that an under-approximation of the reachable states is decidable
is not interesting by itself. (For example, the empty set, a trivial under-approximation, is
easily computed.) The interest in context-bounded reachability is the empirical observa-
tion that many concurrency errors manifest themselves with low values of k (e.g., 1 or
2). Thus, this particular under-approximation is useful in practice.

We give a proof of decidability of context-bounded reachability in the context of two
pushdown automata communicating through shared global variables. Proofs for other
settings are similar. The idea is to reduce the problem to the emptiness problem for a
single pushdown automaton, which tracks additional state [25].1

Let P1 and P2 be two pushdown automata. We do not care about the input alphabet,
but we assume there is a shared global variable x with values coming from some finite
range. A transition of P1 and P2 consists of a prior state q, a stack symbol γ, a set of
valuations of x (called the guard), a posterior state q′, a string of stack symbols w, and
a new value for x. Intuitively, when the control is in state q, the popped stack symbol
is γ, and the shared variable x is read and if its value satisfies the guard, a new value is
atomically written to it, the machine moves to state q′ and pushes w on to the stack.

The reachability question asks if some pair of locations (qf1, qf2) of P1 and P2 can
be reached, starting from some initial pair (q01,, q02) (and empty stacks and some default
initial value to x).

A run of P1 and P2 consists of configurations (q1, w1, q2, w2, x) of control loca-
tions and stack contents of the machines and the current value of x. A run consists of
a sequence of configurations, where every consecutive pair is related by the transition
relation of P1 or P2. A context switch happens in a run if there are two consecutive
transitions in the run, the first by Pi and the second by P3−i, for i ∈ {1, 2}.

Suppose we bound the total number of context switches in a run by 2K. We show
how to reduce the reachability problem for 2K-context bounded runs to the emptiness
problem for pushdown automata. The intuition is that we “uncouple” the interleaved run
of P1 and P2 by using non-determinism and additional state. Let us assume P1 took the
first step (there is a symmetric case for P2, chosen using non-determinism). Instead of
one copy of x, the simulating machine keeps 2K copies of x, call them x1, . . . , x2K . The
variable x2j−1 keeps the value of x at the end of the jth phase of P1, and x2j contains
the value guessed to be the value at the start of the j + 1th phase of P1.

The sequential PDA simulates a run with 2K context switches by running P1 with
x1 set to the initial value of x, then non-deterministically deciding at some point that a
context switch took place. At that point, it guesses the value at the end of P2’s first phase
into x2 and x3. It keeps simulating P1 (the state and the stack does not change by P2’s
operations) now using x3 as the shared variable, and again non-deterministically decides
when a context switch took place. At that point, it makes a new guess and stores the guess
into x4 and x5 and continues. AfterK such steps, the machine switches to simulating P2.
It starts simulating P2 starting with x1 and then guesses that a context switch took place

1This proof is different from the original proof by Qadeer and Rehof [33], but is conceptually clearer.

and checks that at that point, the value of x1 (the current value of the shared state) is
the same as the guessed value in x2. If not, the machine rejects. Otherwise, the machine
simulates P2 using the value stored in x3 (which represents the shared state when P1

finished its second phase. At the end of 2K phases, the machine has simulated behaviors
of all 2K-bounded executions. Thus, a pair of states is reachable in the original system
with at most 2K context switches iff it is reachable in the simulating PDA. This latter
problem is decidable, of course.

Exercise 19 Write down the formal construction, and show that the size of the simulating
PDA is polynomial in the size of the input for fixed K. Does your construction work if
there are n PDAs? Show that the complexity of context-bounded reachability for n PDAs
and fixed K is NP-complete.

6.2. Decidable Models: Asynchronous Programs

By reduction to Petri nets, we showed in Section 4 that safety verification of non-
recursive concurrent programs, even in the presence of dynamic allocation of threads, is
decidable. On the other hand, in the presence of recursion, just two threads is enough
for undecidability. We now look at asynchronous programs, an interesting class in which
concurrency and recursion interact in a restricted way and keep the reachability problem
decidable.

In an asynchronous program, the programmer can make asynchronous procedure
calls which are stored in a task buffer pending for later execution, instead of being ex-
ecuted right away. In addition, the programmer can also make the usual procedure calls
where the caller blocks until the callee finishes, and such calls may be recursive. A co-
operative scheduler repeatedly picks pending handler instances from the task buffer and
executes them atomically to completion. Execution of the handler instance can lead to
further handler being posted. The posting of a handler is done using the asynchronous
call mechanism. The interleaving of different picks-and-executes of pending handler in-
stances (a pick-and-execute is often referred to as a dispatch) hides latency in the system.

Our formal model consists of three ingredients: a global store of data values, a set
of potentially recursive handlers, and a task buffer that maintains a multiset of pending
handler instances.

An asynchronous program AP = (D,Σ,Σi, G,R, d0,m0) consists of a finite set
of global states D, an alphabet Σ of handler names, an alphabet Σi of internal actions
disjoint from Σ, a CFG G = (X ,Σ ∪ Σi,→), a regular grammar R = (D,Σ ∪ Σi, δ),
a multiset m0 ∈ M[Σ] of initial pending handler instances, and an initial state d0 ∈ D.
We assume that for each σ ∈ Σ, there is a non-terminal Xσ ∈ X of G.

A configuration (d,m) ∈ D×M[Σ] of AP consists of a global state d and a multiset
m of pending handler instances. For a configuration c, we write c.d and c.m for the
global state and the multiset in the configuration respectively. The initial configuration
c0 of AP is given by c0.d = d0 and c0.m = m0.

The semantics of an asynchronous program is given as a labeled transition system
over the set of configurations, with a transition relation→⊆ (D ×M[Σ]) × Σ × (D ×
M[Σ]) defined as follows: let m,m′ ∈M[Σ], d, d′ ∈ D and σ ∈ Σ

(d,m⊕M[σ])
σ→ (d′,m⊕m′)

iff

∃w ∈ (Σ ∪ Σi)
∗ : d⇒

R

∗ w · d′ ∧Xσ ⇒
G

∗ w ∧m′ = ParikhΣ(w) .

Intuitively, we model the (potentially recursive) code of a handler using a context-free
grammar. The code of a handler does two things: first, it can change the global state
(through R), and second, it can add new pending handler instances (through derivation
of a word in Σ∗). Together, the transition relation→ states that there is a transition from
configuration (d,m ⊕M[σ]) to (d′,m ⊕m′) if there is an execution of handler σ that
changes the global state from d to d′ and adds to the task buffer the handler instances
given by m′. Note that the multiset m (the current content of the task buffer minus the
pending handler instance σ) is unchanged while σ executes, and that the order in which
the handler instances are added to the task buffer is immaterial (hence, in our definition,
we take the Parikh image of w).

Finally, we conclude from the definition of their semantics that asynchronous pro-
grams satisfy the following form of monotonicity. Let us first define the ordering
v⊆ (D ×M[Σ])× (D ×M[Σ]) such that c v c′ iff c.d = c′.d ∧ c.m � c′.m. Also we
have:

∀σ ∈ Σ ∀c1 ∀c2 ∀c3 ∃c4 : c1
σ→ c2 ∧ c1 v c3 implies c3

σ→ c4 ∧ c2 v c4 .

Therefore, the transitions system
(
(D×M[Σ],v),→, c0

)
defined by asynchronous pro-

grams are well-structured transition systems.
A run of an asynchronous program is a finite or infinite sequence

c0
σ0→ c1 · · · ck

σk→ ck+1 · · ·

of configurations ci starting from the initial configuration c0. A configuration c is reach-
able if there is a finite run c0

σ0→ · · · σk−1→ ck with ck = c.
The global state reachability problem for an asynchronous program takes as input

an asynchronous program and a global state df ∈ D, and asks if there is a reachable
configuration c such that c.d = df .

The key insight in the analysis of asynchronous programs is that the effect of a
handler is only to add tasks to the task buffer, and it does not matter in what order tasks
got added to the buffer. That is, we do not have to reason precisely about the context-free
language of posts of tasks by a handler, we only need to look at the numbers of different
tasks that were posted by the handler.

Let us define a function Parikh : Σ∗ → NΣ such that Parikh(w)(a) is the num-
ber of occurrences of the letter a in the word w. For example, Parikh(aabacc)(a) =
3, Parikh(aabacc)(b) = 1, etc. We extend Parikh to languages in the natural way:
Parikh(L) = {Parikh(w) | w ∈ L}. It turns out that the image of the map Parikh has a
simple structure [32]:

Theorem 13 [Parikh’s Theorem] For every context free language L, there is an (effec-
tively computed) regular language L′ such that Parikh(L) = Parikh(L′).

What Parikh’s theorem allows us to do is to replace the pushdown automaton of a
handler by a finite automaton that is equivalent w.r.t. its effect on the task buffer: the stack
is gone! Once this transformation is done, we can convert an asynchronous program (now
without recursion in the handlers) to a Petri net, roughly as follows. There is a place for
each control location of each handler, representing the control location of the currently
executing handler, and a place for each value of the global variable. Additionally, there
is a place representing the scheduler, and a place for each task that tracks how many
instances of that task are currently pending (the “task buffer” for that task). To model a
handler call, for each task, there is a transition that consumes a token from the scheudler
and one token from the task buffer and produces a token at the start location of the handler
for the task. The post of a task puts a token in its task buffer. When the handler returns,
the token is returned from its control location to the scheduler, so that a new handler can
be chosen for execution. Together, this gives a reduction from asynchronous programs to
Petri nets, and shows that global state reachability is decidable by reducing the question
to a coverability question on the Petri net.

Unfortunately, the regular language guaranteed by Parikh’s theorem may only be
represented by non-deterministic finite automata that have size exponential in the gram-
mar. Thus, the above reduction gives a doubly exponential space algorithm.

Exercise 20 Consider the singleton language Ln = {a2n}, for n ∈ N. Show that for
each n, there is a CFG of size O(n) for Ln but every NFA for Ln has 2O(n) states.

Exercise 21 (See Ganty and Majumdar [17].) Show that a Petri net can be simulated by
a recursion-free asynchronous program. Thus, the global state reachability question for
asynchronous programs is EXPSPACE-hard.

With a little more care, one can show a stronger reduction: a Petri net that is polyno-
mial in the size of the asynchronous program.

Lemma 1 [17] For every asynchronous program AP, there is a Petri net N(AP) of size
polynomial in AP such that (1) (d,m) is reachable in AP iff M[d] ⊕m is reachable in
N(AP), and (2) d is reachable for some m iff M[d] is coverable in N(AP).

The crux of the polynomial-time reduction is a representation of the Parikh image of
a context-free language as a Petri net that is size polynomial in the grammar. Intuitively,
the Petri net for the Parikh image of a context-free grammar has places corresponding to
the terminals and non-terminals of the grammar. A production A → BC (respectively,
A → a of the grammar consumes a token from the place A and puts one token each in
the placesB andC (respectively, one token in a). Suppose we start with a marking which
has exactly one token in the start non-terminal S. If we reach a marking in which there
are no tokens in any place corresponding to non-terminals, the tokens in the places corre-
sponding to terminals gives the Parikh image of some word in the language. Conversely,
the Parikh image of every word in the language can be obtained in this way.

Unfortunately, there is one technicality here: Petri nets cannot test a place for empti-
ness, so how can we ensure that all non-terminal places are zero? For this, we use a result
from [14] on index bounded languages.

Let G be a CFG. For k ≥ 1, we define the sub-relation⇒
G

[k] of⇒
G

as u ⇒
G

[k]v iff

u ⇒
G
v and both u and v contain at most k occurrences of non-terminals. The k-index

language of G is L(k)(G) = {w ∈ Σ∗ | S ⇒
G

[k]∗w}. Intuitively, the k-index language

contains those strings in L(G) which can be derived by a sequence which never has more
than k non-terminals in any intermediate sentence.

Lemma 2 [14] For every CFG G with n non-terminals, Parikh(L(G)) =
Parikh(Ln(G)).

Now we can construct a Petri net. Intuitively, the Petri net keeps a “store” of n
tokens, and maintains the invariant that the sum of all tokens in the non-terminal places
together with the remaining tokens in the store is exactly n. Thus, if at any point, the store
has n tokens, we can conclude that all non-terminal places are empty. So, the “handler
return” will be modeled by checking that the store has n tokens, and this is a check that
the Petri net can perform.

Let G = (V,Σ,→, S) be a CFG with n non-terminals. Without loss of generality,
we assume that each rule in G is of the form A → BC or A → a. Consider the Petri
net (V ∪Σ∪ {store}, T, 〈I,O〉), where T is the smallest set containing a transition t for
each rule A → BC with I(t) = {A, store}, O(t) = {B,C}, and a transition t for each
rule A → a with I(t) = {A} and O(t) = {a, store}. Intuitively, we consume a token
from the store whenever we increase the number of tokens in non-terminal places, and
give back a token whenever a non-terminal is reduced to a terminal.

Let m0 be the marking with one token in place S and n − 1 tokens in place store.
Then, any marking reachable from m0 in which there are n tokens in the store corre-
sponds to a derivation of some word in Ln(G), and the tokens in the terminal places
correspond to the Parikh image of that word. Further, all words in the Parikh image can
be obtained in this way. This construction can be combined with the previous reduction
(in case there was no recursion) to get a polynomial-sized Petri net.

Theorem 14 [17] Global state reachability of asynchronous programs is EXPSPACE-
complete.

References

[1] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-state
systems. In Proceedings of the Eleventh Annual Symposium on Logic in Computer Science, pages 313–
321. IEEE Computer Society Press, 1996.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.
[3] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem for weak

memory models. In POPL, pages 7–18. ACM, 2010.
[4] T. Ball, V. Levin, and S. Rajamani. A decade of software model checking with SLAM. Commun. ACM,

54(7):68–76, 2011.
[5] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C programs.

In PLDI 01: Programming Languages Design and Implementation, pages 203–213. ACM, 2001.
[6] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian abstractions for model checking C

programs. In TACAS 01: Tools and Algorithms for Construction and Analysis of Systems, Lecture Notes
in Computer Science 2031, pages 268–283. Springer-Verlag, 2001.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In TACAS 99:
Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science
1579, pages 193–207. Springer-Verlag, 1999.

[8] R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Comput-
ers, C-35(8):677–691, 1986.

[9] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142–170, 1992.

[10] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static analysis of pro-
grams. In POPL 77: Principles of Programming Languages, pages 238–252. ACM, 1977.

[11] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In CAV 99: Computer-Aided
Verification, Lecture Notes in Computer Science 1633, pages 160–171. Springer-Verlag, 1999.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS 08: Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer Science 4963, pages 337–340.
Springer-Verlag, 2008.

[13] B. Dutertre and L. de Moura. Yices SMT solver. http://yices.csl.sri.com/.
[14] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A simple and direct automaton

construction. Information Processing Letters, 111:614–619, 2011.
[15] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere. Technical Report LSV-

98-4, Laboratoire Spécification et Vérification, 1998.
[16] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In POPL 02: Principles of

Programming Languages, pages 191–202. ACM, 2002.
[17] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. ACM Trans. Program.

Lang. Syst., 34(1):6, 2012.
[18] G. Geeraerts, J.-F. Raskin, and L. V. Begin. Expand, enlarge and check: New algorithms for the cover-

ability problem of wsts. J. Comput. Syst. Sci., 72(1):180–203, 2006.
[19] H. Gruber, M. Holzer, and M. Kutrib. More on the size of higman-haines sets: Effective constructions.

Fundam. Inform., 91(1):105–121, 2009.
[20] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL 02: Principles of

Programming Languages, pages 58–70. ACM, 2002.
[21] T. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic transition systems. ACM

Transactions on Computational Logic, 6:1–32, 2005.
[22] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems.

Information and Computation, 111(2):193–244, 1994.
[23] F. Ivancic, Z. Yang, M. K. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based bounded model checking

for software verification. Theoretical Computer Science, 404(3):256–274, 2008.
[24] V. Kahlon and A. Gupta. On the analysis of interacting pushdown systems. In POPL 07: Principles of

Programming Languages, pages 303–314, 2007.
[25] A. Lal and T. Reps. Reducing concurrent analysis under a context bound to sequential analysis. Formal

Methods in System Design, 35(1):73–97, 2009.
[26] R. Lipton. The reachability problem is exponential-space hard. Technical Report 62, Department of

Computer Science, Yale University, 1976.
[27] R. Majumdar and Z. Wang. Expand, enlarge, and check for branching vector addition systems. In CON-

CUR 2013: Concurrency Theory, Lecture Notes in Computer Science 8052, pages 152–166. Springer,
2013.

[28] K. McMillan. Symbolic Model Checking: An Approach to the State-Explosion Problem. Kluwer Aca-
demic Publishers, 1993.

[29] K. L. McMillan. Lazy abstraction with interpolants. In CAV 2006, Lecture Notes in Computer Science,
pages 123–136. Springer-Verlag, 2006.

[30] M. Minsky. Finite and infinite machines. Prentice-Hall, 1967.
[31] G. Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox Palo Alto Research

Center, 1981.
[32] R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
[33] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In TACAS, pages

93–107, 2005.
[34] H. Saı̈di and N. Shankar. Abstract and model check while you prove. In CAV 99: Computer-aided

Verification, Lecture Notes in Computer Science 1633, pages 443–454. Springer-Verlag, 1999.
[35] P. Schnoebelen. Revisiting ackermann-hardness for lossy counter machines and reset petri nets. In

MFCS 10: Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 6281,
pages 616–628. Springer, 2010.

