|IC3: Where Monolithic and Incremental Meet
(Invited Talk)

Fabio Somenzi Aaron R. Bradley
Dept. of Electrical, Computer, and Energy Engineering Summit Charter Middle School
University of Colorado at Boulder Email: arbrad@cs.stanford.edu

Email: fabio@colorado.edu

Abstract—IC3 is an approach to the verification of safety These two steps—sometimes calieifiation andconsecution
properties based on relative induction. It is incremental n the respectively—comprise induction ovst
sense that instead of focusing on proving one assertion, iubds
a sequence of small, relatively easy lemmas. These lemmas ar B. Monolithic and Incremental Methods

in the form of clauses that are derived from counterexamples Outside of | h a direct licati fi
to induction and that are inductive relative to reachability utsige of a classroom, such a direct application of in-

assumptions. At the same time, IC3 progressively refines ap- duction is bound to fail. The development of safety model
proximations of the states reachable in given numbers of sps. checking has essentially been the study of what one should

These approximations, also made up of clauses, are among thedo when, as usual, it does fail. femporal Verification of

assumptions used to support the inductive reasoning, whiltheir Reactive Systems: Safé#lj, Manna and Pnueli write
strengthening relies on the inductive clauses themselvedhis) ' ’

interplay of the incremental and monolithic approaches lenls We present two solutions to this problem, which can
IC3 efficiency and flexibility and produces high-quality property- be summarized by the following strategies:
driven abstractions. In contrast to other SAT-based appro&hes, 1) Use a stronger assertion, or

IC3 performs very many, very inexpensive queries. This is 2) Conduct ani tal f usi . |
another consequence of the incrementality of the algorithmand) Conductan incremental proof, using previously

is a key to its ability to be implemented in highly parallel fashion. establishedP-invariants.
They go on to endorse the latter approach when engaging in
manual or computer-aided verification:
We strongly recommend [an incremental proof]
This paper discusses the IC3 technique for model checking whenever applicable. Its main advantage is that of
safety properties. It is meant as a companion to [1]. Sedtion modularity.

illustrates the approach on examples, while the rest of thisThe former approach, however, is the one that has been most
introduction and Section Il put the algorithm in its histor pyrsued from an algorithmic point of view in the context of

cal and ideological context by showing its relation to oth@fardware model checking. The formal basis for this approach
methods for finite-state verification. is the following. If

e I(T) = F(T)
o« F(T)AT(i,7,7) = F(T)
Induction is fundamental to the verification of safety prop- , F(Z) = P(%)
erties [2], [3]. The only question is how it should be appliednen p is an invariant ofS. In words, if F' is inductive over
Consider a finite state systeifi,: (i, 7, (%), T(i,7,7')), § and impliesP, then bothF and P are invariants.
consisting of primary inputs, state variables, a proposi- Traditional model checkers, based on BDDs [5] or SAT [6],
tional formulaZ(z) describing the initial configurations of theexplicitly compute post-conditions to compute the straige
system, and a propositional formulgi, 7,7') describing the ossible strengthening of, namely the reachable set of
transition relation. Primed state variabi&srepresent the next states, or pre-conditions to compute the weakest possible
state. strengthening ofP, namely all states except those that can
Suppose that one wants to prove that every reachable s{aigj to a violation ofP. Bounded model checkers (BMC)
satisfies state assertidh(z). Beginner's luck might allow one expoit the finiteness of the state graph to enable a complete
to proceed as follows: approach based on unrollinj and searching, with a SAT
« Show that the initial configuration of the system satisfiesolver, for a counterexample trace [7]. An alternative tging
P: I(Z) = P(T), where= corresponds to implication. on a property of the state graph is to strengthen consecution
That is, all states that satisfy the initial conditiéralso simply by considering multiple time steps at ongdanduction
satisfy P. assumes thaP holds over multiple time steps to increase the
« Show that aP-state can only be followed by anoth£r likelihood that P holds in the next time step [8]. BDD-based
state:P(Z) AT(i,7,7') = P(T'). algorithms that compute backward reachability can also be

|I. INTRODUCTION

A. Induction

interpreted as computing increasingly strong consecsitithre « and P is inductive relative to the assertions,
number of iterations required for the fixpoint computation t

— — = = —/
converge to the weakest possible invariant that imphagves /\ ¢i(@) ANPZ)AT(i,2,7) = PT),
the number of time steps to be considered to tEBrinto an lsjsn
inductive assertion. then P is an invariant ofS.

Finally, one can abstract the post-condition in order to Bradley and Manna proposed the first incremental safety
ease the computation, as in abstract interpretation [9%nEvingdel checking algorithm [11], [12]. It discovers induetiv
better, one can abstract it with respect to the propertynasgpclauses of the negation of states that lead, not neitgssar
interpolation-based model checking, in which interpadearte girectly, to violations ofP. Such clauses eliminate the states
derived from failed BMC queries [10]. from which they are derived while generalizing to eliminate

We refer to these methods a®nolithicbecause they spendmany other states as well. Each clause is an assertitinat is
all of their resources in computing one inductive assertiofgeed typically inductive only relative to prior assentobut
Furthermore, their success is fundamentally tied to the r&gyt on its own. As expected, deriving the clauses is relgtive
soning engines—either the BDD package or the SAT solv@lasy: the employed SAT solver solves many, often hundreds or
The representation of states reachable from the initiab@me hoysands, of queries per second, in stark contrast to BMC,
states that can reach the target ones often entails pioklpit jndyction, and the interpolant method. An unexpected benefi
large BDDs. BMC,k-induction, and interpolant-based modejs that this instance of the incremental approach is effelsti
checking fail when the SAT solver is overwhelmed by thgarajlelizable—and easily so. This characteristic hasiehr
number of unrollings off". _ through in subsequent work.

One must then wonder whether arcrementalapproach, pgegjides modularity and reduced labor, the incremental ap-
which is so successful for humans, might not be a bad idggyach has one more benefit: induction-based generalizatio
as the basis for an algorithm. An incremental approach woyld 5 nowerful mechanism for property-directed abstraction
compute many inductive assertions that all together sthemg |nqction tends to find semantic relationships among states
P_. It_would thus have _the modularity that Manna and Pnugliner than simply adjacency, or structural, relationshims
highlight—each assertion need only refer to an aspedt-6f i, raditional model checking. The clause that eliminates
as_well as the potential of not 'Faxmg the reasoning engingsqiate s may well eliminate states that are far, or even
quite so much. Moreover, the incremental approach woulgkconnected, frons in the state graph. When induction is
be property directed, like the interpolant-based methadhe ,ppjied throughout the analysis rather than being the gioal o
intermediate assertion would arise to eliminate some Wypoty,qnolithic propagation, it abstracts the system in a priyper

esized error. _ _ _ directed fashion.

_ The formal basis for an incremental approach is the follow- yn6ryynately, this algorithm suffers from a common pitfal
ing. Consider a sequengg (), . .., v, (T) of assertions sUCh q¢ iy cremental methods. Manna and Pnueli write:

that

There are cases in which the conjunctionA ¢- is
inductive, but it is not the case that is inductive
and p4 is inductive relative tap;.

o every assertion is satisfied by the initial states: for each
3, 1(T) = ¢;(T),
« each assertion obeys consecution under the assumption

that its predecessors hold: for eagh In the context of the algorithm, a statecan be encountered

~ such that—s does not contain a subclause that is inductive

/\ ex(®) N T(0,7,7) = ¢;(T), relative to known information. In such situations, the aitjon

1<k<j falls back on state enumeration until sufficient informatie
« and all together they imply: acquired to resume inductive clause construction. Yet when
_ _ such a situation does not occur, the algorithm is extremely

/\ ¢i(T) = P(=). effective [12].
1<j<n

. . .))) This weakness of the incremental method is not an issue
Then P is an invariant ofS. In this version of consecution for manual or computer-assisted verification, as the huraan ¢
(the second condition), we say thaf is inductiverelative 1o provide an insight. But in an algorithmic context, one tyig

P15 Pj-1- . limits the form of assertions in order to control computagib
In the incremental approach, one might as well assime ¢osts [9]. Is an algorithmic incremental method thus doomed
If from the start?

« P is satisfied by the initial stated(z) = P(i),
« every assertion is satisfied by the initial states: for ea¢h 1C3: A Monolithic-Incremental Hybrid
7, 1(@) = ¢;(@), _ _ While an incremental method may be limited in the form of
» each assertion obeys consecution under the assump{@n,sqertions, Bradley eventually realized that the cantd
that its predecessors aiid hold: for eachy, clauses need not be truly inductive. The machinery of induc-
/\ or(@T) ANP@)AT(0,7,7) = (@), tion can be applied just as well when stronger information
1<k<j is assumed—information that is not necessarily valid for

the entire state space. In particular, stepwise assungpgtion
assertions that hold for some number of timesteps rather tha
for all time—could be combined with relative inductive céau
generation to yield a hybrid monolithic-incremental metlio
which relatively inductive clauses are guaranteed to exfist

P is invariant. IC3 is the result of this insight [1], [13].

IC3 is incremental in that it finds inductive subclauses ef th
negations of states, just as the first approach does—exapt t
these clauses are now inductive relative to certain assangpt not meant to highlight the efficiency of IC3. On the contrary,
Its use of SAT solvers is thus similar: hundreds to thousanilgprovides the opportunity for a rather extensive tour o th
of queries are solved per second. Additionally, the claases algorithm in spite of its simplicity. (The reader is however
the right compromise between effort and information cofitercautioned that interesting aspects of IC3, like its abitiby
so that they can be traded effectively among parallel pseses quickly compute long counterexamples, or to find large sets

IC3 is monolithic in that it computes over-approximationsf mutually inductive clauses, are better understood vea th
to the sets of states reachable in one step, two steps, atgprithm’s fundamental intentions. This section onlyvyides
until it converges upon an inductive strengthening asserti a stepping stone in that direction.)

Each major iteration propagates the clauses that comprése t The initial check performed by IC3 establishes that there
timestep approximations forward in time as much as possib&&e no counterexamples of length O or 1. Therefore, the over-
These over-approximations are the information relative &pproximations (or stepwise assumptions)

which new clauses are generated.

Hence, IC3 alternates between an incremental mode, in
which it uses states that lead, not necessarily directly, to Fy =P =—x Vs
violations of.P.to discoyer new _reIativer inductive clausessatisfy the fundamental 1C3 invariants fbr= 1
and a monolithic mode, in which it propagates clauses fatwar

Fig. 1. The state transition graph of a simple system.

Fo=1=-21 N—x2

across time steps. Models on which the original method [11] I = Fy
devolves into enumerating states cause IC3 to go through F = F 0<i<k
more major iterations, yielding long sequences of stepwise Fo— P 0<i<k

over-approximations. Models on which the original method
succeeds are just as easy, and often easier, for IC3, antl resu
in short sequences of stepwise over-approximations béfiere Together, these invariants assert the “reasonablenestieof
final inductive strengthenings are formed. And many othetepwise assumptions. In particular, since no counterpkam
models cause IC3 to adapt either a more monolithic or a maselength up tok exists, all states reachable in at mbsiteps
incremental strategy at various stages. The power of IQ&is tare P-states. TakingF}, to be P is therefore a valid over-
it can quickly deduce lemmas for certain aspects of a modglproximation. If IC3 eventually increaskso 2, it is because
while working harder—and, at times, more monolithically—it has established that there are no counterexamples othleng
for other lemmas that require more clauses. up to 2. In general, if IC3 increasek from n to n + 1, it is
because it has established that there are no counterexample
of length up ton + 1. It does so by proving that there are no
This section presents IC3 by way of two examples. Thgunterexamples-to-induction (CTI) states that are ralaleh
objective is to show the nature of the algorithm. Certaiiy at mostn steps from some initial state. For that, it checks
optimizations omitted from this exposition are essential iwhetherF, A T = P’ can be violated.
practice for good performance. The checkF; AT = P’ produces = x, Az as CTI. (Note
that this check is equivalent t& A T = P’, the inductive
step of a simple inductive proof.) I = P, a CTl must be
Figure 1 shows the state transition graph of a systewith unreachable from the initial states.4& A F; AT = -5/, the
no primary inputs and state variabf@s= {z1, 22} such that CTl is either unreachable or only reachable by going through
a state that violates the propettif, however, the implication
does not hold, the CTI may still be unreachable (as in this)cas

F AT = Fl,, 0<i<k.

Il. EXAMPLES

A. A Passing Property

I(T) = —x1 N\ X2

T(@,3) = (21 V ~w2 Vah) A(z1 V V) or only reachable through states that violdte IC3 tries to
A (mzy Vai) A (g V —xh) A (ze V —xh) learn something useful about it: specifically, it tries taubd
P(Z) = —a1 Vs . the length of a counterexample that goes through the CTI.

Hence,—s = —x1 V -4 is checked for inductiveness relative
Each state in the figure is annotated with its encoding. The

incoming arrow designateﬁ, as initial, while the shaded state 1if a states can be reached, but only via paths that cross states thateviol

iol P . f Fig. 1 Is th h | P, then, there is a counterexample Bothat does not go through. Hence,
(Q3) violates P. Inspection o 19. reveals that the on Ys can be excluded from further consideration. Checkingfor inductiveness

reachable state of is ¢y and thatS |= P. This example is relative to F, achieves that effect.

to the variousF;’s. It is not inductive relative tal;, because —s is inductive at leveD, but not at levell. Generalization of

of the transition between, andg.. It is, however, inductive this clause also proceeds as in the previous iteration aryd ma

relative to Fy. (Otherwise,P would not hold.) result in either literal being dropped. Hz- is found, then its
The inductiveness check has established that the CTladdition toF; makes it inductive, so that bothz; and -z,

not reachable in one step. Therefore, it would be possibledoe propagated té: causing termination.

remove it from Fy by adding the clausess to it. However, If, on the other handyx; V -2 is generalized tex;, then

removing one CTI at a time is not practical for all but theo changes taF; result and no clause propagation ensues.

simplest systems. Instead, IC3 looks for more states, be tt&ince F> has not changed, the CTI has not been removed. To

CTls or not, that, like the one at hand, are not reachable gnarantee termination, IC3 identifies a predecessor6fg

one step and such that they are all described by a subclathes is anF; state, but not arfy state. The only choice is

of —s. That is, IC3 tries to generalizes. t = —x1 A zo. If this state is proved unreachable, progress is
Generalization of-s is thus attempted at levd). The made. More generally, if all predecessorssdn F; are shown

algorithm may find eitherz; or -z, as subclauses ofis, to be unreachable in at most one step, thés not reachable

because both satisfy both initiation and consecution. @, fain at most two steps and hence there is no counterexample of

the conjunction of either clause witfy, yields Fj itself, from length up to3 through it.

which no state violating eitherz; or —z2 may be reached. IC3 therefore recurs onto find which is the least (if any)

For the execution of the algorithm, however, which clause gich that

the result of generalization makes a difference. Suppase ~tAF,ANT =t .

is found. Then the update df; produces) o)) o _)
Since —t is itself inductive ¢; in Fig. 1 has no incoming

Fy = (m21 V) Aag transitions from other state$)= 2. Sincex; does not satisfy
initiation, the only generalization ofit is —x5. The addition
of this clause to both¥; and F, makes them identical and
causes termination.

In this case[F} is exact at termination. That i%}; describes
exactly the states reachable in at most one step from the

Fi. That is, it adds-zs to F» becauseF, A T = —a}. The initial states. Oftentimes, though, the ability to proveperties

addition cause$’ and F; to be identical and terminates theqUICkIy stems from the ability to keep the over-approxiras

proof becausd, = (—a1 V @) A —z» has been shown to be!oose. This is one reason why IC3 does not decompose the

inductive ¢ = F, and F, AT = F) and is known to imply initial condition into a set of strong clauses that can be

P. (Fy is initially P and can only get stronger through theoropagated.
run(ofl IIC3I)I a y g g "9 In contrast to IC3, the approach of [11] focuses on removing

each CTI by generalizing its negation to an inductive clause
For the system of Fig. 1, this entails generalizing -z VvV
—xo by checking whether it contains a subcladssuch that

which is equivalent taFy. While this observation suffices to
prove termination, IC3 first checks whethErAT = P’; that
is, it checks whether the strengthening 6f has gotten rid
of the CTI. Since the answer is positive, it increaget® 2,
instantiatesf, = —x; V x2, and then propagateszs from

If, instead of—x4, the generalization ofz; V —x5 produces
—z1, the update of the reachability over-approximations tesu
in

Fy = (mx Va2) Ay, AdANPAT =d .

which is equivalent to-z;. This F} is not as strong as in the The splution is in this casd = —z,. Once this clause is
previous case, and in particular does not exclgdebut it is giscovered, it is possible to prove thats A P AT = P,
to 2, instantiatest, = —; V 25 and tries to strengthen it by giates is changed so that = 21 A 22 and gz = x1 A 22,
propagating clause; from Fy. However, then the negation of the CFhs = -z, V 22 has no inductive
FAT % -, generalization and the approach of [1_1] falls b_ack on _remg)vi
- ~ the CTl alone from further consideration. While this is Hgard
because of the transition froqrﬂ_ to ¢»; hence, no strengthenmga disadvantage when there are only four states, it is the main
takes place. State = r; A x3 is found once again as a CTl.weakness of that method. IC3 is also affected by the change
The difference from the previous iteration is that it is nowf encoding, in that-s = =z, VV 2, can only be generalized
known that no counterexample of length less tllamay go to —z;, but relatively inductive clauses can always be found.
through it. IC3 then tries to prove that no counterexample of N
length 3 exists. The next step is therefore findinguch that B. A Failing Property

Figure 2 shows the transition graph of a syst€nwith no

(21 V@) AF AT = (-2, v —a) . rlgure on grap ysenwith
primary inputs and state variabl@s= {x1, 22,23} defined
Since F; = P and Fy has not changed, the answers fer 2
andi = 0 are already known. It remains to ascertain Whetherzlmplementations rely on pre-analysis of the model thatlyaiscovers
Fr i h o . h ... most state variables that can only take one value. Using enyaining
1 IS strong enough to suppofis. Once again, t.e tranSItlonIiterals from the initial condition typically lengthensehanalysis because it

betweeny; andg, causes the answer to be negative. Therefor@erconstrains the early over-approximations.

assumptions beyond a certain point becomes difficult. This
may be the case when the CTls and the states that should be
removed from one of thd}’s to get out of an impasse have
codes that are different enough that the generalized induct
clauses do not cover the “problem” states.
When refinement of the stepwise assumptions proves diffi-
cult, IC3 often finds that the negation of the target statel (CT
Fig. 2. Transition graph for a system with a failing property or one of its predecessors) is inductive at the level imnteljia
preceding that of the target state. It then chooses a presi@ce
at the same level, producing a path with several states fer on
by F; until either the path eventually crosses infb ; or new
clauses are generated that cause a refinement of the stepwise
assumptions. Under these circumstances IC3 may still disco
a deep counterexample even thoughs small.

I(T) = T A) A X3
T(z,7') = (1 V —25) A (1 V 2h)
(za V —xh) A (mzo V)

P(@) = ~a1 V —wa V —ay IIl. DISCUSSION

A. What Problem is IC3 Trying to Solve?

Stategq; has code. For examplegs is -z A x2 A z3. As in . . . L
ai Pieds TLA T2 AL Interpolation andk-induction address the practical incom-

Fig. 1, the shaded state violates propdrty .)
Having checked that there are no counterexamples of Ienﬁﬁ)ﬁgecnheesfkf)f BMC. The latter combines BMC with a consecu-

up to1, IC3 setsk = 1 and chooses

k—1
Fo=1=-x1 \N—-x9 N\ D23 P/\/\(T(Z)/\P(l))ip(k)
Fi =P =-x1 V-2V x3 i=0

When that check failsk is increased, corresponding to a
further unrolling ofT". In practice kx can be prohibitively large.

The interpolant method goes further: it suggests forming
over-approximate stepwise reachability sétsusing a fixed
unrolling. It addresses the failure of the following imgion
Fy=PA-xg by increasingk:

as stepwise assumptions. Checking whetherA T = P’
yields s = —x1 A 29 A z3 as CTI. Inductiveness ofs is
established at level and the generalization ofs is —zs.
After the strengthening of?,

Yy AT = P'. Therefore,k increases t® and F, = P is
instantiated. No clause is propagated fréito F». Therefore,
the same CTI as before is found wheaAT = P’ is tested.
Since-sAF) AT % —s', inductiveness is again established dBecause the implication does not hold, no interpolant exist
level 0 and the generalization is agaiz,. Nothing changes that lies between thé-step over-approximatiod; and the
in the stepwise assumptions, and the CTI remaing'astate. k-step unrolling leading to a violation aP. The interpolant
IC3 therefore looks for a predecessorsothat is in ;. The method thus increasés for the next round, yielding better
choice is betweermz; A =2 A x5 andz; A -z A z3. The Over-approximations;.
former is immediately shown to be a successor of the initial Hence, neithek-induction nor the interpolant method drop
state because its negation is not inductive even at lévelthe regime of unrolling that BMC introduced. While they
Therefore the minimum-length counterexampie ¢1, g3, ¢ attempt to reduce the number of necessary unrollings, their
is found. completeness—both practically and theoretically—ig &iih-

If, instead of—z; A—xa Axs, IC3 chooses = z; A—za Az damentally tied to unrolling.
as Fy predecessor of the CTht is proved inductive at level IC3 entirely sidesteps the need for unrolling and thus sets
1 because the two predecessors ¢f. andgg) are not inF;. outon a new trail than that blazed by BMC. When confronted
Generalization of-¢ produces—z;, which is added to both with a problem similar to the one in interpolation (though
Fy, and F5 eliminatingz; A 22 A 23 from both. This forces lacking any unrolling), that is, the failure of the implita
the choice of-x; A -2 A z3 as F; predecessor of the CTI F AT = P'
and leads to the same counterexample as before. It should be ! ’
noted how the refinement of the stepwise assumptions acieefines the-step over-approximatioh; itself—and typically
as guidance in the search for the counterexample. earlier stepwise over-approximations—in order to make the

IC3 does not guarantee counterexamples of minimurefined implication come closer to holding. It accomplishes
length. Whilek cannot increase beyond the length of a shortetis refinement by incrementally generating stepwisetivea
counterexample, IC3 may find a counterexample well beforeinductive clauses in reaction to the CTI that the implicaBo
matches its length. This ability proves an important adsgat failure reveals. In the end, the sequence of over-appragrima
when the transition relation is such that refining the stepwistepwise assertions; can be seen as a possible outcome of

k—1
Fin \N(TWAPD) = pPH
=0

the interpolant method—though derived in a fundamentaljyo]
different manner.

B. The Incremental Method: Beyond IC3 [11]

The purely incremental method fails when the space of
assertions is too poor to provide lemmas for all possiblé?]
situations. In the case of safety model checking, clauses)
too weak to be the basis of a robust algorithm. IC3 provides a
stronger framework in which to use a weak, but expressive]
complete, assertion domain. However, a pure incremental
approach can work on its own in other settings. [15]

In this conference, we present an incremental approach
to model checking LTL properties of systems [14]. The
fundamental insight is thaBCC-closed regionsf the state
graph, which are a fundamental characterization used in-BDD
based techniques [15], can be discovered through induction
Hence, inductive assertions, as discovered by IC3, are the
intermediate lemmas of this approach. Unlike the relatigms
between error states and clauses in safety model checking,
every hypothesized error—which we cakkeletor—that does
not correspond to an actual error has a corresponding iveuct
proof. Thus, the algorithm is purely incremental, and itogs;j
the usual benefits: modular reasoning, natural abstraciimh
opportunities for parallelization.

Acknowledgments.This material is based on work supported
in part by the National Science Foundation under grant No.
0952617 and by the Semiconductor Research Corporation
under contract GRC 1859. Any opinions, findings, and conclu-
sions or recommendations expressed in this material asetho
of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] A. R. Bradley, “SAT-based model checking without unimg,” in
Verification, Model Checking, and Abstract InterpretatiQiMCAI'11),
Austin, TX, 2011, pp. 70-87, INCS 6538.
R. W. Floyd, “Assigning meanings to programs,”8ymposia in Applied
Mathematics vol. 19. American Mathematical Society, 1967, pp. 19—
32.
C. A. R. Hoare, “An axiomatic basis for computer programgy’
Communications of the ACMol. 12, no. 10, pp. 576-580, October
1969.
Z. Manna and A. PnueliTemporal Verification of Reactive Systems:
Safety Springer-Verlag, 1995.
J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang,
“Symbolic model checking102° states and beyond/hformation and
Computation vol. 98, no. 2, pp. 142-170, 1992.
K. L. McMillan, “Applying SAT methods in unbounded symlimmodel
checking.” in CAV, ser. LNCS, vol. 2404. Springer-Verlag, 2002, pp.
250-264.
A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic meldcheck-
ing without BDDs,” in Fifth International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TAEHS
Amsterdam, The Netherlands, Mar. 1999, pp. 193-207, INC®.15
M. Sheeran, S. Singh, and G. Stalmarck, “Checking gafebperties
using induction and a SAT-solver,” ikormal Methods in Computer
Aided DesighW. A. Hunt, Jr. and S. D. Johnson, Eds. Springer-Verlag,
Nov. 2000, pp. 108-125, INCS 1954.
P. Cousot and R. Cousot, “Abstract interpretation: Afiedi lattice model
for static analysis of programs by construction or appration of
fixpoints,” in POPL ACM Press, 1977, pp. 238-252.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

K. L. McMillan, “Interpolation and SAT-based model diéng,” in
Fifteenth Conference on Computer Aided Verification (CAY'QV. A.
Hunt, Jr. and F. Somenzi, Eds. Berlin: Springer-Verlag, 2003, pp.
1-13, INCS 2725.

A. R. Bradley and Z. Manna, “Checking safety by induetyeneraliza-
tion of counterexamples to induction,” Formal Methods in Computer
Aided Design (FMCAD'07)Austin, TX, 2007, pp. 173-180.

A. R. Bradley, “Safety analysis of systems,” Ph.D. digation, Stanford
University, May 2007.

——, “k-step relative inductive generalization,” CU Boulder, ieRep.,
March 2010, http://arxiv.org/abs/1003.3649.

A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang, “Acrémental
approach to model checking progress propertiesFarmal Methods in
Computer Aided Design (FMCAD’11Austin, TX, 2011.

R. Bloem, H. N. Gabow, and F. Somenzi, “An algorithm farosgly
connected component analysis snlog n symbolic steps,” inFormal
Methods in Computer Aided DesigW. A. Hunt, Jr. and S. D. Johnson,
Eds. Springer-Verlag, Nov. 2000, pp. 37-54, INCS 1954.

