
VRS — Summer 2014 Problem Set #2
Computer-Aided Verification Due June 18, 2014

There are two kinds of problems: problems marked “T” are theoretical problems, and problems
marked “E” involve coding and experimentation.

Problem T1.1. (a) Give a procedure to count the number of satisfying assignments of a Boolean
formula represented as a BDD that runs in time linear in the size of the BDD. (b) Let ϕ(x, y) be
a Boolean formula. The universal quantification of ϕ(x, y) is defined as

∀x.ϕ(x, y) ≡ ϕ(0, y) ∧ ϕ(1, y)

Show how you can implement universal quantification using BDD operations.

Problem T1.2. How will you extend the symbolic execution engine discussed in the class if we
have pointers to variables and an allocation function that allocates an integer and returns a pointer
to the allocated memory? That is, in addition to integer variables (as in the class), suppose your
program is allowed to have pointer variables and the following operations on them:

p := nul // assign pointer variable to null (1)

p := new() // allocates a block of memory to store an integer and stores the address in p (2)

p := q // assign pointer variable q to pointer variable p (3)

∗p := e // assign the integer expression e to the memory pointed to by p (4)

and the conditional operations

p = nul p 6= nul (5)

p = q p! = q (6)

Sketch (on paper) how you will maintain the symbolic store and the path constraint in the presence
of these operations. (a) Will you be able to check that the program never dereferences a null pointer
along a path? (b) Will your implementation change if we add an explicit free operation to free
memory? Will you be able to check that a program does not reference memory that has been freed?

Problem T1.3. Cartesian predicate abstraction. The predicate abstraction algorithm presented
in class runs in time exponential in the number of predicates. Here is an algorithm that computes an
approximation to the predicate abstraction but makes a linear number of SMT calls: Given R and
predicates p1, . . . , pn, define the variables x1, . . . , xn as: xi = pi if R⇒ pi, xi = ¬pi if R⇒ ¬pi, and
xi = true otherwise, for each i ∈ {1, . . . , n}. Define the Cartesian abstraction CA(R, {p1, . . . , pn})
of R w.r.t. the set {p1, . . . , pn} as the conjunction

n∧
i=1

xi

The algorithm clearly makes a linear number of calls to the SMT solver.

Show that
PA(R, {p1, . . . , pn})⇒ CA(R, {p1, . . . , pn})

The Cartesian abstraction gives a “coarser” abstraction than predicate abstraction but is quicker
to compute. Many software model checkers implement Cartesian abstraction instead of predicate
abstraction for scalability, and in many (but by no means, all) examples, Cartesian abstraction is
enough to prove or disprove a property.

As an example, suppose an abstraction is done in terms of the predicates p1, p2, p3 and p4, and
R = ((p1 ∧ ¬p2) ∨ (p1 ∧ p3)) ∧ ¬p4. Then

CA(R, {p1, . . . , p4}) = p1 ∧ true ∧ true ∧ ¬p4 .

Problem E1.4. This assignment will give you some experience using SMT solvers. Download
the Z3 SMT solver from Microsoft Research (https://z3.codeplex.com/). Depending on the
language of your choice, here are some pointers on how to use it:

C/C++ Look at the examples that come with Z3.

Java You will need the unstable branch of Z3, then look at the examples that come with Z3.

Python Again, look at the examples that come with Z3. Additionally, there used to be a nice
tutorial at http://rise4fun.com/z3py/tutorial. If it does not become available any time
soon, you can get the raw version of the tutorial here: http://goo.gl/HOooly.

Ocaml See this discussion: https://z3.codeplex.com/discussions/473552.

Haskell Use the sbv package: http://hackage.haskell.org/package/sbv.

Scala Use ScalaZ3: https://github.com/epfl-lara/ScalaZ3.

In this problem, your task is to implement a simple method for Petri net verification. Start by
reading sections 2 and 3 from the following paper: http://www.mpi-sws.org/~fniksic/files/

cav2014.pdf. The method in question is explained in Section 3 of that paper.
Your implementation should input a Petri net reachability problem instance in MIST format,

which is explained here: https://github.com/pierreganty/mist/wiki. For your convenience,
we have provided a Python library for parsing this format: https://github.com/fniksic/mister.

You can find a lot of examples for testing your implementation here: http://www.mpi-sws.

org/~fniksic/files/examples.tar.gz. Examples are contained in the *.spec files. In those
examples, the set of target states represents the set of error states. Therefore, if a Petri net can
reach it, it is unsafe. For how many examples can your implementation prove safety? For how many
safe examples is the method inconclusive? (To know which examples are safe, check the *.meta

files.)

Problem E1.5 (bonus). We will consider the problem of checking that a compiler transforma-
tion has not introduced bugs in a program. That is, we are given two versions of a program, the
original one (P) and one that a compiler produces after one optimization step (P ′), and we would

https://z3.codeplex.com/
http://rise4fun.com/z3py/tutorial
http://goo.gl/HOooly
https://z3.codeplex.com/discussions/473552
http://hackage.haskell.org/package/sbv
https://github.com/epfl-lara/ScalaZ3
http://www.mpi-sws.org/~fniksic/files/cav2014.pdf
http://www.mpi-sws.org/~fniksic/files/cav2014.pdf
https://github.com/pierreganty/mist/wiki
https://github.com/fniksic/mister
http://www.mpi-sws.org/~fniksic/files/examples.tar.gz
http://www.mpi-sws.org/~fniksic/files/examples.tar.gz

like to check that they produce the same results for every input. For simplicity, assume that the
programs do not have loops, and are given by the following grammar of operations:

Expressions e ::= c | x | c · x | e + e | e− e
Predicates b ::= e = e | e 6= e | e >= e | e <= e | e > e | e < e
Statements s ::= skip | x := e | if(b)then s else s | s; s
Program p ::= input(x1, . . . , xn); s; output(y1, . . . , ym)

Here, c stands for an integer constant, x for a variable. The statements have the usual meaning.
Write a procedure that takes two programs with the same set of inputs and outputs and checks

that they are equivalent by querying the SMT engine. First, formulate the problem as a satisfiability
question. Then, implement your procedure.

[Paper Reading] Read the following paper on concolic execution:
K. Sen, D. Marinov, G. Agha. CUTE: A concolic unit testing engine for C, FSE 2005.
(A Google search should find it.) Write a one-paragraph summary for the paper, pointing out the
main idea and at least one direction of future work not explicitly mentioned in the paper.

[Paper Reading] Read Bryant’s paper on BDDs on the course page.

