
Verification of Reactive Systems (Summer 2014) Problem Set #1 (Due )

Problem Set 1 is to test your knowledge of background material, and you
need not turn it in. For material on graph algorithms, you can look at the
Wikipedia book http://en.wikipedia.org/wiki/Book:Graph_Algorithms

or in a standard textbook on algorithms, such as the one by Cormen and
others. For material on formal languages and automata, you can look at the
book by Sipser.

Problem 1.1. A graph is semi-accessible if for every pair of vertices
u, v ∈ V , either u→∗ v or v →∗ u. Give an algorithm to check if a graph is
semi-accessible.

Problem 1.2. Show that every regular language can be recognized by an
NFA (possibly with ε transitions) with exactly one initial state and exactly
one final state. Does this property hold if you do not allow ε transitions?

Problem 1.3. Consider the language

Ln = {w ∈ {0, 1}∗ | the nth symbol from the right is a 1}

(a) describe an NFA with O(n) states that recognizes this language. (b)
Show that any DFA for this language requires at least 2n−1 states.

Problem 1.4. Give an algorithm to check if a regular language described
as an NFA is non-empty. What is the time complexity of your algorithm?
Give an algorithm to check if an NFA accepts all possible strings. What is
the time complexity of your algorithm?

Problem 1.5. Give an algorithm that checks if a given numbering of
nodes of a graph defines a topological order.

Problem 1.6. Show the following valid propositions in propositional
logic.

1. (¬P → P ) → P

2. ¬(P → Q) → ¬Q

Problem 1.7. Using a truth table, determine which of the following are
equivalent to (p ∧ q) → r and which are equivalent to (p ∨ q) → r:



1. p→ (q → r)

2. q → (p→ r)

3. (p→ r)(q → r)

4. (p→ r) ∨ (q → r)

Problem 1.8. The diameter of a tree T = (V,E) is defiend as

max
u,v∈V

d(u, v)

that is, it is the longest of all pairs of shortest paths in the tree. Give an
algorithm to compute the diameter of a tree and analyze the running time
of your algorithm.

Problem 1.9. (a) Given two regular languages L1 and L2, how will
you check if they have at least one string in common? (b) Can you use the
algorithm in part (a) to check if all strings of L1 also belong to L2?

Problem 1.10. Given a DFA M and a number n, give an algorithm to
count the number of strings of length n in L(M).


