
Practice Exam – Sample Solutions

Johannes Kloos

July 17, 2014

How to read these sample answers: I will give answers in two parts. First, I will
write down the answer in the way I would give it in an exam – in this way, you can see
what our expectations are. Sometimes, I will add some more explanation afterwards;
I would not require this in an exam, but it may help you understand how I found the
answer.

Problem 1.a.

You are given a (reduced ordered) BDD b. How can you test in constant time whether
the formula represented by b is satisfiable?

Sample answer: We know that every satisfying assignment of the BDD corresponds
to a path from the root node to 1 . So, if the BDD is unsatisfiable, there are only paths
to 0 . But in that case, because it’s reduced, the BDD would actually be exactly 0 .
Therefore, to check if b is satisfiable, we check if it’s not 0 .

Problem 1.b.

Suppose you are performing predicate abstraction with n predicates. We said that the
number of states in the abstraction is finite. How many states can there be at most in
this finite abstraction?

Sample answer: The states in a predicate abstraction are given as the sets of predi-
cates that hold. Since the set of predicates has size n, the number of subsets of this set
is 2n, meaning there can be at most 2n different states.

Comments: There is another definition of predicate abstraction, namely boolean ab-
straction, where the states are given as Boolean combinations of the predicates. Since
there are n predicates, there can be at most as many different states as there are differ-
ent Boolean combinations of n predicates. But this is the number of different Boolean
formulas with n variables, so it’s 22n .

1

The sample answer is what follows from the description of predicate abstraction in
the lecture. If you have arrived at the other answer, we will accept that as well.

Problem 1.c.

Let us define a new temporal modality ϕ1∃U∗ϕ2 with the following semantics: A state s
of a labelled transition system satisfies ϕ1∃U∗ϕ2 if there is a trace s0 → s1 → · · · → sk
for some k ≥ 0 such that s0 = s and sk satisfies ϕ1Uϕ2. Show that you can express
ϕ1∃U∗ϕ2 as an STL formula.

Sample answer 1: Here’s a picture of the situation we’re trying to solve:

s0 → s1 → · · · → sk → · · · sn−1︸ ︷︷ ︸
Here, ϕ1 holds

→ sn,

where ϕ2 holds on sn.
From the lecture, we know that ∃ � ϕ means “in state s, there is a path from s to s′,

where ϕ holds on s′.” This means that ∃ � (ϕ1Uϕ2) describes what we want, and this
can be expanded to true∃U(ϕ1∃Uϕ2).

Sample answer 2: By looking at the definition of ∃U , we see that ϕ1∃Uϕ2 holds in
state s if there is a path s = s0 → · · · → sn such that ϕ1 holds on s0, . . . , sn−1 and ϕ2

holds on sn. The definition of ∃U∗ can then be read as:
ϕ1∃U∗ϕ2 holds in s if there is a path s = s0 → · · · → sn and some k, 0 ≤ k < n, such

that for i = k, . . . , n−1, ϕ1 holds in si, and ϕ2 holds in sn. But note that we can always
choose k = n− 1, so that the condition reduces to: There is a path s0 → · · · → sn such
that ϕ2 holds in sn. But this is exactly ∃ � ϕ2.

Comments: This question actually has two valid answers. We would accept either
answer as correct and give full points.

Problem 1.d.

We showed in class that two states are bisimilar iff they agree on all STL formulas.
Extend that proof (you need only to write the new parts) to show that two states are
bisimilar iff they agree on all CTL formulas.

Sample answer: The ⇐ direction is clear, since all STL formulas are CTL formulas.
For ⇒, there’s one new case, namely ϕ = ∃�ϕ′.
Let s, s′ be bisimilar states, and assume that ϕ holds on s. Then there is an infinite

path s0 → s1 → · · · with s0 = s such that ϕ′ holds for every si. By bisimulation, we can
construct a path s′0 → s′1 → · · · such that s′0 = s′, all s′i are bisimilar to the respective
si, and, by the induction hypothesis, ϕ holds on all the s′i. But this means that ∃�ϕ
holds on s′. If we assume that ϕ holds on s′, by a similar argument, it also holds on s.

2

Problem 1.e.

Suppose you have a Boolean formula ϕ and you are interested in finding two distinct
satisfying assignments to this formula. Show how you can get two distinct satisfying
assignments by making at most two queries to a SAT solver.

Sample answer: Here’s the algorithm: Given ϕ. First, call the SAT solver on ϕ to
get an assignment A1. If none exists, we’re done. Otherwise, suppose that ϕ has the
variables x1, . . . , xn and A1 assigns xi to ai. Define x̂i to be xi if ai = 1 and ¬xi if ai = 0.
Then it’s easy to see that b :=

∧n
i=1 x̂i has exactly one satisfying assignment, namely A1.

So, call the SAT solver again, with ϕ∧¬b. If it returns UNSAT, we’re done. Otherwise,
we get a satisfying assignment A2. But since A2 satisfies ¬b, we know that it can’t be
A1.

Comments: The formula b is known as a blocking clause. This method is used to
implement model enumeration in SAT solvers.

Problem 2.1.

Consider an invariant verification problem with a formula A(x) defining the initial states,
a formula B(x) defining the bad states and a transition relation T (x, x′). Suppose there
is a formula I(x) with the following properties:

1. A(x) =⇒ I(x),

2. I(x) ∧B(x) is unsatisfiable, and

3. Post(I(x)) =⇒ I(x).

Argue that there is no trajectory that starts from the initial states and ends up in a
bad state.

Sample answer: We show that if s → · · · → s′, and A(s) (i.e., s is an initial state),
then I(s′). Point (2) then gives us that B(s′) does not holds, so s′ is not a bad state.
Since this holds for all reachable states, we’re done.
So, suppose s = s0 → · · · → sn for some n ≥ 0, and si → si+1 means T (si, si+1) is

satisfied. We do induction on n.
For n = 0, we have sn = s, so the claim follows by point (1). For n > 0, we have

by IH that I(sn−1). Since sn−1 → sn, we have that sn ∈ Post(I(x)). By point (3), this
implies I(sn).

Comments: I is an inductive invariant. The key idea in the proof is to look at possible
violating traces and see that every trace stays inside I.

3

Problem 2.2.

Let K = (S,→) be a transition system and let s0 ∈ S be an initial state. A transition
s→ t is called reachable is s is reachable from s0. A set of transitions is called a transition
invariant if it contains every reachable transition. Give an enumerative model checking
algorithm to check that a given set of transitions is a transition invariant.

Sample answer: Algorithm:

Assume that I is the given set of transitions, given as a set of pairs (s, t).
D := ∅, where D is the set of seen states.
Q := [s0], a queue of states that need to be visited.
While Q is not empty:

Take one state s from Q
If s ∈ D, continue the loop.
For every outgoing transition s→ t:

If (s, t) 6∈ I, return FAIL
Add t to Q

Add s to D

It works like the default BFS enumerative model checking algorithm, only checking a
transition condition instead of a state condition.

Comments: My approach here was to start with a standard enumerative model check-
ing algorithm and to check what parts needed changing.

Problem 3.1.

Show that (Nk,≤) is a well quasi order. You can use the observation that the Cartesian
product of two wqos is a wqo.

Sample answer: We prove the claim by induction on k. If k = 0, Nk = {()} is the set
containing only the empty vector, and the claim is trivial.

If k = 1, Nk = N. ≤ is obviously a pre-order. Now, let s be a sequence on N. For all
i, either si ≤ si+1 or si > si+1. If si > si+1 for all i, we get a contradiction (see problem
4). Therefore, there’s some i such that si ≤ si+1. Thus, ≤ is a wqo.

If k > 1, we know that (Nk−1,≤) is a wqo by IH, and that (N,≤) is a wqo from above.
By the hint, (Nk−1 × N,≤′) is a wqo, where (x, x′) ≤′ (y, y′) iff x ≤ y and x′ ≤ y′. But
that’s exactly (Nk,≤).

Comments: The hint implies that it will be useful to split Nk into parts, so we try
induction and use the hint as the induction step. For the base cases, the easiest approach
is to do the “simple cases” k = 0 and k = 1 explicitly; this pays off in the induction step
here.

4

Problem 3.2.

Let (S,≤) be a wqo and let U0, U1, . . . be a sequence of upward closed sets such that
U0 ⊆ U1 ⊆ Prove that there is some i such that Ui = Ui+1.

Sample answer: Suppose, for a contradiction, that U0 (U1 (. . .. Then for every i,
we can choose some xi ∈ Ui+1 \ Ui.
By wqo, there are i, j with i < j and xi ≤ xj. By choice of the xi, we have that

xi ∈ Ui+1, and because Ui+1 is upward closed, also xj ∈ Ui+1. But since Ui+1 (Ui+2 (
· · · (Uj, we also have xj ∈ Uj. Now, by choice of xj, xj 6∈ Uj – contradiction.

Comments: In problems about well-quasi-orders and wellfounded relations, it often
pays off to try to argue by contradiction and look at some infinite sequence s that does
not have the required properties, e.g., si 6≤ sj for all i < j in the case of wqo.

Problem 3.3.

Let K = (S,→,≤) be a WSTS, and U an upward closed sets of states. Prove or disprove:
Post(U) is upward closed.

Sample answer: This is wrong. Here’s a counter-example: Take S = N, and define
a→ b to hold iff b = 0. Then Post(N) = {0}, which is not upward-closed. But (S,→) is
a WSTS: (N,≤) is a wqo, and we have

pre(U) =

{
∅ 0 6∈ U

N 0 ∈ U
,

where both N and ∅ are upward closed.

Comments: Since the definition of WSTS explicitly uses the Pre set, it seems likely
that the claim is incorrect. To construct a counter-example, I looked for a transition
relation whose Post is never upward-closed. The easiest non-upward-closed set I could
think of is {0} ⊆ N, and this gives the transition relation. Proving that (N,≤,→) is a
WSTS is routine.

Problem 4.1.

Is the relation > on natural numbers well-founded? What about > on integers? (Give
a short justification or a counterexample in each case).

Sample answer: > on N is well-founded: Note that an infinite sequence a0 > a1 > · · ·
gives rise to an infinite set {ai | i ≥ 1} where ai < a0 and all ai are distinct. But there
can be at most a0 numbers in that set – contradiction.
> on Z is not well-founded: 0 > −1 > −2 > −3 > · · · .

5

Problem 4.2.

Let S = (X,→) be a system with set of states X and transition relation→. Let x0 ∈ X
be a state of S, and Reach the set of states reachable from x0. We say S terminates
from initial state x0 is there is no infinite sequence of states x0 → x1 → · · · .

Show that S terminates from x0 if → ∩(Reach×Reach) is well-founded.

Sample answer: Suppose x0 → x1 → · · · is an infinite sequence of states. Clearly,
xi ∈ Reach for all i. Write →′:=→ ∩Reach × Reach. Then x0 →′ x1 →′ · · · . But this
gives us an infinite sequence, so →′ is not well-founded.

Problem 4.3.

A ranking function is a map r : X → N such that whenever s→ t, we have r(s) > r(t).
Show that if we can define a ranking function for S, then S terminates from every initial
state.

Sample answer: Suppose s0 → s1 → · · · is an infinite execution. Then r(s0) >
r(s1) > · · · . But this gives us an infinite descending sequence of natural numbers. By
3.1, N is well-founded, so this is not possible.

Problem 5.

Automatic test pattern generation.

Sample answer: Idea: We treat the value on a given wire as the output of a Boolean
formula combining the inputs, and use a SAT solver to calculate inputs that should force
that wire to have value 0 or 1.

Inputs

Cin

Crest

Outputs

w

To calculate the inputs for wire w, we transform the “input circuit” Cin that gives a
value to that wire into a CNF ϕ using the Tseitin transform from the exercises. We
name the input variables x1, . . . , xn and the output variable y.
To generate the input for y = 0, we SAT-solve ϕ ∧ ¬y, and to generate to input for

y = 1, we SAT-solve ϕ ∧ y. It one of these formulas is not satisfiable, we have detected
a stuck-at fault at the logic level. If we do this for every wire, we get all the inputs.

6

Polynomial time: The Tseitin transform takes linear time in the size of the input, and
we call it k times. SAT solving is considered “almost free” (we treat it as constant-time
for the analysis) and is called twice per wire.

Comments: The main problem here is to understand what the problem is actually
about. The point is that we want to ensure that we can force wire w to carry both true
and false. Since w is driven by a single combinatorial circuit, this reduces to forcing that
circuit to output a given value, and since combinatorial circuits can be given by Boolean
formulas, SAT solving seems like a promising approach.

Note that we could do better by using a smarter encoding and reusing the results
from the Tseitin transformation. But under exam conditions, this answer is absolutely
sufficient.

7

