
Contents

11 Automata-theoretic Liveness Veri�cation 1

11.1 !-Automata . 1

11.2 Operations on !-automata . 7

11.2.1 Product . 8

11.2.2 Complementation . 10

11.3 Expressiveness . 16

11.3.1 !-regular languages . 16

11.3.2 Expressiveness of !-automata 18

11.3.3 Deterministic !-automata 19

0

Computer-Aided Veri�cation

c

 Rajeev Alur and Thomas A. Henzinger December 7, 1999

Chapter 11

Automata-theoretic

Liveness Veri�cation

In this chapter, we extend the automata-theoretic approach studied in Chapter

6 for safety requirements to liveness requirements. In the automata-theoretic

liveness veri�cation, a fair module is viewed as a generator of an !-language,

namely, the set of its fair traces, the requirement is speci�ed by an !-automaton

that accepts only the desired !-traces, and the veri�cation problem corresponds

to inclusion between these two !-languages.

11.1 !-Automata

A fair structure K consists of an observation structure K and a fairness as-

sumption F . Each fair structure de�nes the !-language L

K

over the set of its

observations consisting of the set of !-traces corresponding to initialized F -fair

!-trajectories. Fair structures can be used to specify requirements also. In their

role as a speci�cation language, fairness constraints are usually speci�ed using

regions rather than actions. In this role, fairness constraints should be viewed

as accepting conditions that classify !-trajectories into accepting and rejecting

rather than assumptions about fair resolution of choice. We will concentrate on

two types of accepting conditions: B�uchi acceptance and Streett acceptance.

1

Automata-theoretic Liveness Veri�cation 2

B�uchi automata

Finite structures with a single weak-fairness constraint speci�ed by a region are

called B�uchi automata.

B

�

uchi automaton

A B�uchi automaton M consists of (1) a �nite observation structure K and

(2) [the repeating region] a region �

A

of K. An initialized !-trajectory s

of K is accepted by the B�uchi automaton M if s

i

2 �

A

for in�nitely many

positions i � 0. The !-language L

M

of the B�uchi automaton M is the

set of traces corresponding to initialized accepted trajectories of M. The

B�uchi automaton (K;�

A

) is deterministic if the observation structure K is

deterministic.

Note that syntactically a B�uchi automaton is identical to an ordinary automa-

ton. In an ordinary automaton, a (�nite) trajectory is accepted if it terminates

in an accepting state; in a B�uchi automaton, an !-trajectory is accepted if its

visits a repeating state in�nitely often.

Example 11.1 [B�uchi languages] Let A = fa; bg. The B�uchi automaton M

1

of Figure 11.1 accepts the response language (b

�

a)

!

consisting of !-words that

contain in�nitely many a symbols. The B�uchi automaton M

2

of Figure 11.1

accepts the persistence language A

�

a

!

consisting of !-words with a su�x con-

taining only a symbols. Note that the automaton M

2

is nondeterministic (it

guesses the beginning of the su�x containing only a symbols).

Let A = fa; b; cg. The nondeterministic B�uchi automaton M

3

of Figure 11.1

accepts the reactivity language consisting of !-words that contain either only

�nitely many a symbols or in�nitely many b symbols. Note that \�nitely many

a or in�nitely many b" is equivalent to \in�nitely many b or eventually always

c."

Remark 11.1 [Multi-B�uchi automaton] A multi-B�uchi automaton M consists

of (1) a �nite observation structure K, and (2) a �nite set F of repeating re-

gions of K. An initialized !-trajectory s of K is accepted by the multi-B�uchi

automaton M if for every repeating region � 2 F , s

i

2 � for in�nitely many

positions i � 0. Thus, a multi-B�uchi automaton is a weak-fair structure all of

whose weak-fairness constraints are speci�ed by regions.

Exercise 11.1 fg [CoB�uchi automata] A CoB�uchi automaton M consists of

(1) a �nite observation structure K and (2) [the stable region] a region �

A

of

K. An initialized !-trajectory s of K is accepted by the CoB�uchi automaton

M if it has a su�x all of whose states are in the stable region: there exists i � 0

such that s

j

2 �

A

for all j � i. Note that syntactically a CoB�uchi automaton is

Automata-theoretic Liveness Veri�cation 3

c

Automaton M

1

Automaton M

3

Automaton M

2

b

a

b

a b

c

Figure 11.1: Sample B�uchi automata

like a B�uchi automaton or an ordinary automaton. Semantically, the CoB�uchi

automaton (K;�

A

) is like the fair structure (K; f(�n�

A

; ;)g).

Consider the alphabet A = fa; bg. (1) Find a CoB�uchi automaton whose !-

language is the persistence language A

�

a

!

consisting !-words with a su�x con-

taining only a symbols. (2) Consider the response language (b

�

a)

!

consisting of

!-words with in�nitely many a symbols. Can you draw a CoB�uchi automaton

that accepts this langauge?

Streett Automata

Finite structures with a fairness constraints speci�ed by regions are called

Streett automata.

Automata-theoretic Liveness Veri�cation 4

a

Streett Automaton M

Fairness constraint =(s; t)

s t

u

c

b

Figure 11.2: Sample Streett automaton

Streett automaton

A Streett automaton M consists of (1) a �nite observation structure K and

(2) [the Streett constraints] a �nite set F of pairs of regions. An initialized

!-trajectory s of K is accepted by the Streett automaton M if for every

Streett constraint (�; �) 2 F , if s is �-fair then s is � -fair. The !-language

L

M

of the Streett automaton M is the set of !-traces corresponding to

initialized accepted !-trajectories of M.

Remark 11.2 [B�uchi as a special case of Streett] A B�uchi automaton (K;�

A

)

can be viewed as the Streett automaton (K; f(�; �

A

)g) with a single Streett

constraint.

Example 11.2 [Streett language] Let A = fa; b; cg. The nondeterministic

B�uchi automaton M

3

of Figure 11.1 accepts the reactivity language consist-

ing of !-words that contain either only �nitely many a symbols or in�nitely

many b symbols. The same !-language is accepted by the deterministic Streett

automaton M of Figure 11.2. There is a single Streett constraint (fsg; ftg).

Exercise 11.2 fg [Rabin automata] A Rabin automaton M is syntactically

identical to a Streett automaton, and consists of (1) a �nite observation structure

K and (2) [the Rabin constraints] a �nite set F of pairs of regions. An initialized

!-trajectory s of K is accepted by the Rabin automaton M if there exists a

Rabin constraint (�; �) 2 F such that s is �-fair and but not � -fair. Thus,

Automata-theoretic Liveness Veri�cation 5

semantically a Rabin automaton is the dual of the Streett automaton: Streett

acceptance has the form

^

(�; �) 2 F: [:(�-fair) _ � -fair];

while Rabin acceptance requires

_

(�; �) 2 F: [�-fair ^ :(� -fair)]:

Let A = fa; b; cg. Find a deterministic Rabin automaton M accepting the

reactivity language consisting of !-words that contain either only �nitely many

a symbols or in�nitely many b symbols.

Exercise 11.3 fg [Muller automata] A Muller automaton M is syntactically

like a multi-B�uchi automaton, and consists of (1) a �nite observation structure

K and (2) [the Muller acceptance] a �nite set F of regions of K. An initialized

!-trajectory s of K is accepted by the Muller automaton M if the set fs 2 � j

s

i

= s for in�nitely many i � 0g of states repeating in�nitely often along s is

in F . Show that Streett automata as well as Rabin automata are special cases

of Muller automata.

The !-language-inclusion problem

The !-language-inclusion problem asks whether every !-trace accepted by one

!-automaton is also accepted by another !-automaton.

The !-language-inclusion problem

An instance (M

1

;M

2

) of the !-language-inclusion problem consists of two

!-automataM

1

andM

2

over the same observation alphabet A. The answer

to the !-language-inclusion problem (M

1

;M

2

) is Yes if L

M

1

� L

M

2

, and

otherwise No.

Note that in an instance (M

1

;M

2

) of the !-language-inclusion problem, each

of the !-automata M

1

and M

2

may be either a fair structure, or a B�uchi

automaton, or a Streett automaton.

Automata as speci�cations

!-automata can be used for specifying requirements of fair modules. As in case

of the logic Sal, the observations of the requirements automaton are boolean

expressions over the observable variables of modules. We de�ne the fair state

logic Lal whose formulas are B�uchi and Streett automata.

Automata-theoretic Liveness Veri�cation 6

yx

Figure 11.3: The Lal formula M

8U

pc

1

6= reqC

Figure 11.4: Starvation freedom in live automaton logic

Live automaton logic

A formula of the fair state logic live automaton logic (Lal) is a B�uchi or a

Streett automaton M whose observations are boolean expressions.

Given a formula M of Lal, a fair structure K is a M-structure if each

observation of K is a valuation for a superset of the variables appearing in

the observations of M.

The satisfaction relation for Lal is de�ned by:

s j=

K

M i� for every source-s fair !-trajectory s of K

there is an accepting !-trace a 2 L

M

such that

for all i � 0, s

i

j= a

i

.

In other words, a state s of K satis�es the requirement speci�ed by the !-

automatonM if for every source-s fair !-trace a of K, we can �nd an initialized

accepting !-trace b of M such that every observation in a is consistent with the

corresponding expression in b.

Example 11.3 [Lal] The Lal formulaM

8U

shown in Figure 11.3 asserts that,

given a state s, every source-s fair !-trajectory contains a state satisfying y

which is preceded only by states satisfying x. The formula M

8U

can be inter-

preted at states of a fair structure whose observations assign values to x and y.

It follows that the Lal formula M

8U

is equivalent to the Ctl formula x8Uy.

Contrast the speci�cation M

8U

with the Sal speci�cation M

W

corresponding

to the Stl formula x8Wy (see Example 9.2).

Automata-theoretic Liveness Veri�cation 7

Example 11.4 [Starvation freedom in live automaton logic] Recall the star-

vation freedom requirement for mutual exclusion protocols. The requirement

that pc

1

6= reqC be a recurrent is expressed in Lal by the B�uchi automaton of

Figure 11.4.

Lal model checking

The model-checking problem for Lal can be reduced to the !-language-inclusion

problem. As in case of Sal, we expand each !-automatonM of Lal to a larger

automaton EM whose observations are valuations to the variables appearing in

the observations of M. Recall the de�nition of the expansion operator E from

Chapter 9. To obtain expansion of an !-automaton, we apply the expansion

operation to the underlying observation structure, and modify the accepting

condition appropriately.

Expansion of an Lal automaton

For a B�uchi automatonM = (K;�

A

) given as a Lal formula, the expansion

EM is another B�uchi automaton: (1) the observation structure of EM is

EK, and (2) the repeating region of EM is �

A

*.

For a Streett automatonM = (K;F) given as a Lal formula, the expansion

EM is another Streett automaton: (1) the observation structure of EM

is EK, and (2) for every (�; �) 2 F , the automaton EM has the Streett

constraint (� *; � *).

Exercise 11.4 fg [Lal expansion] Draw the expanded B�uchi automaton cor-

responding to the Lal speci�cation M

8U

of Figure 11.3.

It follows that checking whether a fair structure satis�es an Lal automaton

M is equivalent to checking whether K satsi�es the expanded !-automaton

EM, which in turn corresponds to checking whether the fair language of K is

contained in the fair language of EM.

Proposition 11.1 [Lalmodel checking] The Lal model-checking problem (K;M)

and the !-language-inclusion problem (K; EM) have the same answer.

11.2 Operations on !-automata

To solve the !-language inclusion problem (M

1

;M

2

), we �rst obtain an !-

automaton that accepts the complement of the !-language accepted by M

2

,

then construct its product with M

1

, and solve the fair emptiness problem on

the resulting !-automaton.

Automata-theoretic Liveness Veri�cation 8

11.2.1 Product

Given two !-automata M

1

and M

2

, we wish to de�ne another !-automaton

that accepts the intersection of the !-languages of M

1

and M

2

. For this pur-

pose, we resort to the product construction described in Section 9.3.2 over ob-

servation structures. Consider two observation structures K

1

and K

2

, and let

K

1

� K

2

be their product. Let s be an !-trajectory of the product. Then,

by the de�nition of the product, there exists an !-trajectory t of K

1

and an

!-trajectory u of K

2

such that s = (t

0

; u

0

)(t

1

; u

1

) � � �. Observe that, for a region

� of K

1

, the !-trajectory t of K

1

is �-fair i� the !-trajectory s of the product

is (� *)-fair. Similarly, for a region � of K

2

, the !-trajectory u of K

2

is �-fair

i� the !-trajectory s of the product is (� *)-fair. In other words, fairness with

respect to a region � in a component translates to fairness with respect to the

lifted region � * in the product. Similarly, fairness with respect to an action

� in a component translates to fairness with respect to the lifted action � * in

the product. This leads to a natural de�nition of product for !-automata.

Product of !-automata

Let M

1

= (K

1

; F

1

) and M

2

= (K

2

; F

2

) be two Streett automata. The

productM

1

�M

2

is the Streett automaton (K

1

�K

2

; f(� *; � *) j (�; �) 2

F

1

[F

2

g).

Let K

1

= (K

1

; F

1

) and K

2

= (K

2

; F

2

) be two fair structures. The product

K

1

�K

2

is the fair structure (K

1

�K

2

; f(� *; � *) j (�; �) 2 F

1

[F

2

g).

Proposition 11.2 [Product of !-automata] If M

1

and M

2

are two Streett

automata, then L

M

1

�M

2

= L

M

1

\ L

M

2

. If K

1

and K

2

are two fair structures,

then L

K

1

�K

2

= L

K

1

\ L

K

2

.

Remark 11.3 [Cost of product] LetM

1

be a Streett automaton with n

1

states,

m

1

transitions, and `

1

Streett constraints. Let M

2

be a Streett automaton

with n

2

states, m

2

transitions, and `

2

Streett constraints. Then, the product

M

1

�M

2

has at most n

1

� n

2

states, at most m

1

�m

2

transitions, and `

1

+ `

2

Streett constraints.

Product of B�uchi automata

The product of two B�uchi automata (K

1

; �

A

1

) and (K

2

; �

A

2

) can be de�ned to be

the multi-B�uchi automaton (K

1

�K

2

; f�

A

1

*; �

A

2

*g). However, by introducing a

counter, as described in Section 12.3.2, we can de�ne product of B�uchi automata

to be a B�uchi automaton. The states of the product are, then, of the form

(s; t; i), where s is a state of K

1

, t is a state of K

2

, and i is a counter that can

be either 1 or 2. The counter is updated from 1 to 2 when an accepting state

of K

1

is visited, and from 2 to 1 when an accepting state of K

2

is visited. The

Automata-theoretic Liveness Veri�cation 9

Product Automaton M

1

�M

2

a

b

s

t

Automaton M

2

a

b

u

v

a

b

s; u; 2

t; v; 2

a

b

s; u; 1

t; v; 1

Figure 11.5: Product construction for B�uchi automata

accepting condition of the product requires in�nitely many updates from 2 to

1.

Product of B

�

uchi automata

Let M

1

= (�

1

; �

I

1

;!

1

; A; hh�ii

1

; �

A

1

) and M

2

= (�

2

; �

I

2

;!

2

; A; hh�ii

2

; �

A

2

)

be two B�uchi automata. The product M

1

�M

2

is the B�uchi automaton

(�; �

I

;!; A; hh�ii; �

A

):

� � = f(s

1

; s

2

; i) j s

1

2 �

1

; s

2

2 �

2

; hhs

1

ii

1

= hhs

2

ii

2

; and i 2 f1; 2gg;

� (s

1

; s

2

; i) 2 �

I

i� s

1

2 �

I

1

, s

2

2 �

I

2

, and i = 1;

� (s

1

; s

2

; i) ! (t

1

; t

2

; j) i� s

1

!

1

t

1

, s

2

!

2

t

2

, if i = 1 then if s

1

2 �

A

1

then j = 2 else j = 1, and if i = 2 then if s

2

2 �

A

2

then j = 1 else

j = 2;

� hh(s

1

; s

2

; i)ii = hhs

1

ii

1

= hhs

2

ii

2

;

� (s

1

; s

2

; i) 2 �

A

if i = 2 and s

2

2 �

A

2

.

Proposition 11.3 [Product of B�uchi automata] If M

1

and M

2

are two B�uchi

automata, then L

M

1

�M

2

= L

M

1

\ L

M

2

.

Automata-theoretic Liveness Veri�cation 10

fs; ug

b

a

fsg

ftg

Figure 11.6: Subset construction does not work for B�uchi acceptance

Example 11.5 [Product of B�uchi automata] Consider the two B�uchi automata

M

1

and M

2

of Figure 11.5. The automaton M

1

accepts all !-words that

contain in�nitely many a symbols, while M

2

accepts all !-words that contain

in�nitely many b symbols. The result of applying the product construction

contains 4 states, of which the only accepting state is (t; v; 2). Verify that the

product accepts precise those !-words that contain in�nitely many a symbols

as well as in�nitely many b symbols.

Remark 11.4 [Product of deterministic B�uchi automata] If M

1

and M

2

are

deterministic B�uchi automata, then so is their product M

1

�M

2

. Thus, the

class of !-languages de�nable by deterministic B�uchi automata is closed under

intersection.

Exercise 11.5 fg [Product of CoB�uchi automata] Given two CoB�uchi automata

M

1

andM

2

, de�ne a CoB�uchi automatonM

1

�M

2

that accepts the intersec-

tion of the !-languages of M

1

and M

2

.

11.2.2 Complementation

We turn our attention to the problem of complementing a B�uchi automaton.

Recall that for an ordinary automaton, its complement is constructed by �rst

determinizing the observation structure using the subset construction, followed

by completion by adding dummy states, followed by inversion of the accepting

condition. Given a B�uchi automaton M = (K;�

A

), can we add accepting

conditions to the determinized structure �K without changing the !-language

accepted byM? The obstacle in such an approach is illustrated by the following

example.

Example 11.6 [Subset construction and B�uchi automata] Recall the B�uchi au-

tomatonM

2

from Figure 11.1 that accepts the persistence language A

�

a

!

. The

Automata-theoretic Liveness Veri�cation 11

determinized structure obtained by subset construction is shown in Figure 11.6.

Declaring the state corresponding to the subset fs; ug to be repeating does not

preserve the !-language of M

2

.

The problem with the subset construction is that states of the determinized

structure may contain both repeating and nonrepeating states. Complementing

a nondeterministic B�uchi automaton turns out to be a nontrivial problem. Con-

sequently, existing model checkers do not support nondeterministic !-automata

as speci�cations. However, understanding the complementation procedure pro-

vides insights into the structure of !-automata.

We begin by some preliminary de�nitions. Let A be a �nite alphabet. An

equivalence relation �� A

�

�A

�

over words over A is said to be a congruence

(with respect to concatenation) if for all words a, b, and c, if a � b then a�c � b�c

and c �a � c �b. By a �nite equivalence relation, we mean an equivalence relation

with �nitely many equivalence classes.

LetM = (�; �

I

;!; A; hh�ii; �

A

) be a B�uchi automaton. We are going to establish

that both L

M

and and its complement can be expressed as �nite unions of !-

languages of the form L

1

� L

!

2

, where L

1

and L

2

are blocks of a certain �nite

congruence on A

�

.

For two state s and t ofM, and a word a

0:::m

over A, de�ne s �

T

a t

if there is a trajectory s

0:::m

of M such that s

0

= s, s

m

= t, and

hhs

i

ii = a

i

for all 0 � i � m.

That is, s �

T

a t means that the trace a can lead the automaton from the initial

state s to the �nal state t.

For two state s and t ofM, and a word a

0:::m

overA, de�ne s �

T

a

0

t if

there is a trajectory s

0:::m

ofM such that s

0

= s, s

m

= t, hhs

i

ii = a

i

for all 0 � i � m, and s

j

2 �

A

for some 0 � j � m.

That is, s �

T

a

0

t means that the trace a can lead the automaton from the initial

state s to the �nal state t via a trajectory that visits some repeating state. Now

we are ready to de�ne the desired equivalence relation on A

�

induced by M:

For two words a and b over A, a �

M

b i� for all states s and t of

M, (1) s �

T

a t i� s �

T

b t, and (2) s �

T

a

0

t i� s �

T

b

0

t.

First, we note that the equivalence �

M

is a �nite congruence:

Lemma 11.1 [Congruence] The equivalence relation �

M

over A

�

is a congru-

ence with respect to concatenation.

Proof. Left as an exercise.

Automata-theoretic Liveness Veri�cation 12

Lemma 11.2 [Finiteness] The equivalence relation �

M

over A

�

is �nite, and

has at most 2

2n

2

classes if M has n states.

Proof. For every two states s and t of M, let L

s;t

be the language containing

words a such that s �

T

a t, and let L

0

s;t

be the language containing words a such

that s �

T

a

0

t. Let � be the set of these 2n

2

languages. Now an equivalence class

of �

M

corresponds to a subset of �: given a subset �

0

� �, the intersection

[

\

L 2 �

0

: L] \ [

\

L 62 �

0

: A

�

nL]

de�nes an equivalence class of �

M

. It follows that the number of subsets of �

is an upper bound for the number of equivalence classes of �

M

.

The next lemma asserts a saturation property of the �

M

-equivalence classes

with respect to the !-language accepted by M:

Lemma 11.3 [Saturation] Let L

1

and L

2

be two equivalence classes of the con-

gruence �

M

. Then, if L

1

� L

!

2

\ L

M

is nonempty then L

1

� L

!

2

� L

M

.

Proof. Let L

1

and L

2

be two equivalence classes of �

M

. Suppose L

1

�L

!

2

\L

M

is nonempty, and contains the !-word a. Since a 2 L

1

� L

!

2

, it is of the form

b

0

� b

1

� b

2

� � �, where the word b

0

is in L

1

and for i � 1, the word b

i

is in L

2

.

Since a is accepted by M, there exists an initialized accepting !-trajectory

corresponding to a. Thus, there exist states s

0

; s

1

; : : : such that

s

0

�

T

b

0

s

1

�

T

b

1

s

1

�

T

b

2

� � �

Furthermore, for in�nitely many indices i, s

i

�

T

b

i

0

s

i+1

.

Now consider another word c 2 L

1

� L

!

2

. We need to establish that M accepts

c also. The !-word c is of the form d

0

� d

1

� d

2

� � � such that the word d

0

is in L

1

and for i � 1, the word d

i

is in L

2

. Since L

1

and L

2

are equivalence classes of

�

M

, b

i

�

M

d

i

for all i � 0. It follows that

s

0

�

T

d

0

s

1

�

T

d

1

s

1

�

T

d

2

� � �

and for in�nitely many indices i, s

i

�

T

d

i

0

s

i+1

. We conclude that there is an

initialized accepting trajectory corresponding to the !-word c.

The next lemma asserts that !-languages of the form L

1

�L

!

2

cover the set of all

!-words, provided L

1

; L

2

range over equivalence classes of a �nite congruence.

Lemma 11.4 [Coverage] Let � be a �nite congruence over A

�

, and let a be an

!-word over A. Then, there exist equivalence classes L

1

and L

2

of � such that

a 2 L

1

� L

!

2

.

Automata-theoretic Liveness Veri�cation 13

Proof. Let � be a �nite congruence relation over A

�

, and let a be an in�nite

word over A. We say that two indices i and j merge at an index k > i; j if

a

i:::k

� a

j:::k

. For two indices i and j, de�ne i

�

=

j if they merge at some index.

Verify that

�

=

is an equivalence relation over the set of nonnegative integers.

Furthermore, given a �nite subset D of nonnegative integers such that D has

more elements than the number of equivalence classes of �, if we choose k such

that k > i for all i 2 D, then the set fa

i:::k

j i 2 Dg must contain two �-

equivalent words. It follows that the equivalence relation

�

=

itself is �nite (the

number of equivalence classes of

�

=

is bounded by the number of equivalence

classes of �).

Finiteness of

�

=

implies that there exists an in�nite sequence i

0

< i

1

< i

2

< � � �

of indices that are

�

=

-equivalent to each other. Note that for every j � 1, all

the indices i

0

; i

1

; : : : i

j

merge at some k > i

j

. Without loss of generality, we

may assume that for every j � 1, all the indices i

0

; i

1

; : : : i

j

merge at i

j+1

(this

is because we can delete indices from the original sequence, and if i

0

; i

1

; : : : i

j

merge at k then they merge at every k

0

> k as � is a congruence). It follows

that there is an in�nite sequence i

0

; i

1

; i

2

; : : : of indices such that

1. all the words in fa

i

0

:::i

j

j j � 1g belong to the same equivalence class of

�, let this class be L

2

,

2. for all j < j

0

< k, the indices i

j

and i

j

0

merge at i

k

.

From (1), a

i

0

:::i

1

is in L

2

. For all j � 1, a

i

0

:::i

j+1

is in L

2

by (1), and a

i

0

:::i

j+1

is

�-equivalent to a

i

j

:::i

j+1

by (2). It follows that for all j � 0, a

i

j

:::i

j+1

is in L

2

.

It follows that the su�x a

i

0

:::

is in L

!

2

. This completes the proof.

Since �

M

is a �nite congruence, it follows that the set

fL

1

� L

!

2

j L

1

; L

2

are equivalence classes of �

M

g

covers A

!

, and then, by the saturation property, the !-language accepted by

M corresponds to a subset of this set, and the complement de�nes the comple-

mentary language.

Corollary 11.1 [Structure of B�uchi language] The !-language L

M

accepted by

the B�uchi automaton M equals

[

fL

1

� L

!

2

j L

1

; L

2

are equivalence classes of �

M

and L

1

� L

!

2

\ L

M

6= ;g;

and the complementary !-language A

!

nL

M

equals

[

fL

1

� L

!

2

j L

1

; L

2

are equivalence classes of �

M

and L

1

� L

!

2

\ L

M

= ;g:

Proof. Follows from Lemmas 11.1, 11.2, 11.3, and 11.4.

The next proposition asserts that if L

1

and L

2

are two regular languages then

the !-language L

1

� L

!

2

is accepted by a B�uchi automaton.

Automata-theoretic Liveness Veri�cation 14

Proposition 11.4 [Regular concatenation] If L

1

and L

2

are two regular lan-

guages over A then the !-language L

1

�L

!

2

is accepted by some B�uchi automaton.

Proof. Let L

1

be a regular language accepted by the automaton M

1

=

(�

1

; �

I

1

;!

1

; A; hh�ii

1

; �

A

1

), and let L

2

be a regular language accepted by the au-

tomaton M

2

= (�

2

; �

I

2

;!

2

; A; hh�ii

2

; �

A

2

). The !-automaton accepting L

1

�L

!

2

is

obtained by taking disjoint union of the two automata M

1

and M

2

, and adding

transitions from accepting states of M

1

to the initial states of M

2

, and from

accepting states of M

2

to the initial states of M

2

. Speci�cally, de�ne the B�uchi

automaton M over the alphabet M: (1) the state-space of M is �

1

[�

2

(as-

suming �

1

and �

2

are disjoint sets), (2) the initial region ofM is �

I

1

, (3) the set

of transitions ofM equals!

1

[!

2

[(�

A

1

��

I

2

)[(�

A

2

��

I

2

), (4) the observation

of a state s ofM is hhsii

1

if s 2 �

1

and hhsii

2

otherwise, (5) the repeating region

of M is �

A

2

. Verify that an !-word a is accepted by the B�uchi automaton M

precisely when it belongs to L

1

� L

!

2

.

Remark 11.5 [] If the regular language L

1

is accepted by an automaton with

n

1

states, and the regular language L

2

is accepted by an automaton with n

2

states, then L

1

� L

!

2

is accepted by a B�uchi automaton with n

1

+ n

2

states.

Theorem 11.1 [B�uchi Theorem on Complementation Closure] Given a B�uchi

automaton M, there exists a B�uchi automaton M

0

such that L

M

0

= A

!

nL

M

.

Proof. Let M be a B�uchi automaton. The languages L

s;t

and L

0

s;t

de�ned

in the proof of Lemma 11.2 are regular languages. Since regular languages are

closed under complement and intersection, from the proof of Lemma 11.2 it

follows that every equivalence class of �

M

is a regular language. By Proposi-

tion 11.4, for two equivalence classes L

1

and L

2

of �

M

, the !-language L

1

�L

!

2

is accepted by a B�uchi automaton. Since B�uchi automata are closed under

union, from Corollary 11.1, it follows that A

!

nL

M

is accepted by some B�uchi

automaton.

Complexity of Complementation

Let us now analyze the bound on the size of the B�uchi automaton accepting

the complement of L

M

obtained by our construction. SupposeM has n states.

Recall that L

s;t

, for two states s and t of M, is the language containing words

a such that s �

T

a t. It follows that there an automaton accepting L

s;t

with n

states (use the same states and transitions ofM, but declare s to be initial and

t to be accepting). The language L

0

s;t

containing words a such that s �

T

a

0

t can

be accepted by an automaton with 2n states (the state-space of M is doubled

to keep track of whether an accepting state has been visited or not). It follows

that the language A

�

nL

s;t

is accepted by an automaton with 2

n

states, and

the language A

�

nL

0

s;t

is accepted by an automaton with 4

n

states (complemen-

tation may require determinization). Recall that an equivalence class of �

M

Automata-theoretic Liveness Veri�cation 15

corresponds to a subset �

0

of the set � containing 2n

2

languages L

s;t

, L

0

s;t

. Such

an equivalence class �

0

is de�ned by the product of the automata accepting L

for L 2 �

0

and the automata accepting A

�

nL for L 62 �

0

. Consequently, the

bound on the size of the automaton accepting an equivalence class of �

M

is

(2

n

)

n

2

� (4

n

)

n

2

, which equals 2

3n

3

.

The number of states of the B�uchi automaton accepting L

1

�L

!

2

equals the sum

of the number of states of the automata accepting L

1

and L

2

. Thus, for two

equivalence classes L

1

and L

2

of �

M

, there is a B�uchi automaton with 2

3n

3

+1

states accepting L

1

� L

!

2

.

The number of states of the B�uchi automaton accepting the union of !-languages

equals the sum of the number of states of the B�uchi automata accepting the

disjuncts. Since the number of pairs of equivalence classes of �

M

is 2

4n

2

, from

Corollary 11.1, the next theorem follows.

Theorem 11.2 [Complexity of B�uchi complementation] Given a B�uchi au-

tomaton M with n states, there exists a B�uchi automaton M

0

with 2

3n

3

+4n

2

+1

states such that L

M

0

= A

!

nL

M

.

Note that to construct the desired complement automaton, we need to construct,

for every pair L

1

and L

2

of equivalence classes of �

M

, the B�uchi automaton

accepting L

1

� L

!

2

, and check if it has a nonempty intersection with L

M

. We

have already outlined the product construction to obtain intersection of the

languages accepted by two B�uchi automata. Algorithms for checking fair cycles

from Chapter 12 can be used to check for emptiness.

Remark 11.6 [Safra's Construction] The complementation construction pre-

sented here yields an automaton with 2

3n

3

+4n

2

+1

states. Better constructions

are known. In particular, Safra's complementation algorithm produces an au-

tomaton with 2

O(n�log n)

states. This is essentially optimal: 2

n�log n

is a lower

bound on the number of states necessary to de�ne complements of a family of

B�uchi automata.

Complementing Streett automata

To establish that a Streett automaton can be complemented, we show that every

Streett automaton has a language-equivalent B�uchi automaton.

Proposition 11.5 [From Streett to B�uchi] Let M be a Streett automaton over

A. There exists a B�uchi automaton M

0

over A such that L

M

= L

M

0

.

Proof. Let M = (�; �

I

;!; A; hh�ii; F) be a Streett automaton. Recall that an

!-trajectory s is F -fair i� there exists a subset F

0

� F of Streett constraints

and an index i � 0 such that (1) for every (�; �) 2 F , s is � -fair, and (2) for

every (�; �) 62 F , s

j

62 � for all j � i.

Automata-theoretic Liveness Veri�cation 16

Suppose F has ` Streett constraints. The B�uchi automatonM

0

has 2

`

+1 copies

of the observation structure ofM, an initial copy together with a copy for every

subset F

0

� F of Streett constraints ofM. The automaton starts in the initial

copy, and at some point, guesses the set F

0

� F of Streett constraints (�; �)

such that the region � is going to repeat in�nitely many times, and switches to

the copy corresponding to F

0

. The copy corresponding to the set F

0

ensures

that, for every (�; �) 2 F

0

, � is visited in�nitely often, and for every (�; �) 62 F

0

,

� is not visited. To enforce that, for every (�; �) 2 F

0

, � is visited in�nitely

often, we introduce a counter as in the translation from multi-B�uchi constraints

to B�uchi constraint. To enforce that, for every (�; �) 62 F

0

, � is not visited, we

delete the states in �. The formal de�nition of M

0

is left as an exercise.

Remark 11.7 [] If M is a Streett automaton with n states and ` Streett con-

straints, the corresponding language-equivalent B�uchi automaton constructed

according to the proof of Proposition 11.5, has n+ n � ` � 2

`

states. Thus, simu-

lating a set of Streett constraints by a single B�uchi constraint causes a blow-up

exponential in the number of constraints. Such a blow-up can be shown to be

essential.

Given a Streett automaton, we can �rst construct the equivalent B�uchi automa-

ton, and then complement it using the complementation construction for B�uchi

automata.

Theorem 11.3 [Complementation of Streett automata] Given a Streett au-

tomaton M with n states and ` Streett constraints, there exists a B�uchi au-

tomaton M

0

with 2

O(n

3

�2

3`

)

states such that L

M

0

= A

!

nL

M

.

Exercise 11.6 fg [Complementing deterministic Streett automata] Let M =

(K;F) be a Streett automaton such that K is a deterministic and complete

observation structure. Show that if F is interpreted as a Rabin accepting con-

dition, then the resulting language is the complement of L

M

.

11.3 Expressiveness

11.3.1 !-regular languages

In Chapter 11, we de�ned di�erent ways of constructing !-languages from lan-

guages of �nite words. In particular, we de�ned the operators safe, guar, recur,

and persist. If the languages to which these operators are applied are regular,

then the resulting !-languages are !-regular.

Automata-theoretic Liveness Veri�cation 17

!-regular languages

The !-language L � A

!

is a regular-safety language if there is a regular

language L � A

�

such that L = safe(L). The !-language L � A

!

is

a regular-guarantee language if there is a regular language L � A

�

such

that L = guar(L). The !-language L � A

!

is a regular-response language

if there is a regular language L � A

�

such that L = recur(L). The !-

language L � A

!

is a regular-persistence language if there is a regular

language L � A

�

such that L = persist(L).

The !-language L � A

!

is !-regular if it is a boolean combination of

regular-response and regular-persistence languages.

Remark 11.8 [Normal form for !-regular languages] Every !-regular language

is of the form

\

0 � i � k: recur(L

i

) [persist(L

0

i

)

for regular languages L

i

, L

0

i

.

Thus, the set of regular-safety languages is a subset of the the set of safety

languages, etc. The set of !-regular languages is a subset of the set of reactivity

languages.

Example 11.7 [] Let A = fa; b; cg. The !-language (Aa)

!

is regular-safe;

the !-language A

�

aA

!

is regular-guarantee; the !-language (A

�

a)

!

is regular-

response; the !-language A

�

a

!

is regular-persistence; and the !-language con-

sisting of !-words with in�nitely many b symbols or only �nitely many a symbols

is !-regular. The !-language consisting of !-words a such that for all i � 0, if

i is a prime number, then a

i

= a, is safe but not regular-safe.

Closure properties of regular-safety, regular-guarantee, regular-response, regular-

persistence, and !-regular languages coincide with the corresponding closure

properties of safety, guarantee, response, persistence, and reactivity languages,

respectively. In particular, regular-safety and regular-guarantee classes are du-

als of each other, and so are regular-response and regular-persistence classes.

These properties are summarized in the following proposition, and its proof

follows from the constructions of Section 11.1.3.

Proposition 11.6 [Closure properties of !-regular languages] Regular-safety

languages, regular-guarantee languages, regular-response languages, and regular-

persistence languages are closed under union and intersection, but not under

complementation. The !-regular languages are closed under all boolean opera-

tions.

Automata-theoretic Liveness Veri�cation 18

11.3.2 Expressiveness of !-automata

The !-language L � A

!

is said to be a B�uchi language if L is accepted by some

B�uchi automaton. First, let us note that B�uchi languages are closed under all

boolean operations:

Proposition 11.7 [Closure of B�uchi languages] The class of B�uchi languages

is closed under union, intersection, and complementation.

Since B�uchi acceptance is a special case of Streett acceptance, and by Propo-

sition 11.5 is powerful enough to admit translation from Streett constraints, it

follows that

Corollary 11.2 [Streett acceptance vs. B�uchi acceptance] The !-language

L � A

!

is a a B�uchi language i� L is accepted by some Streett automaton.

Exercise 11.7 fg [Acceptance by fair structures] Show that the !-language

L � A

!

is a B�uchi language i� L is the fair language of some �nite fair structure.

Recall that every !-regular language is a boolean combination of regular-response

languages. Every regular-response language is accepted by a deterministic B�uchi

automaton.

Proposition 11.8 [From regular-response to deterministic B�uchi] For every

regular language L, there exists a B�uchi automaton that accepts the response

language recur(L).

Proof. Let L be a regular language. There exists a deterministic and complete

automaton M = (K;�

A

) such that L

M

= L. Consider an !-word a. There

exists precisely one initialized !-trajectory s of K such that hhsii = a. For every

i � 0, the pre�x a

0:::i

belongs to L i� s

i

2 �

A

. Hence, the !-word a belongs to

recur(L) i� the !-trajectory s is �

A

-fair. It follows that if we interpret M as a

B�uchi automaton it accepts the !-language recur(L).

Corollary 11.3 [Lower bound on B�uchi expressiveness] For every !-regular

language L, there exists a B�uchi automaton that accepts L.

Proof. Follows from the de�nition of !-regular languages, Proposition 11.7,

and Proposition 11.8.

Conversely, the language accepted by every !-automaton is !-regular:

Proposition 11.9 [Upper bound on B�uchi expressiveness] Every B�uchi lan-

guage is !-regular.

Automata-theoretic Liveness Veri�cation 19

Proof. To be added.

Exercise 11.8 fg [Expressiveness of Muller automata] Show that an !-language

!-regular i� it is accepted by a Muller automaton.

Exercise 11.9 fg [!-regular expressions] We have been using !-regular ex-

pressions (e.g. (A

�

a)

!

) to specify !-languages. Let us now formally de�ne the

syntax of !-regular expressions. Given a �nite alphabet A, the set of !-regular

expressions is de�ned by the grammar

' := a j ' � ' j '+ ' j '

�

j '

!

where a 2 A. Show that an !-language L is de�ned by an !-regular expression

i� L is !-regular.

Exercise 11.10 fg [Expressiveness of CoB�uchi automata] Does the class of

languages accepted by CoB�uchi automata coincide with !-regular languages?

11.3.3 Deterministic !-automata

We have established that the nondeterministic varieties of di�erent types !-

automata accept the same class of languages, namely, !-regular languages. We

proceed to understand the expressive power of di�erent types of deterministic

!-automata.

The next proposition shows that every !-regular language is accepted by some

deterministic Streett automaton, and both nondeterministic and deterministic

varieties of Streett automata have the same expressive power, namely, !-regular

languages.

Proposition 11.10 [Expressiveness of deterministic Streett] For every !-regular

language L, there exists a deterministic Streett automaton that accepts L.

Proof. Let L be an !-regular language. Suppose L =

T

0 � i � k: (recur(L

i

)[

persist(L

0

i

)) such that the languages L

i

, L

0

i

are regular. For 0 � i � k, let M

i

=

(K

i

; �

i

) be a complete deterministic automaton accepting the regular language

L

i

, and let M

0

i

= (K

0

i

; �

0

i

) be a complete deterministic automaton accepting the

regular language L

0

i

. Let K be the product of the 2k+2 observation structures

K

i

, K

0

i

, for 0 � i � k. Since product construction preserves determinism, K is

deterministic.

Let a be an !-word. For every 0 � i � k, the structure K

i

has precisely one

!-trajectory s

i

with the corresponding trace a, and the word a 2 recur(L

i

) i�

the !-trajectory s

i

is �

i

-fair. Similarly, for every 0 � i � k, the structure K

0

i

has precisely one !-trajectory s

0

i

with the corresponding trace a, and the word

Automata-theoretic Liveness Veri�cation 20

Reactivity

Response

Safety

Det Streett

Obligation

Guarantee

Persistence

Nonregular

Det Buchi

!-Regular

Buchi, Streett

Figure 11.7: Classes of !-regular languages

a 2 persist(L

0

i

) i� the !-trajectory s

i

is not �

0

i

-fair. The product structureK has

precisely one !-trajectory s with the trace a. For all 0 � i � k, the !-trajectory

s

i

of K

i

is �

i

-fair i� the !-trajectory s of K is (�

i

*)-fair (recall the de�nition

of the lifting: �

i

* contains all product states whose component corresponding

to the structure K

i

is in �

i

). Similarly, for all 0 � i � k, the !-trajectory s

0

i

of

K

0

i

is �

0

i

-fair i� the !-trajectory s of K is (�

0

i

*)-fair.

It follows that the word a belongs to L i� the !-trajectory s of the product is,

for all 0 � i � k, either (�

i

*)-fair or not (�

0

i

*)-fair. Hence, the deterministic

Streett automaton (K; f(�

0

i

*; �

i

*) j 0 � i � kg) accepts the !-language L.

Exercise 11.11 fg [Expressiveness of deterministic Rabin automata] Show that

an !-language is !-regular i� it is accepted by some deterministic Rabin au-

tomaton.

It turns out that B�uchi accepting condition is not expressive to capture all !-

regular languages, if we restrict to deterministic observation structures. The

class of languages accepted by deterministic B�uchi automata coincides with the

regular-response languages.

Proposition 11.11 [Expressiveness of deterministic B�uchi] The !-language L �

A

!

is accepted by a deterministic B�uchi automaton i� it is a regular-response

language.

Proof. By Proposition 11.10, we know that every regular-response language is

accepted by a deterministic B�uchi automaton. For converse, consider a deter-

ministic B�uchi automatonM = (K;�

A

). Let L be the regular language accepted

by the automaton with observation strcutureK and accepting region �

A

. Then,

the B�uchi automaton M accepts the regular-response language recur(L).

It follows that deterministic B�uchi automata are not closed under complemen-

tation. For instance, the response language \in�nitely many a symbols" is ac-

cepted by a deterministic B�uchi automaton, but its complement \only �nitely

Automata-theoretic Liveness Veri�cation 21

many a symbols" is a persistence language, and is not accepted by any de-

terministic B�uchi automaton. Intuitively, to de�ne the persistence language

consisting of !-words with a su�x containing only b symbols using B�uchi accep-

tance, the automaton must \guess" when the su�x containing only b symbols

has commenced. The relationship between di�erent classes of !-languages is

summarized in Figure 11.7

Exercise 11.12 fg [Union closure of deterministic B�uchi automata] Since re-

sponse languages are closed under union, from Proposition 11.11, it follows that

deterministic B�uchi automata are closed under union. Closure under union can,

alternatively, be established by a direct construction. Give an algorithm to con-

struct, given two deterministic B�uchi automata M

1

and M

2

, a deterministic

B�uchi automaton that accepts the union L

M

1

[L

M

2

.

Appendix: Notation

For two sets A and B, if � is a subset of A then � * denotes the subset f(a; b) j

a 2 �g of the product-set A � B; if � is a subset of B then � * denotes the

subset f(a; b) j b 2 �g of the product-set A � B. The lifting operator * can

similarly be applied to binary relations over A to obtain binary relations over

the product-set. The lifting operation generalizes to products of multiples sets

also.

