
Verification of Reactive Systems
Lecture Notes

Filip Niksic
fniksic@mpi-sws.org

April 30, 2014

Continuing with the preliminaries for the course, in this lecture we cover
basics of propositional logic. We start by defining the syntax of propositional
logic, namely what propositional formulas are. Then we define the semantics of
propositional logic, namely what propositional formulas mean.

The semantics is given in terms of interpretations—functions mapping pro-
positional variables to truth values—which allow us to interpret the formula as
being either true or false. Related notions are satisfiability—whether a formula
is true under at least one interpretation—and validity—whether a formula is true
under all interpretations. For checking satisfiability and validity, we introduce
the semantic tableaux.

Next, we introduce the logical implication and logical equivalence of formulas.
We show how to transform a given formula into equivalent formulas that have a
certain syntactic form: negational normal form (NNF), disjunctive normal form
(DNF) or conjunctive (or clausal) normal form (CNF). We observe that the
transformation into CNF might introduce an exponential blow-up in the size of
the formula. However, if we drop the requirement of the resulting formula being
equivalent to the initial one, and instead only require it to be equisatisfiable,
then there is a more efficient transformation into CNF.

Finally, we introduce the notion of Craig’s interpolation and prove the in-
terpolation lemma.

1 Syntax
The object of interest in propositional logic are propositional formulas, which
are nothing but words of a certain form. The basic building blocks for these
words are propositional variables:

Π = {p, q, r, . . .}

We usually assume Π is a countably infinite set.
Propositional formulas F are built from propositional variables using the

following production rule:

F ::= ⊥ | > | p | (F1 ∧ F2) | (F1 ∨ F2) | (F1 → F2) | (F1 ↔ F2) | (¬F)

The rule says that a formula is either one of the constants ⊥ (false) and >
(true), a propositional variable, a conjunction, disjunction, conditional or a bi-
conditional of two formulas, or a negation of a formula.

1

mailto:fniksic@mpi-sws.org

To reduce the number of parentheses in formulas, we adopt the following
precedence of the connectives, from highest to lowest: ¬, ∧, ∨, → and ↔ (the
last two have the same precedence). We also adopt the left associativity of ∧
and ∨, and the right associativity of → and ↔.

Example 1. Here are several formulas in two versions. Fully parenthesized:

((p ∧ q)→ (p→ q))
((p→ (q → r))→ ((¬r)→ ((¬q)→ (¬p))))
((p→ (q ∨ r))→ (p→ r))

Parenthesized using the introduced precedence and associativity rules:

p ∧ q → p→ q

(p→ q → r)→ ¬r → ¬q → ¬p

(p→ q ∨ r)→ p→ r

2 Semantics
We give meaning to formulas using interpretations. An interpretation is a partial
function

I : Π ⇀ {false, true} ,

which assigns truth values to propositional variables. Given an interpretation I,
we define the truth of a formula F under I (denoted I � F) using the following
inductive definition:

I 2 ⊥
I � >
I � p if and only if I(p) = true for p ∈ dom(I)
I � F ∧G if and only if I � F and I � G

I � F ∨G if and only if I � F or I � G

I � F → G if and only if I � F implies I � G

I � F ↔ G if and only if I � F implies I � G and I � G implies I � F

I � ¬F if and only if I 2 F

Example 2. Let I(p) = true and I(q) = false. Then

I 2 p ∧ q

I � p ∧ q → p ∨ ¬q

We say that F is satisfiable if there is an interpretation I such that I � F .
We say that F is valid if I � F for all interpretations I. We say that F is
refutable if there is an interpretation I such that I 2 F .

Theorem 1. F is valid if and only if ¬F is unsatisfiable. F is valid if and only
if F is irrefutable.

2

Example 3. Here is a list of several formulas, along with their status with
respect to satisfiability, validity and refutability.

p ∧ q satisfiable, not valid, refutable
p ∧ q → p ∨ ¬q satisfiable, valid, irrefutable
p ∧ ¬(q → p) unsatisfiable, not valid, refutable
p ∧ ¬p unsatisfiable, not valid, refutable
p ∨ ¬p satisfiable, valid, irrefutable

3 Semantic Tableaux

F ∧G >
F >
G >

F ∧G ⊥

G ⊥F ⊥

F ∨G >

G >F >

F ∨G ⊥
F ⊥
G ⊥

F → G >

G >F ⊥

F → G ⊥
F >
G ⊥

F ↔ G >
F → G >
G→ F >

F ↔ G ⊥

G→ F ⊥F → G ⊥

¬F >
F ⊥

¬F ⊥
F >

Figure 1: Rules for deconstructing formulas.

One way to check satisfiability or validity of a formula is to evaluate it under
all possible interpretations on the propositional variables that appear in the
formula. We can list all the interpretations in a truth table.

Example 4. We check the satisfiability and validity of p ∧ q → p ∨ ¬q using a
truth table.

p q p ∧ q p ∨ ¬q p ∧ q → p ∨ ¬q
false false false true true
false true false false true
true false false true true
true true true true true

3

From the table, we can see that the formula is satisfiable: true appears at
least once in the last column, namely, there is an interpretation that makes the
formula true. Furthermore, the formula is valid: only true appears in the last
column, namely, all interpretations make the formula true.

Instead of exhaustively listing all the interpretations, we can check for satisfi-
ability, validity or refutability using semantic tableaux. In semantic tableaux, we
start by asserting that the formula is either true or false, depending on whether
we are looking for an interpretation that satisfies it or refutes it:

F > or F ⊥

We continue by successively applying the rules for deconstructing formulas (Fig-
ure 3). Once we are finished with a formula, we circle the truth constant next to
it to keep track of which formulas are still pending. An important thing to note
is that we have to carry over each unprocessed formula to every sub-branch of
the tableau.

Once we get all the way to propositional variables, the expansion stops. The
constant next to a variable tells us whether the interpretation should map the
variable to true or false. If we get a contradiction, i.e. a propositional variable is
supposed to be mapped to both true and false, we say that the branch is closed.
We mark a closed branch with ×. If the branch is not closed, it is open, and we
can read out an interpretation that satisfies or refutes the initial formula.

If the tableau is fully expanded and all the branches are closed, the inter-
pretation satisfying or refuting the formula does not exist.

Example 5. Let us check the satisfiability of p ∧ q → p ∨ ¬q.

p ∧ q → p ∨ ¬q >

p ∨ ¬q >p ∧ q ⊥

q ⊥p ⊥

The leftmost branch is open, so we can use it to construct a satisfying inter-
pretation: I(p) = false, I(q) can be anything, say I(p) = true.

Example 6. Let us check the satisfiability of p ∧ ¬(q → p).

p ∧ ¬(q → p) >
p >

¬(q → p) >
q → p ⊥

q >
p ⊥
×

The only branch of the tableau is closed, therefore the formula is not satis-
fiable.

4

Example 7. Let us check the validity of p ∧ q → p ∨ ¬q. The formula is valid
if it is irrefutable, so let us check refutability.

p ∧ q → p ∨ ¬q ⊥
p ∧ q >

p ∨ ¬q ⊥
p >
q >
p ⊥
¬q ⊥
×

The only branch of the tableau is closed, therefore the formula is irrefutable,
i.e. valid.

Example 8. Let us check the validity of p ∧ ¬(q → p). The formula is valid if
it is irrefutable, so let us check refutability.

p ∧ ¬(q → p) ⊥

¬(q → p) ⊥p ⊥

The leftmost branch is open, so we can use it to construct a refuting inter-
pretation: I(p) = false, I(q) can be anything, say I(p) = true. As the formula
is refutable, it is not valid.

4 Logical Implication and Equivalence
We say that F implies G (denoted F ⇒ G) if for all interpretations I, I � F
implies I � G. Formulas F and G are equivalent (denoted F ⇔ G) if F implies
G and G implies F .

Note that⇒ and⇔ are not connectives of propositional logic, as we present
it here. Likewise, F ⇒ G and F ⇔ G are not propositional formulas. Logical
implication and equivalence are concepts of the meta-theory we are using to rea-
son about propositional logic. However, they are closely related to conditional
and bi-conditional.

Theorem 2. F ⇒ G if and only if F → G is valid. F ⇔ G if and only if
F ↔ G is valid.

Example 9. Here is a list of several useful equivalences. They are stated using
propositional variables p, q and r, but they remain valid even if we replace the
variables with arbitrary formulas F , G and H.

We start with a couple of equivalences that allow us to eliminate conditional
and bi-conditional from the formulas:

p→ q ⇔ ¬p ∨ q

p↔ q ⇔ (p→ q) ∧ (q → p)

5

De Morgan’s laws:

¬(p ∧ q)⇔ ¬p ∨ ¬q

¬(p ∨ q)⇔ ¬p ∧ ¬q

Double negation:

¬¬p⇔ p

Distributivity:

p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (p ∧ r)
(p ∨ q) ∧ r ⇔ (p ∧ r) ∨ (q ∧ r)
p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r)
(p ∧ q) ∨ r ⇔ (p ∨ r) ∧ (q ∨ r)

The following theorem says that if we replace a subformula in F by an
equivalent formula, the obtained top-level formula F ′ remains equivalent to F .

Theorem 3 (Replacement Theorem). Let F be a propositional formula that
contains G as a subformula. Let G′ be a formula such that G ⇔ G′. Then
F ⇔ F [G′/G], where F [G′/G] is a formula obtained by replacing zero or more
occurences of G in F by G′.

5 Normal Forms
We say that a formula is in negational normal form (NNF) if it does not con-
tain conditionals (→) and bi-conditionals (↔), and if it only contains negations
at the inner-most level, attached to propositional variables. By successively
applying the Replacement Theorem, and using the equivalences from Exam-
ple 9 (elimination of conditionals, De Morgan’s laws and elimination of double
negation), every formula can be transformed into an equivalent one that is in
NNF.

Example 10. We transform formula p → ¬(q → p) into an equivalent NNF
formula as follows.

p→ ¬(q → p)⇔ ¬p ∨ ¬(q → p) elimination of →
⇔ ¬p ∨ ¬(¬q ∨ p) elimination of →
⇔ ¬p ∨ (¬¬q ∧ ¬p) De Morgan’s law
⇔ ¬p ∨ (q ∧ ¬p) elimination of double negation

By going further, we can use the distributivity laws to transform the formula
into disjunctive normal form (DNF):∨

1≤i≤m

∧
1≤j≤ni

lij ,

where each lij is a literal—either one of the constants ⊥ and >, a propositional
variable, or a negation of a propositional variable.

6

Alternatively, we can use the distributivity laws to transform the formula
into conjunctive (or clausal) normal form (CNF):∧

1≤i≤m

∨
1≤j≤ni

lij .

Disjunctions of literals are called clauses.

Example 11. The final formula in Example 10 is already in DNF. By applying
the distributivity law, we transform it into an equivalent CNF formula:

¬p ∨ (q ∧ ¬p)⇔ (¬p ∨ q) ∧ (¬p ∨ ¬p) .

5.1 Equisatisfiability and Tseitin Transformation
Note: This material was not covered in the lecture.

Converting a formula into an equivalent CNF formula can cause an expo-
nential blow-up in the size of the formula. Consider the following formula:

(p0 ∧ p1) ∨ (p2 ∧ p3) ∨ . . . ∨ (p2n ∧ p2n+1) .

The formula clearly has O(n) size. However, after conversion into CNF, the
formula has O(2n) size:

(p0 ∨ p2 ∨ . . . ∨ p2n) ∧ (p1 ∨ p2 ∨ . . . ∨ p2n) ∧ . . . ∧ (p1 ∨ p3 ∨ . . . ∨ p2n+1) .

Sometimes we do not need to get an equivalent formula in CNF, but rather an
equisatisfiable one—one that is satisfiable if and only if the initial formula is.
In that case, there is a transformation, called Tseitin transformation, that can
achieve this with only a linear increase in the size of the formula.

Given a formula F , for each non-atomic (i.e. not ⊥, > or a propositional
variable) subformula G of F we introduce a fresh propositional variable pG.
Consider the following formula:

pF ∧
∧

G=G1◦G2
◦∈{∧,∨,→,↔}

(pG ↔ pG1 ◦ pG2) ∧
∧

G=¬G1

(pG ↔ ¬pG1) .

The formula is equisatisfiable to F , and it has size linear in the size of F (as the
number of subformulas in F is linear in the size of F). Furthermore, each of the
small subformulas pG ↔ pG1◦pG2 and pG ↔ ¬pG1 has a constant transformation
into an equivalent CNF.

Example 12. In this example we show a constant transformation into CNF of
each small subformula that appears as part of Tseitin transformation.

pG ↔ pG1 ∧ pG2 ⇔ (¬pG ∨ pG1) ∧ (¬pG ∨ pG2) ∧ (pG ∨ ¬pG1 ∨ ¬pG2)
pG ↔ pG1 ∨ pG2 ⇔ (¬pG ∨ pG1 ∨ pG2) ∧ (pG ∨ ¬pG1) ∧ (pG ∨ ¬pG2)

pG ↔ pG1 → pG2 ⇔ (¬pG ∨ ¬pG1 ∨ pG2) ∧ (pG ∨ pG1) ∧ (pG ∨ ¬pG2)
pG ↔ pG1 ↔ pG2 ⇔ (¬pG ∨ ¬pG1 ∨ pG2) ∧ (¬pG ∨ pG1 ∨ ¬pG2)

∧ (pG ∨ ¬pG1 ∨ ¬pG2) ∧ (pG ∨ pG1 ∨ pG2)
pG ↔ ¬pG1 ⇔ (¬pG ∨ ¬pG1) ∧ (pG ∨ pG1)

7

Example 13. Let us apply Tseitin transformation to F = p → ¬(q → p). As
F has three non-atomic subformulas (including F itself), we introduce three
new propositional variables: s, t and u. In the first step we get a formula
equisatisfiable to F :

s ∧ (s↔ (p→ t)) ∧ (t↔ ¬u) ∧ (u↔ (q → p)) .

Replacing each small subformula with an equivalent one in CNF (see Example
12), we get the final CNF formula equisatisfiable to F :

s ∧ (¬s ∨ ¬p ∨ t) ∧ (s ∨ p) ∧ (s ∨ ¬t)
∧ (¬t ∨ ¬u) ∧ (t ∨ u)
∧ (¬u ∨ ¬q ∨ p) ∧ (u ∨ q) ∧ (u ∨ ¬p)

While in this particular case the final formula is longer than the one obtained
in Example 11, for larger examples the linear asymptotic complexity kicks in,
and formulas produced using Tseitin transformation become much shorter.

6 Craig’s Interpolation
Note: This material was not covered in the lecture.

Theorem 4 (Craig’s Interpolation Lemma). Let F and G be formulas such that
F ∧G is unsatisfiable. Then there exists a formula H such that:

• var(H) ⊆ var(F) ∩ var(G)

• F ⇒ H

• H ∧G is unsatisfiable.

Proof. Let us assume without loss of generality that F and G are in DNF,
namely that F = F1 ∨ . . . ∨ Fm and G = G1 ∨ . . . ∨Gn.

If F is unsatisfiable, we can take H = ⊥, and if G is unsatisfiable, we can take
H = >. Therefore, let us assume that both F and G are satisfiable. Without
loss of generality, we can assume that all the disjuncts F1, . . . , Fm, G1, . . . , Gn

are satisfiable.
For fixed i and j, it is not difficult to see that Fi ∧ Gj is unsatisfiable.

We claim that there are literals L in Fi and L′ in Gj that share the same
propositional variable and satisfy ¬L ⇔ L′. For suppose there are no such
literals. Let Fi = Fi1 ∧ . . . ∧ Fik, Gj = Gj1 ∧ . . . ∧Gjl and assume that for all
s and t, ¬Fis < Gjt. Then we can define an interpretation I such that I � Fis

and I � Gjt. But then I � Fi ∧Gj , contradicting unsatisfiability of Fi ∧Gj .
Let Hij be the literal in Fi such that ¬Hij is equivalent to a literal in Gj .

We define
H :=

∨
1≤i≤m

∧
1≤j≤n

Hij .

It is not difficult to verify that H has the desired properties.

Formula H from the theorem is called Craig’s interpolant of F and G.

8

Example 14. Let us find Craig’s interpolant for the formulas p and ¬(q → p).
Transforming the second formula into DNF, we get q∧¬p. Since both formulas
have a single disjunct, the interpolant consists of a single literal. According to
the proof of the theorem, that disjunct is p and H = p is the interpolant.

9

	Syntax
	Semantics
	Semantic Tableaux
	Logical Implication and Equivalence
	Normal Forms
	Equisatisfiability and Tseitin Transformation

	Craig's Interpolation

