
Verification of Reactive Systems
Lecture notes for Lecture 2: Revision of Graphs and Automata

Theory

Johannes Kloos

May 2, 2014

1 Graphs and Graph Algorithms

There are two types of graphs: directed graphs and undirected graphs. A directed graph
(short digraph)is given by a tuple

G = (V,E) where E ⊆ V × V.

The set V is known as the set of vertices, and the set E as the set of edges. Directed
graphs can be represented visually as in Figure 1.

Let a digraph G = (V,E) be given. For two vertices u, v ∈ V , write u → v iff
(u, v) ∈ E. Given a vertex v, define the sets

pred(v) := {w | w → v} and succ(v) := {w | v → w},

known as the set of predecessors and the set of successors. The in-degree of a vertex v
is defined as indeg v := | pred(v)|, and the out-degree of v as outdeg v := | succ(v)|. In
the example, the following is true:

pred(2) = {1} succ(2) = {3, 4} indeg(2) = 1 outdeg(2) = 2

pred(6) = {4, 5} succ(6) = {7} indeg(6) = 2 outdeg(6) = 1

1

2

3 4

5 6 7 8

V = {1, 2, 3, 4, 5, 6, 7, 8}
E = {(1, 2), (2, 3), (2, 4), (3, 2), (3, 5), (4, 1),

(4, 6), (5, 1), (5, 6), (6, 7), (7, 8), (8, 7)}

Figure 1: An example of a directed graph.

1

1

2

3 4

5 6 7 8

V = {1, 2, 3, 4, 5, 6, 7, 8}
E = {{1, 2}, {2, 3}, {2, 4}, {3, 5}, {4, 1},

{4, 6}, {5, 1}, {5, 6}, {6, 7}, {7, 8}, }

Figure 2: An example of an undirected graph.

An undirected graph is given by a tuple

G = (V,E) where E ⊆ {{u, v} | u, v ∈ V and u 6= v}.

They can also be represented visually, as in Figure 2. Let an undirected graphG = (V,E)
be given. Similar to the case of digraphs, define the set of neighbors

neigh(v) := {w | {v, w} ∈ E}

and the degree of a vertex v as deg(v) = | neigh(v)|. One may write u−v for any u, v ∈ V
such that {u, v} ∈ E.
For both directed and undirected graphs, the important notion of path can be defined.

Definition 1. Let G = (V,E) be a directed graph.

1. A sequence v1, . . . , vn of vertices is called a path if, for all i = 1, . . . , n−1, vi → vi+1.

2. For two vertices v, w ∈ V , there is a path of length n, written v →n w, iff there is
a path v1, . . . , vn such that v = v1 and w = vn.

3. For two vertices v, w ∈ V , there is a path from v to w, written v →∗ w, if there is
an n ≥ 0 such that v →n w.

If v →∗ w, one may also say that w is reachable from v.
The corresponding definitions for undirected graphs are similar, except that in the

definition of a path, we demand that vi − vi+1 for i = 1, . . . , n− 1.

A tree is recursively defined as a set V of vertices such that

1. There is a special node v0 ∈ V , called the root of V .

2. There are sets V1, . . . , Vm, with m ≥ 0, such that V \ {v0} = V1 ∪ · · · ∪ Vm, the Vi
are disjoint and each Vi is again a tree.

The sets Vi are called the subtrees of the root (compare [1], Section 2.3).
A tree can be represented in a natural way as a directed graph: Define E = {(v, v′) ∈

V × V | v′ is the root of a subtree of v}. An example of a tree is given in Figure 3. It

2

1

2

3 4

5 6

7

8

Tree structure:
{3}, {4}, {5} and {8} form trees with their unique ele-
ment as root and no subtrees.
{7, 8} forms a tree with root 7 and single subtree {8},
while {2, 3, 4} forms a tree with root 2 and subtrees {3}
and {4}. {6, 7, 8} forms a tree with root 6 and single
subtree {7, 8}.
Finally, {1, 2, 3, 4, 5, 6, 7, 8} is a tree with root 1 and sub-
trees {2, 3, 4}, {5} and {6, 7, 8}.

Figure 3: An example of a tree.

can be shown ([1], exercise 2.3.3) that in this graph, there is a unique path from the root
v of V to every vertex v′ ∈ V .
Obviously, each directed graph (V,E) gives rise to an undirected graph (V,E ′) with

E ′ = {{v, w} | v → w} by “forgetting the direction” of the edges (compare the graphs
in Figure 1 and 2). Conversely, an undirected graph (V,E) induces a directed graph
(V, {(v, w), (w, v) | v − w}).

1.1 Graph traversal

One common algorithmic question when dealing with graphs is the following: Given a
(directed or undirected) graph G = (V,E), a vertex v ∈ V and some set P ⊆ V , is there
are vertex w such that v →∗ w (respectively v −∗ w) and w ∈ P? In the following, the
algorithms will be presented in terms of directed graphs; the corresponding algorithms
for undirected graphs are similar.

There are two main algorithms that differ in their search strategy. Depth-first search,
short DFS, works by constantly extending a potential path with new vertices and back-
tracking if no extension is possible. Breadth-first search, short BFS works by considering
vertices in “layers” around the initial vertex: first those reachable in one step, then those
reachable in two steps and so on.

The DFS algorithm can be given as follows:
1: // The graph G = (V,E) is given, as is the set P ⊆ V .
2: function DFS(v)
3: // The function returns either a vertex v′ with v′ ∈ P ,
4: // or Fail if no such vertex exists
5: mark v
6: if v ∈ P then
7: return v
8: end if
9: for v′ ∈ succ(v) where v′ is not marked do

10: if DFS(v′) returns a state v′′ then

3

Figure 4: An example execution of DFS

Action Marked nodes Nodes to visit Call stack
Call DFS(3) ∅ –
Mark 3 {3} –
Iterate over succ(3) = {2, 5} {3} {2, 5}
Call DFS(5) {3} – 3/{2}
Mark 5 {3, 5} – 3/{2}
Iterate over succ(5) = {1, 6} {3, 5} {1, 6} 3/{2}
Call DFS(6) {3, 5} – 3/{2}; 5/{1}
Mark 6 {3, 5, 6} – 3/{2}; 5/{1}
Iterate over succ(6) = {7} {3, 5, 6} {7} 3/{2}; 5/{1}
Call DFS(7) {3, 5, 6} – 3/{2}; 5/{1}; 6/∅
Mark 7 {3, 5, 6, 7} – 3/{2}; 5/{1}; 6/∅
Iterate over succ(7) = {8} {3, 5, 6, 7} {8} 3/{2}; 5/{1}; 6/∅
Call DFS(8) {3, 5, 6, 7} – 3/{2}; 5/{1}; 6/∅; 7/∅
Mark 8 {3, 5, 6, 7, 8} – 3/{2}; 5/{1}; 6/∅; 7/∅
Iterate over succ(8) = {7} {3, 5, 6, 7, 8} {7} 3/{2}; 5/{1}; 6/∅; 7/∅
Skip 7 – it is marked {3, 5, 6, 7, 8} ∅ 3/{2}; 5/{1}; 6/∅; 7/∅
Return “fail” to DFS(7) {3, 5, 6, 7, 8} ∅ 3/{2}; 5/{1}; 6/∅
Return “fail” to DFS(6) {3, 5, 6, 7, 8} ∅ 3/{2}; 5/{1}
Return “fail” to DFS(5) {3, 5, 6, 7, 8} {1} 3/{2}
Call DFS(1) {3, 5, 6, 7, 8} – 3/{2}
Return 1 to DFS(3) (1 ∈ P) {3, 5, 6, 7, 8} – 3/{2}
Return 1 {3, 5, 6, 7, 8} –

11: return v′′

12: end if
13: end for
14: return Fail
15: end function
As an example, DFS can be used to check whether the node 1 can be reached from

the node 3 in the digraph from Figure 1. The execution trace is presented in Figure 4 in
a compact format: Each line of the table contains an action that is performed, and the
state of the execution after the action finishes. It contains the set of nodes that have
been marked so far (second column), the nodes that still need to be visited in the inner
loop of the DFS function (third column), and the call stack. The elements of the call
stack are of the form v/s, where v denotes the node given in the corresponding call to
DFS, and s the set of nodes that still needs to be visited in this call.
A side effect of the DFS algorithm is the following: If the algorithm is run on a vertex

v and returns Fail, all states reachable from v are marked. In particular, to compute

4

the states reachable from v, call DFS(v) with P = ∅. Then the set of marked states is
exactly the set of states reachable from v.

The DFS algorithm can be extended so that if DFS(v) returns v′, it also returns an
actual path from v to v′. There is no guarantee that a shortest path will be found: A
DFS from 1 trying to reach 5 may well return the path 1 → 2 → 3 → 5 instead of the
shorter path 1→ 4→ 5.
The BFS algorithm works iteratively, using a queue Q:

1: // The graph G = (V,E) is given, as is the set P ⊆ V .
2: function BFS(v)
3: // The function returns either a vertex v′ with v′ ∈ P ,
4: // or Fail if no such vertex exists
5: Q← new Queue
6: Add v to Q
7: while Q is not empty do
8: v′ ← first(Q)
9: Remove v′ from Q

10: if v′ is marked then
11: continue
12: end if
13: Mark v′
14: if v′ ∈ P then
15: return v′

16: end if
17: for all v′′ such that v′ → v′′ do
18: Add v′′ to Q
19: end for
20: end while
21: return Fail
22: end function
In Figure 5, an example execution of BFS to find a path from vertex 3 to vertex 1

in the graph of Figure 1 is presented. Again, the execution is presented in a tabular
format, listing the action and the state of the algorithm after the action has finished.
Again, this algorithm can be extended to return an actual path. It is easy to show

that such a path is always a shortest path, i.e., there is no shorter path.

Theorem 1 (Run-time Complexity of BFS and DFS). Both BFS and DFS run in time
O(|E|).

Proof sketch for BFS: Let W ⊆ V be the set of states that gets marked during the
execution. One can prove that each state w ∈ W is visited at most indeg(w) times, and
that the inner loop is reached exactly |W | or |W | − 1 times. For a state w, the inner
loop runs outdeg(w) times. Therefore, the outer loop runs at most

∑
w∈W indeg(w)

times, and the inner loop runs at most
∑

w∈W outdeg(w) times. Since
∑

w∈W indeg(w)+∑
w∈W outdeg(w) ≤ 2|E|, the claim follows.

5

Figure 5: An example of BFS

Action v′ Marked nodes Contents of Q
Initialize – ∅ [3]
Take 3 from Q 3 ∅ []
Mark 3 3 {3} []
Add succ(3) = {2, 5} to Q 3 {3} [2, 5]
Take 2 from Q 2 {3} [5]
Mark 2 2 {2, 3} [5]
Add succ(2) = {3, 4} to Q 2 {2, 3} [5, 3, 4]
Take 5 from Q 5 {2, 3} [3, 4]
Mark 5 {2, 3, 5} [3, 4]
Add succ(5) = {1, 6} to Q 5 {2, 3, 5} [3, 4, 1, 6]
Take 3 from Q 3 {2, 3, 5} [4, 1, 6]
Continue (3 is marked) 3 {2, 3, 5} [4, 1, 6]
Take 4 from Q 4 {2, 3, 5} [1, 6]
Mark 4 {2, 3, 4, 5} [1, 6]
Add succ(4) = {1, 6} to Q 4 {2, 3, 4, 5} [1, 6, 1, 6]
Take 1 from Q 1 {2, 3, 4, 5} [6, 1, 6]
Return 1 (1 ∈ P) 1 {2, 3, 4, 5} [6, 1, 6]

1.2 Distances and shortest paths

For a given graph G, the distance between two nodes v and w, written d(v, w), is defined
to be the length of the shortest path between v and w. If there is no path at all between
v and w, we write d(v, w) = ∞. Obviously, d(v, v) = 0, and the triangle inequality
holds: For u, v, w ∈ V , d(u,w) ≤ d(u, v) + d(v, w).
To calculate the distance between two vertices of an arbitrary graph, a variation of

BFS can be used:
1: // A graph G = (V,E) is given
2: function distance((v, w))
3: d[v]← 0
4: for u ∈ V \ {v} do
5: d[u]←∞
6: end for
7: Q← new Queue
8: Add v to Q
9: while Q is not empty do

10: u← first(Q)
11: Remove u from Q
12: if u = w then
13: return d[u]

6

1 2 4

3 5 6

7 8 9

Figure 6: An example of a directed acyclic graph.

14: end if
15: for u′ ∈ succ(u) do
16: if d[u′] =∞ then
17: d[u′] = 1 + d[u]
18: Add u′ to Q
19: end if
20: end for
21: end while
22: return ∞
23: end function
It is straightforward to modify this algorithm so that it returns the array d[u] that

gives the distance from v to all u ∈ V , i.e., d[u] = d(v, u) for all u ∈ V . In either case,
the algorithm runs in time O(|E|).

1.3 Cycles, topological order and topological sorting

Another important concept in graphs is the notion of a cycle. A cycle is a path v1, . . . , vn
such that v1 = vn; as an example, the path 1→ 2→ 3→ 5→ 1 in the graph of Figure
1 is a cycle.
A directed graph without cycles is called a directed acyclic graph, short DAG. The

graph in Figure 1 is not a DAG. On the other hand, every tree is a DAG, and so is the
graph in Figure 6.
A related concept is topological order. Let G = (V,E) be a directed graph, and

` : V → {1, . . . , |V |} a bijective function that labels the nodes. We say that ` induces a
topological order if, for all v, w ∈ V such that v → w, `(v) < `(w).

Theorem 2. A directed graph is a DAG if and only if it can be topologically ordered.

Proof: See any algorithms textbook.
The following algorithm, based on a variant of DFS, will either produce a cycle or a

topological order.
1: // The graph G = (V,E) is given.
2: // Output: Either “cycle: v1, . . . , vn” or
3: // “order: `”, a function that induces a topological order.
4: function TopoSort
5: for v ∈ V do

7

6: Color v white.
7: end for
8: ` := new array(|V |)
9: i← 0

10: while There is a state v that is colored white do
11: r ← visit(v, i)
12: if r is “cycle: v1, . . . , vn” then
13: return “cycle: v1, . . . , vn”
14: end if
15: // r is now an integer.
16: i← r
17: end while
18: end function
19: function visit((v, i))
20: if v is colored black then
21: return i
22: else if v is colored gray then
23: return “cycle: v”
24: end if
25: Color v gray.
26: `[v]← i
27: i← i+ 1
28: for v′ ∈ succ(v) do
29: r ← visit(v, i)
30: if r is “cycle: v2, . . . , v′′n then
31: return “cycle: v, v2, . . . , vn”
32: end if
33: i← r
34: end for
35: Color v black.
36: end function
This algorithm has complexity O(|V |+ |E|).

1.4 Strongly connected components

Let G = (V,E) be a graph and C ⊆ V be a set of vertices. The induced graph of C is
G′ = (C,E ∩ C × C); it is the graph that can be obtained by removing all vertices and
edges from G that are not in C, respectively have an endpoint not in C.
C is said to be strongly connected if, for every v, w ∈ C, v →∗ w and w →∗ v in the

inducted graph. C is a strongly connected component if it is strongly connected, and
there is no larger set C ′) C such that C ′ is strongly connected.

In the graph in Figure 1, there are three strongly connected components: {1, 2, 3, 4, 5},
{6} and {7, 8}. There are some further strongly connected subsets, like {1, 2, 4} or {2, 3}.

8

0 1 2 3 4 5 6 7 8 9 10 11 M

G1 G2 G3

B K J1 J2

n n n n n n n n n n n n

n
hey

h g

b k h
j

Σ = {b, g, h, j, k, n}
Q = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,M,B,K, J1, J2, G1, G2, G3}
q0 = 0

F = {M,B,K, J2, G3}
δ = {(q0, n, q1), . . . , (q10, n, q11), (q11, n,M), (M,n,M), (q11, h, J1), (J1, j, J2),

(q10, k,K), (q8, h,G1), (G1, h,G2), (G2, g, G3), (g8, b, B)}
M = (Q,Σ, δ, q0, F)

Figure 7: An example of an FSM. It models the language given in the picture (taken
from XKCD, see http://xkcd.com/851/) on top. The letters of the alphabet
Σ are taken as abbreviations of the strings in the picture: n for “na”, h for
“hey” and so on.

A graph can be decomposed into its strongly connected components in linear time,
i.e., time O(|V | + |E|). One algorithm that performs this decomposition is Tarjan’s
algorithm, based on DFS similar to the topological sorting algorithm above.

2 Automata Theory

A finite-state machine or finite-state automaton, short FSM, is a tupleM = (Q,Σ, δ, q0, F).
Q is a finite set of states, and Σ is a finite set of symbols called the alphabet. The
state q0 ∈ Q is the initial state, and the set F ⊆ Q is the set of final states. Finally,
δ ⊆ Q× Σ ∪ {ε} ×Q (where ε 6∈ Σ) is the transition relation.
FSMs can be visualized as labeled graphs: (Q,Σ, δ) induces a directed (multi-)graph

with labeled edges, and some vertices (namely, q0 and the elements of F) are marked as
initial and/or final. Figure 7 gives an example.
Define by Σ∗ the set of words over the alphabet Σ: Σ∗ = {w1 · · ·wn | w1, . . . , wn ∈ Σ}.

9

ε is identified with the empty word, i.e., a word w1 . . . wn with n = 0. The operation ·
stands for concatenation, i.e., (u1 · · ·um) · (v1 · · · vn) = u1 · · ·umv1 · · · vn).

FSMs are interpreted as devices that accept or generate words from a certain subset
of Σ∗, known as the language of the automaton. The following definition makes this
precise.

Definition 2. Let a FSM M := (Q,Σ, δ, q0, F) be given.

1. Let w ∈ Σ∗ be a word, w1, . . . , wn ∈ Σ ∪ {ε} where w = w1 · w2 · · ·wn and
q0, . . . , qn ∈ be states.
If (qi−1, wi, qi) ∈ δ for all i = 1, . . . , n, we say that the qi and the wi form a path.

2. Let q, q′ and w = w1 · · ·wn be given.
If there are q0, . . . , qn ∈ Q such that q0 = q, qn = q′ and the qi and wi form a path,
we say that there is a path from q to q′ for w, written q w−→ q′.

3. We say that M accepts w ∈ Σ∗ iff there is a state qf ∈ F such that q0
w−→ qf .

The language of M is the set L(M) := {w ∈ Σ∗ |M accepts w}.
Two machines M1 and M2 are language-equivalent if L(M1) = L(M2).

The FSM from Figure 7 has the language

L(M) = {nnnnnnnnb, nnnnnnnnhhg, nnnnnnnnnnk, nnnnnnnnnnnhj}∪{ni | i ≥ 12}

For an FSMM , the set of reachable states is defined to be the states q such that there
is a word w ∈ Σ∗ such that q0

w−→ q. Given two FSMs M1 = (Q1,Σ, δ1, q0, F1) and
M2 = (Q2,Σ, δ2, q0, F2), both having the same set R of reachable states, if δ1(q, σ, q′)⇔
δ2(q, σ, q

′) for all q, q′ ∈ R and σ ∈ Σ, and F1 ∩R = F2 ∩R, then L(M1) = L(M2). Two
automata with this property are said to have the same reachable part.

2.1 Determinism

One important subclass of FSM are deterministic automata, short DFA. Formally, a
DFA is an FSM (Q,Σ, δ, q0, F) where δ ∈ Q× Σ → Q, i.e., δ is a function that takes a
state and a symbol and yields a state. In particular, in a DFA, there are no ε-transitions
(i.e., members of δ that are labeled with an ε-symbol), and for each state q and symbol

σ, there is at most one state q′ such that q
σ
q
′
. Note that the FSM in Figure 7 is actually

a DFA.
For every FSM M , there is a DFA D such that L(M) = L(D). It can be constructed

using the subset construction. Here and in the following sections, the construction will
be first given as the description of an automaton, and then as an algorithm. While
they may give different automata, the automata have the same reachable part and are
therefore language-equivalent.
Let M = (Q,Σ, δ, q0, F). Define D := (2Q,Σ, δ′, {q0}, {X ⊆ Q | X ∩ F 6= ∅}), where

δ′ is defined as follows: δ(x, σ) = {q′ | q ∈ x and (q, σ, q′) ∈ δ}.
The following algorithm computes the reachable part of D:

10

1: // Σ is given
2: function determinize((Q, δ, q0, F))
3: W ← new Queue
4: Add {q0} to W
5: Q′ ← ∅
6: while W is not empty do
7: x← first(W)
8: Remove x from W
9: if x ∈ Q′ then

10: continue
11: end if
12: Q′ ← Q′ ∪ {x}
13: for σ ∈ Σ ∪ {ε} do
14: x′ ← {q′ | ∃q, q ∈ x ∧ (q, σ, q′) ∈ δ}
15: δ′(x, σ)← x′

16: Add x′ to Q
17: end for
18: end while
19: return (Q′, δ′, {q0}, {x ∈ Q′ | ∃q, q ∈ F ∩ x}).
20: end function
For an automaton with |Q| states, this algorithm can produce a DFA with up to 2|Q|

states, and it may therefore have exponential running time. As it turns out, there are
examples where this is the optimal solution – no smaller language-equivalent DFA exists
(compare Problem 1.3).

2.2 Regular expressions

Let Σ be an alphabet. Another way to represent languages, i.e., specific subsets of Σ∗,
are regular expressions. A regular expression is given by the following grammar:

R ::= ∅ | ε | σ | R ·R | R ∪R | R∗, where σ ∈ Σ

Each regular expression can be interpreted as a set of words over Σ, as follows:

L(∅) = ∅
L(ε) = {ε}
L(σ) = {σ} for all σ ∈ Σ

L(R1 ·R2) = {w1 · w2 | w1 ∈ L(R1) and w2 ∈ L(R2)}
L(R1 ∪R2) = L(R1) ∪ L(R2)

L(R∗) = {w1 · w2 · · ·wn | w1, . . . , wn ∈ L(R)}

Returning to the example from Figure 7, the language described is the language of
the regular expression

R := n · n · n · n · n · n · n · n · (b ∪ (h · h · g) ∪ (n · n · (k ∪ (n · n · n∗) ∪ n · h · j)

11

Theorem 3. Let L ⊆ Σ∗ be a language. Then the following are equivalent:

1. There is an FSM M such that L = L(M).

2. There is a DFA D such that L = L(D).

3. There is a regular expression R such that L = L(R).

1 ⇒ 2 is the subset construction from above. 3 ⇒ 1 is Problem 1.2, and 2 ⇒ 3 is
Lemma 1.32 in [2].

2.3 FSMs and set operations

Let FSMs M1 and M2 be given. It turns out that there are FSMs M∪ and M∩ such that
L(M∪) = L(M1) ∪ L(M2) and L(M∩) = L(M1) ∩ L(M2). Furthermore, for an FSM M ,
there is an FSM M such that L(M) = L(M). The constructions are illustrated with a
simple example in Figure 8.

Suppose M1 = (Q1,Σ1, q
0
1, F1) and M2 = (Q2,Σ2, q

0
2, F2). The construction of M∪ is

straightforward: Let q0 a fresh state, i.e., q0 6∈ Q1 ∪Q2. Then define

M∪ := (Q1 ∪Q2 ∪ {q0},Σ1 ∪ Σ2, δ1 ∪ δ2 ∪ {(q0, ε, q10), (q0, ε, q
2
0)}, F1 ∪ F2).

It is easy to check that L(M∪) = L(M1) ∪ L(M2). The number of states of M∪ is
|Q1|+ |Q2|+ 1.

To construct M , we assume that M = (Q,Σ, δ, q0, F) is a DFA. By the definition of
DFAs, δ can be interpreted as a function Q × Σ → Q. In particular, this means that
for every word w, there is a unique state q ∈ Q such that q0

w−→ q. For a given word
w ∈ Σ∗, denote this unique state by qw. Then w ∈ L(M) if and only if qw ∈ F . Define
M := (Q,Σ, δ, q0, Q \ F). It is again a DFA, and it is easy to check that M accepts a
word w ∈ Σ∗ iff qw ∈ Q \ F . Thus, it accepts iff qw 6∈ F , and therefore, if and only if M
does not accept the word. Hence, L(M) = L(M).
The construction of M∩ involves building the product automaton. Formally, the

product automaton M1 × M2 is constructed like this: Suppose M1 = (Q1,Σ, q
0
1, F1)

and M2 = (Q2,Σ, q
0
2, F2). then M1 × M2 = (Q1 × Q2,Σ, δ, (q

0
1, q

0
2), F1 × F2) where

((q1, q2), σ, (q
′
1, q
′
2)) ∈ δ if one of the following conditions holds:

1. (q1, σ, q
′
1) ∈ δ1 and (q2, σ, q

′
2) ∈ δ2,

2. (q1, ε, q
′
1), σ = ε and q2 = q′2,

3. (q2, ε, q
′
2), σ = ε and q1 = q′1,

It is easy to check that (q1, q2)
w−→ (q′1, q

′
2) if and only if q1

w−→ q′1 and q2
w−→ q′2.

Thus, M1 ×M2 accepts w if and only if both M1 and M2 accept w.
Algorithmically, the reachable part of M1 ×M2 can be constructed as follows:

1: // Σ is given
2: function Product(((Q1, δ1, q

0
1, F1), (Q2, δ2, q

0
2, F2)))

12

a b

1 2

0 a b

1 2

1a 2b

1b

2a

1 2

a

a

a

a

a

a

a

a

a

aa a
b b

b

b b

b b
b

b

b

b

b
a, b a, b

ε

ε

M2

M1

M2

M1 ∪M2 M1 ×M2

Figure 8: Examples of automaton constructions.

3: W ← new Queue
4: Add (q01, q

0
2) to W

5: Q′ ← ∅
6: while W is not empty do
7: (q1, q2)← first(W)
8: Remove (q1, q2) from W
9: if (q1, q2) ∈ Q′ then

10: continue
11: end if
12: Q′ ← Q′ ∪ {(q1, q2)}
13: for σ ∈ Σ do
14: for q′1 : (q1, σ, q

′
1) ∈ δ1 do

15: for q′2 : (q2, σ, q
′
2) ∈ δ2 do

16: δ′ ← δ′ ∪ {((q1, q2), σ, (q′1, q′2))}
17: Add (q′1, q

′
2) to Q

18: end for
19: end for
20: end for
21: for q′1 : (q1, ε, q

′
1) ∈ δ1 do

22: δ′ ← δ′ ∪ {((q1, q2), ε, (q′1, q2))}
23: Add (q′1, q2) to Q.
24: end for
25: for q′2 : (q2, ε, q

′
2) ∈ δ2 do

26: δ′ ← δ′ ∪ {((q1, q2), ε, (q1, q′2))}
27: Add (q1, q

′
2) to Q.

28: end for
29: end while
30: return (Q′, δ′, (q01, q

0
2), F1 × F2).

31: end function
The product automaton has at most |Q1| · · · |Q2| states, and the algorithm can be

shown to have running time O(|Q1| · |Q2| · |Σ|).

13

References

[1] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Funda-
mental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1997.

[2] Michael Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1st edition, 1996.

14

