Verification of Reactive Systems
 Lecture notes for Lecture 2: Revision of Graphs and Automata Theory

Johannes Kloos

May 2, 2014

1 Graphs and Graph Algorithms

There are two types of graphs: directed graphs and undirected graphs. A directed graph (short digraph) is given by a tuple

$$
G=(V, E) \text { where } E \subseteq V \times V
$$

The set V is known as the set of vertices, and the set E as the set of edges. Directed graphs can be represented visually as in Figure 1.

Let a digraph $G=(V, E)$ be given. For two vertices $u, v \in V$, write $u \rightarrow v$ iff $(u, v) \in E$. Given a vertex v, define the sets

$$
\operatorname{pred}(v):=\{w \mid w \rightarrow v\} \text { and } \operatorname{succ}(v):=\{w \mid v \rightarrow w\}
$$

known as the set of predecessors and the set of successors. The $i n$-degree of a vertex v is defined as indeg $v:=|\operatorname{pred}(v)|$, and the out-degree of v as outdeg $v:=|\operatorname{succ}(v)|$. In the example, the following is true:

$$
\begin{array}{lrll}
\operatorname{pred}(2)=\{1\} & \operatorname{succ}(2)=\{3,4\} & \operatorname{indeg}(2)=1 & \text { outdeg }(2)=2 \\
\operatorname{pred}(6)=\{4,5\} & \operatorname{succ}(6)=\{7\} & \operatorname{indeg}(6)=2 & \text { outdeg }(6)=1
\end{array}
$$

$$
\begin{aligned}
V= & \{1,2,3,4,5,6,7,8\} \\
E= & \{(1,2),(2,3),(2,4),(3,2),(3,5),(4,1), \\
& (4,6),(5,1),(5,6),(6,7),(7,8),(8,7)\}
\end{aligned}
$$

Figure 1: An example of a directed graph.

Figure 2: An example of an undirected graph.

An undirected graph is given by a tuple

$$
G=(V, E) \text { where } E \subseteq\{\{u, v\} \mid u, v \in V \text { and } u \neq v\} .
$$

They can also be represented visually, as in Figure 2. Let an undirected graph $G=(V, E)$ be given. Similar to the case of digraphs, define the set of neighbors

$$
\operatorname{neigh}(v):=\{w \mid\{v, w\} \in E\}
$$

and the degree of a vertex v as $\operatorname{deg}(v)=|\operatorname{neigh}(v)|$. One may write $u-v$ for any $u, v \in V$ such that $\{u, v\} \in E$.

For both directed and undirected graphs, the important notion of path can be defined.
Definition 1. Let $G=(V, E)$ be a directed graph.

1. A sequence v_{1}, \ldots, v_{n} of vertices is called a path if, for all $i=1, \ldots, n-1, v_{i} \rightarrow v_{i+1}$.
2. For two vertices $v, w \in V$, there is a path of length n, written $v \rightarrow^{n} w$, iff there is a path v_{1}, \ldots, v_{n} such that $v=v_{1}$ and $w=v_{n}$.
3. For two vertices $v, w \in V$, there is a path from v to w, written $v \rightarrow^{*} w$, if there is an $n \geq 0$ such that $v \rightarrow^{n} w$.

If $v \rightarrow^{*} w$, one may also say that w is reachable from v.
The corresponding definitions for undirected graphs are similar, except that in the definition of a path, we demand that $v_{i}-v_{i+1}$ for $i=1, \ldots, n-1$.

A tree is recursively defined as a set V of vertices such that

1. There is a special node $v_{0} \in V$, called the root of V.
2. There are sets V_{1}, \ldots, V_{m}, with $m \geq 0$, such that $V \backslash\left\{v_{0}\right\}=V_{1} \cup \cdots \cup V_{m}$, the V_{i} are disjoint and each V_{i} is again a tree.

The sets V_{i} are called the subtrees of the root (compare [1], Section 2.3).
A tree can be represented in a natural way as a directed graph: Define $E=\left\{\left(v, v^{\prime}\right) \in\right.$ $V \times V \mid v^{\prime}$ is the root of a subtree of $\left.v\right\}$. An example of a tree is given in Figure 3. It

Tree structure:
$\{3\},\{4\},\{5\}$ and $\{8\}$ form trees with their unique element as root and no subtrees.
$\{7,8\}$ forms a tree with root 7 and single subtree $\{8\}$, while $\{2,3,4\}$ forms a tree with root 2 and subtrees $\{3\}$ and $\{4\}$. $\{6,7,8\}$ forms a tree with root 6 and single subtree $\{7,8\}$.
Finally, $\{1,2,3,4,5,6,7,8\}$ is a tree with root 1 and subtrees $\{2,3,4\},\{5\}$ and $\{6,7,8\}$.

Figure 3: An example of a tree.
can be shown ([1], exercise 2.3.3) that in this graph, there is a unique path from the root v of V to every vertex $v^{\prime} \in V$.

Obviously, each directed graph (V, E) gives rise to an undirected graph $\left(V, E^{\prime}\right)$ with $E^{\prime}=\{\{v, w\} \mid v \rightarrow w\}$ by "forgetting the direction" of the edges (compare the graphs in Figure 1 and 2). Conversely, an undirected graph (V, E) induces a directed graph $(V,\{(v, w),(w, v) \mid v-w\})$.

1.1 Graph traversal

One common algorithmic question when dealing with graphs is the following: Given a (directed or undirected) graph $G=(V, E)$, a vertex $v \in V$ and some set $P \subseteq V$, is there are vertex w such that $v \rightarrow^{*} w$ (respectively $v-^{*} w$) and $w \in P$? In the following, the algorithms will be presented in terms of directed graphs; the corresponding algorithms for undirected graphs are similar.

There are two main algorithms that differ in their search strategy. Depth-first search, short DFS, works by constantly extending a potential path with new vertices and backtracking if no extension is possible. Breadth-first search, short BFS works by considering vertices in "layers" around the initial vertex: first those reachable in one step, then those reachable in two steps and so on.

The DFS algorithm can be given as follows:
// The graph $G=(V, E)$ is given, as is the set $P \subseteq V$.
function $\operatorname{DFS}(v)$
// The function returns either a vertex v^{\prime} with $v^{\prime} \in P$,
// or Fail if no such vertex exists
mark v
if $v \in P$ then
return v
end if
for $v^{\prime} \in \operatorname{succ}(v)$ where v^{\prime} is not marked do
if $\operatorname{DFS}\left(v^{\prime}\right)$ returns a state $v^{\prime \prime}$ then

Figure 4: An example execution of DFS

Action	Marked nodes	Nodes to visit	Call stack
Call DFS(3)	\varnothing	-	
Mark 3	$\{3\}$	-	
Iterate over succ $(3)=\{2,5\}$	$\{3\}$	$\{2,5\}$	$3 /\{2\}$
Call DFS(5)	$\{3\}$	-	$3 /\{2\}$
Mark 5	$\{3,5\}$	-	$3 /\{2\}$
Iterate over succ(5) $=\{1,6\}$	$\{3,5\}$	$\{1,6\}$	$3 /\{2\} ; 5 /\{1\}$
Call DFS(6)	$\{3,5\}$	-	$3 /\{2\} ; 5 /\{1\}$
Mark 6	$\{3,5,6\}$	-	$3 /\{2\} ; 5 /\{1\}$
Iterate over succ(6) $=\{7\}$	$\{3,5,6\}$	$\{7\}$	$3 /\{2\} ; 5 /\{1\} ; 6 / \varnothing$
Call DFS(7)	$\{3,5,6\}$	-	$3 /\{2\} ; 5 /\{1\} ; 6 / \varnothing$
Mark 7	$\{3,5,6,7\}$	-	$3 /\{2\} ; 5 /\{1\} ; 6 / \varnothing$
Iterate over succ $(7)=\{8\}$	$\{3,5,6,7\}$	$\{8\}$	$3 /\{2\} ; 5 /\{1\} ; 6 / \varnothing ; 7 / \varnothing$
Call DFS(8)	$\{3,5,6,7\}$	-	$3 /\{2\} ; 5 /\{1\} ; 6 / \varnothing ; 7 / \varnothing$
Mark 8	$\{3,5,6,7,8\}$	-	$3 /\{2\} ; 5 /\{1\} ; 6 / \varnothing ; 7 / \varnothing$
Iterate over succ $(8)=\{7\}$	$\{3,5,6,7,8\}$	$\{7\}$	$3 /\{2\} ; 5 /\{1\} ; 6 / \varnothing ; 7 / \varnothing$
Skip 7 - it is marked	$\{3,5,6,7,8\}$	\varnothing	$3 /\{2\} ; 5 /\{1\} ; 6 / \varnothing$
Return "fail" to DFS (7)	$\{3,5,6,7,8\}$	\varnothing	$3 /\{2\} ; 5 /\{1\}$
Return "fail" to DFS (6)	$\{3,5,6,7,8\}$	\varnothing	$3 /\{2\}$
Return "fail" to DFS(5)	$\{3,5,6,7,8\}$	$\{1\}$	$3 /\{2\}$
Call DFS(1)	$\{3,5,6,7,8\}$	-	$3 /\{2\}$
Return 1 to DFS(3) $(1 \in P)$	$\{3,5,6,7,8\}$	-	
Return 1	$\{3,5,6,7,8\}$	-	

```
11: return }\mp@subsup{v}{}{\prime\prime
            end if
end for
return Fail
end function
```

As an example, DFS can be used to check whether the node 1 can be reached from the node 3 in the digraph from Figure 1. The execution trace is presented in Figure 4 in a compact format: Each line of the table contains an action that is performed, and the state of the execution after the action finishes. It contains the set of nodes that have been marked so far (second column), the nodes that still need to be visited in the inner loop of the DFS function (third column), and the call stack. The elements of the call stack are of the form v / s, where v denotes the node given in the corresponding call to DFS, and s the set of nodes that still needs to be visited in this call.

A side effect of the DFS algorithm is the following: If the algorithm is run on a vertex v and returns Fail, all states reachable from v are marked. In particular, to compute
the states reachable from v, call $\operatorname{DFS}(v)$ with $P=\varnothing$. Then the set of marked states is exactly the set of states reachable from v.

The DFS algorithm can be extended so that if $\operatorname{DFS}(v)$ returns v^{\prime}, it also returns an actual path from v to v^{\prime}. There is no guarantee that a shortest path will be found: A DFS from 1 trying to reach 5 may well return the path $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$ instead of the shorter path $1 \rightarrow 4 \rightarrow 5$.

The BFS algorithm works iteratively, using a queue Q :
// The graph $G=(V, E)$ is given, as is the set $P \subseteq V$.
function $\operatorname{BFS}(v)$
// The function returns either a vertex v^{\prime} with $v^{\prime} \in P$,
// or Fail if no such vertex exists
$Q \leftarrow$ new Queue
Add v to Q
while Q is not empty do
$v^{\prime} \leftarrow \operatorname{first}(Q)$
Remove v^{\prime} from Q
if v^{\prime} is marked then
continue
end if
Mark v^{\prime} if $v^{\prime} \in P$ then
return v^{\prime}
end if
for all $v^{\prime \prime}$ such that $v^{\prime} \rightarrow v^{\prime \prime}$ do
Add $v^{\prime \prime}$ to Q
end for
end while
return Fail
end function
In Figure 5, an example execution of BFS to find a path from vertex 3 to vertex 1 in the graph of Figure 1 is presented. Again, the execution is presented in a tabular format, listing the action and the state of the algorithm after the action has finished.

Again, this algorithm can be extended to return an actual path. It is easy to show that such a path is always a shortest path, i.e., there is no shorter path.

Theorem 1 (Run-time Complexity of BFS and DFS). Both BFS and DFS run in time $O(|E|)$.

Proof sketch for BFS: Let $W \subseteq V$ be the set of states that gets marked during the execution. One can prove that each state $w \in W$ is visited at most indeg (w) times, and that the inner loop is reached exactly $|W|$ or $|W|-1$ times. For a state w, the inner loop runs outdeg (w) times. Therefore, the outer loop runs at most $\sum_{w \in W} \operatorname{indeg}(w)$ times, and the inner loop runs at most $\sum_{w \in W} \operatorname{outdeg}(w)$ times. Since $\sum_{w \in W} \operatorname{indeg}(w)+$ $\sum_{w \in W} \operatorname{outdeg}(w) \leq 2|E|$, the claim follows.

Figure 5: An example of BFS

Action	v^{\prime}	Marked nodes	Contents of Q
Initialize	-	\varnothing	$[3]$
Take 3 from Q	3	\varnothing	[]
Mark 3	3	$\{3\}$	[]
Add succ $(3)=\{2,5\}$ to Q	3	$\{3\}$	$[2,5]$
Take 2 from Q	2	$\{3\}$	$[5]$
Mark 2	2	$\{2,3\}$	$[5]$
Add succ $(2)=\{3,4\}$ to Q	2	$\{2,3\}$	$[5,3,4]$
Take 5 from Q	5	$\{2,3\}$	$[3,4]$
Mark 5	$\{2,3,5\}$	$[3,4]$	
Add succ(5) $=\{1,6\}$ to Q	5	$\{2,3,5\}$	$[3,4,1,6]$
Take 3 from Q	3	$\{2,3,5\}$	$[4,1,6]$
Continue $(3$ is marked)	3	$\{2,3,5\}$	$[4,1,6]$
Take 4 from Q	4	$\{2,3,5\}$	$[1,6]$
Mark 4	$\{2,3,4,5\}$	$[1,6]$	
Add succ $(4)=\{1,6\}$ to Q	4	$\{2,3,4,5\}$	$[1,6,1,6]$
Take 1 from Q	1	$\{2,3,4,5\}$	$[6,1,6]$
Return $1(1 \in P)$	1	$\{2,3,4,5\}$	$[6,1,6]$

1.2 Distances and shortest paths

For a given graph G, the distance between two nodes v and w, written $d(v, w)$, is defined to be the length of the shortest path between v and w. If there is no path at all between v and w, we write $d(v, w)=\infty$. Obviously, $d(v, v)=0$, and the triangle inequality holds: For $u, v, w \in V, d(u, w) \leq d(u, v)+d(v, w)$.

To calculate the distance between two vertices of an arbitrary graph, a variation of BFS can be used:

```
// A graph G}=(V,E)\mathrm{ is given
function DISTANCE ((v,w))
    d[v]}\leftarrow
    for }u\inV\{v} d
        d[u]}\leftarrow
    end for
    Q}\leftarrow\mathrm{ new Queue
        Add v to Q
        while Q is not empty do
        u\leftarrowfirst(Q)
        Remove }u\mathrm{ from }
        if }u=w\mathrm{ then
            return d[u]
```


Figure 6: An example of a directed acyclic graph.

```
        end if
        for }\mp@subsup{u}{}{\prime}\in\operatorname{succ}(u)\mathrm{ do
        if d[\mp@subsup{u}{}{\prime}]=\infty then
            d[\mp@subsup{u}{}{\prime}]=1+d[u]
            Add }\mp@subsup{u}{}{\prime}\mathrm{ to }
            end if
            end for
        end while
        return \infty
    end function
```

It is straightforward to modify this algorithm so that it returns the array $d[u]$ that gives the distance from v to all $u \in V$, i.e., $d[u]=d(v, u)$ for all $u \in V$. In either case, the algorithm runs in time $O(|E|)$.

1.3 Cycles, topological order and topological sorting

Another important concept in graphs is the notion of a cycle. A cycle is a path v_{1}, \ldots, v_{n} such that $v_{1}=v_{n}$; as an example, the path $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 1$ in the graph of Figure 1 is a cycle.

A directed graph without cycles is called a directed acyclic graph, short $D A G$. The graph in Figure 1 is not a DAG. On the other hand, every tree is a DAG, and so is the graph in Figure 6.

A related concept is topological order. Let $G=(V, E)$ be a directed graph, and $\ell: V \rightarrow\{1, \ldots,|V|\}$ a bijective function that labels the nodes. We say that ℓ induces a topological order if, for all $v, w \in V$ such that $v \rightarrow w, \ell(v)<\ell(w)$.

Theorem 2. A directed graph is a DAG if and only if it can be topologically ordered.
Proof: See any algorithms textbook.
The following algorithm, based on a variant of DFS, will either produce a cycle or a topological order.
// The graph $G=(V, E)$ is given.
// Output: Either "cycle: v_{1}, \ldots, v_{n} " or
// "order: ℓ ", a function that induces a topological order.
function TopoSort for $v \in V$ do

```
        Color \(v\) white.
    end for
    \(\ell:=\) new \(\operatorname{array}(|V|)\)
    \(i \leftarrow 0\)
    while There is a state \(v\) that is colored white do
        \(r \leftarrow \operatorname{visit}(v, i)\)
        if \(r\) is "cycle: \(v_{1}, \ldots, v_{n}\) " then
                return "cycle: \(v_{1}, \ldots, v_{n}\) "
        end if
        // \(r\) is now an integer.
        \(i \leftarrow r\)
        end while
end function
function \(\operatorname{VISIT}((v, i))\)
    if \(v\) is colored black then
        return \(i\)
    else if \(v\) is colored gray then
        return "cycle: \(v\) "
    end if
    Color \(v\) gray.
    \(\ell[v] \leftarrow i\)
    \(i \leftarrow i+1\)
    for \(v^{\prime} \in \operatorname{succ}(v)\) do
        \(r \leftarrow \operatorname{visit}(v, i)\)
        if \(r\) is "cycle: \(v_{2}, \ldots, v_{n}^{\prime \prime}\) then
            return "cycle: \(v, v_{2}, \ldots, v_{n} "\)
        end if
        \(i \leftarrow r\)
    end for
    Color \(v\) black.
end function
```

This algorithm has complexity $O(|V|+|E|)$.

1.4 Strongly connected components

Let $G=(V, E)$ be a graph and $C \subseteq V$ be a set of vertices. The induced graph of C is $G^{\prime}=(C, E \cap C \times C)$; it is the graph that can be obtained by removing all vertices and edges from G that are not in C, respectively have an endpoint not in C.
C is said to be strongly connected if, for every $v, w \in C, v \rightarrow^{*} w$ and $w \rightarrow^{*} v$ in the inducted graph. C is a strongly connected component if it is strongly connected, and there is no larger set $C^{\prime} \supsetneq C$ such that C^{\prime} is strongly connected.

In the graph in Figure 1, there are three strongly connected components: $\{1,2,3,4,5\}$, $\{6\}$ and $\{7,8\}$. There are some further strongly connected subsets, like $\{1,2,4\}$ or $\{2,3\}$.

Figure 7: An example of an FSM. It models the language given in the picture (taken from XKCD, see http://xkcd.com/851/) on top. The letters of the alphabet Σ are taken as abbreviations of the strings in the picture: n for "na", h for "hey" and so on.

A graph can be decomposed into its strongly connected components in linear time, i.e., time $O(|V|+|E|)$. One algorithm that performs this decomposition is Tarjan's algorithm, based on DFS similar to the topological sorting algorithm above.

2 Automata Theory

A finite-state machine or finite-state automaton, short $F S M$, is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$. Q is a finite set of states, and Σ is a finite set of symbols called the alphabet. The state $q_{0} \in Q$ is the initial state, and the set $F \subseteq Q$ is the set of final states. Finally, $\delta \subseteq Q \times \Sigma \cup\{\epsilon\} \times Q$ (where $\epsilon \notin \Sigma$) is the transition relation.

FSMs can be visualized as labeled graphs: (Q, Σ, δ) induces a directed (multi-)graph with labeled edges, and some vertices (namely, q_{0} and the elements of F) are marked as initial and/or final. Figure 7 gives an example.

Define by Σ^{*} the set of words over the alphabet Σ : $\Sigma^{*}=\left\{w_{1} \cdots w_{n} \mid w_{1}, \ldots, w_{n} \in \Sigma\right\}$.
ϵ is identified with the empty word, i.e., a word $w_{1} \ldots w_{n}$ with $n=0$. The operation • stands for concatenation, i.e., $\left.\left(u_{1} \cdots u_{m}\right) \cdot\left(v_{1} \cdots v_{n}\right)=u_{1} \cdots u_{m} v_{1} \cdots v_{n}\right)$.

FSMs are interpreted as devices that accept or generate words from a certain subset of Σ^{*}, known as the language of the automaton. The following definition makes this precise.

Definition 2. Let a FSM $M:=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given.

1. Let $w \in \Sigma^{*}$ be a word, $w_{1}, \ldots, w_{n} \in \Sigma \cup\{\epsilon\}$ where $w=w_{1} \cdot w_{2} \cdots w_{n}$ and $q_{0}, \ldots, q_{n} \in$ be states.
If $\left(q_{i-1}, w_{i}, q_{i}\right) \in \delta$ for all $i=1, \ldots, n$, we say that the q_{i} and the w_{i} form a path.
2. Let q, q^{\prime} and $w=w_{1} \cdots w_{n}$ be given.

If there are $q_{0}, \ldots, q_{n} \in Q$ such that $q_{0}=q, q_{n}=q^{\prime}$ and the q_{i} and w_{i} form a path, we say that there is a path from q to q^{\prime} for w, written $q \xrightarrow{w} q^{\prime}$.
3. We say that M accepts $w \in \Sigma^{*}$ iff there is a state $q_{f} \in F$ such that $q_{0} \xrightarrow{w} q_{f}$. The language of M is the set $L(M):=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$.
Two machines M_{1} and M_{2} are language-equivalent if $L\left(M_{1}\right)=L\left(M_{2}\right)$.
The FSM from Figure 7 has the language

For an FSM M, the set of reachable states is defined to be the states q such that there is a word $w \in \Sigma^{*}$ such that $q_{0} \xrightarrow{w} q$. Given two FSMs $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0}, F_{2}\right)$, both having the same set R of reachable states, if $\delta_{1}\left(q, \sigma, q^{\prime}\right) \Leftrightarrow$ $\delta_{2}\left(q, \sigma, q^{\prime}\right)$ for all $q, q^{\prime} \in R$ and $\sigma \in \Sigma$, and $F_{1} \cap R=F_{2} \cap R$, then $L\left(M_{1}\right)=L\left(M_{2}\right)$. Two automata with this property are said to have the same reachable part.

2.1 Determinism

One important subclass of FSM are deterministic automata, short DFA. Formally, a DFA is an FSM $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where $\delta \in Q \times \Sigma \rightarrow Q$, i.e., δ is a function that takes a state and a symbol and yields a state. In particular, in a DFA, there are no ϵ-transitions (i.e., members of δ that are labeled with an ϵ-symbol), and for each state q and symbol σ, there is at most one state q^{\prime} such that $q{ }^{\sigma^{\prime}}$. Note that the FSM in Figure 7 is actually a DFA.

For every FSM M, there is a DFA D such that $L(M)=L(D)$. It can be constructed using the subset construction. Here and in the following sections, the construction will be first given as the description of an automaton, and then as an algorithm. While they may give different automata, the automata have the same reachable part and are therefore language-equivalent.

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$. Define $D:=\left(2^{Q}, \Sigma, \delta^{\prime},\left\{q_{0}\right\},\{X \subseteq Q \mid X \cap F \neq \varnothing\}\right)$, where δ^{\prime} is defined as follows: $\delta(x, \sigma)=\left\{q^{\prime} \mid q \in x\right.$ and $\left.\left(q, \sigma, q^{\prime}\right) \in \delta\right\}$.

The following algorithm computes the reachable part of D :

```
// \(\Sigma\) is given
function DETERMINIze \(\left(\left(Q, \delta, q_{0}, F\right)\right)\)
    \(W \leftarrow\) new Queue
    Add \(\left\{q_{0}\right\}\) to \(W\)
    \(Q^{\prime} \leftarrow \varnothing\)
    while \(W\) is not empty do
        \(x \leftarrow\) first \((W)\)
        Remove \(x\) from \(W\)
        if \(x \in Q^{\prime}\) then
                continue
        end if
        \(Q^{\prime} \leftarrow Q^{\prime} \cup\{x\}\)
        for \(\sigma \in \Sigma \cup\{\epsilon\}\) do
                \(x^{\prime} \leftarrow\left\{q^{\prime} \mid \exists q, q \in x \wedge\left(q, \sigma, q^{\prime}\right) \in \delta\right\}\)
                \(\delta^{\prime}(x, \sigma) \leftarrow x^{\prime}\)
        Add \(x^{\prime}\) to \(Q\)
        end for
    end while
    return \(\left(Q^{\prime}, \delta^{\prime},\left\{q_{0}\right\},\left\{x \in Q^{\prime} \mid \exists q, q \in F \cap x\right\}\right)\).
end function
```

For an automaton with $|Q|$ states, this algorithm can produce a DFA with up to $2^{|Q|}$ states, and it may therefore have exponential running time. As it turns out, there are examples where this is the optimal solution - no smaller language-equivalent DFA exists (compare Problem 1.3).

2.2 Regular expressions

Let Σ be an alphabet. Another way to represent languages, i.e., specific subsets of Σ^{*}, are regular expressions. A regular expression is given by the following grammar:

$$
R::=\varnothing|\epsilon| \sigma|R \cdot R| R \cup R \mid R^{*}, \text { where } \sigma \in \Sigma
$$

Each regular expression can be interpreted as a set of words over Σ, as follows:

$$
\begin{aligned}
L(\varnothing) & =\varnothing \\
L(\epsilon) & =\{\epsilon\} \\
L(\sigma) & =\{\sigma\} \text { for all } \sigma \in \Sigma \\
L\left(R_{1} \cdot R_{2}\right) & =\left\{w_{1} \cdot w_{2} \mid w_{1} \in L\left(R_{1}\right) \text { and } w_{2} \in L\left(R_{2}\right)\right\} \\
L\left(R_{1} \cup R_{2}\right) & =L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
L\left(R^{*}\right) & =\left\{w_{1} \cdot w_{2} \cdots w_{n} \mid w_{1}, \ldots, w_{n} \in L(R)\right\}
\end{aligned}
$$

Returning to the example from Figure 7, the language described is the language of the regular expression

$$
R:=n \cdot n \cdot\left(b \cup (h \cdot h \cdot g) \cup \left(n \cdot n \cdot\left(k \cup\left(n \cdot n \cdot n^{*}\right) \cup n \cdot h \cdot j\right)\right.\right.
$$

Theorem 3. Let $L \subseteq \Sigma^{*}$ be a language. Then the following are equivalent:

1. There is an FSM M such that $L=L(M)$.
2. There is a DFA D such that $L=L(D)$.
3. There is a regular expression R such that $L=L(R)$.
$1 \Rightarrow 2$ is the subset construction from above. $3 \Rightarrow 1$ is Problem 1.2 , and $2 \Rightarrow 3$ is Lemma 1.32 in [2].

2.3 FSMs and set operations

Let FSMs M_{1} and M_{2} be given. It turns out that there are FSMs M_{\cup} and M_{\cap} such that $L\left(M_{\cup}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$ and $L\left(M_{\cap}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. Furthermore, for an FSM M, there is an FSM \bar{M} such that $L(\bar{M})=\overline{L(M)}$. The constructions are illustrated with a simple example in Figure 8.

Suppose $M_{1}=\left(Q_{1}, \Sigma_{1}, q_{1}^{0}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma_{2}, q_{2}^{0}, F_{2}\right)$. The construction of M_{\cup} is straightforward: Let q_{0} a fresh state, i.e., $q_{0} \notin Q_{1} \cup Q_{2}$. Then define

$$
M_{\cup}:=\left(Q_{1} \cup Q_{2} \cup\left\{q_{0}\right\}, \Sigma_{1} \cup \Sigma_{2}, \delta_{1} \cup \delta_{2} \cup\left\{\left(q_{0}, \epsilon, q_{0}^{1}\right),\left(q_{0}, \epsilon, q_{0}^{2}\right)\right\}, F_{1} \cup F_{2}\right) .
$$

It is easy to check that $L\left(M_{\cup}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$. The number of states of M_{\cup} is $\left|Q_{1}\right|+\left|Q_{2}\right|+1$.

To construct \bar{M}, we assume that $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA. By the definition of DFAs, δ can be interpreted as a function $Q \times \Sigma \rightarrow Q$. In particular, this means that for every word w, there is a unique state $q \in Q$ such that $q_{0} \xrightarrow{w} q$. For a given word $w \in \Sigma^{*}$, denote this unique state by q_{w}. Then $w \in L(M)$ if and only if $q_{w} \in F$. Define $\bar{M}:=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$. It is again a DFA, and it is easy to check that \bar{M} accepts a word $w \in \Sigma^{*}$ iff $q_{w} \in Q \backslash F$. Thus, it accepts iff $q_{w} \notin F$, and therefore, if and only if M does not accept the word. Hence, $L(\bar{M})=\overline{L(M)}$.

The construction of M_{\cap} involves building the product automaton. Formally, the product automaton $M_{1} \times M_{2}$ is constructed like this: Suppose $M_{1}=\left(Q_{1}, \Sigma, q_{1}^{0}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, q_{2}^{0}, F_{2}\right)$. then $M_{1} \times M_{2}=\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(q_{1}^{0}, q_{2}^{0}\right), F_{1} \times F_{2}\right)$ where $\left(\left(q_{1}, q_{2}\right), \sigma,\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right) \in \delta$ if one of the following conditions holds:

1. $\left(q_{1}, \sigma, q_{1}^{\prime}\right) \in \delta_{1}$ and $\left(q_{2}, \sigma, q_{2}^{\prime}\right) \in \delta_{2}$,
2. $\left(q_{1}, \epsilon, q_{1}^{\prime}\right), \sigma=\epsilon$ and $q_{2}=q_{2}^{\prime}$,
3. $\left(q_{2}, \epsilon, q_{2}^{\prime}\right), \sigma=\epsilon$ and $q_{1}=q_{1}^{\prime}$,

It is easy to check that $\left(q_{1}, q_{2}\right) \xrightarrow{w}\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ if and only if $q_{1} \xrightarrow{w} q_{1}^{\prime}$ and $q_{2} \xrightarrow{w} q_{2}^{\prime}$. Thus, $M_{1} \times M_{2}$ accepts w if and only if both M_{1} and M_{2} accept w.

Algorithmically, the reachable part of $M_{1} \times M_{2}$ can be constructed as follows:
$/ / \Sigma$ is given
function $\operatorname{Product}\left(\left(\left(Q_{1}, \delta_{1}, q_{1}^{0}, F_{1}\right),\left(Q_{2}, \delta_{2}, q_{2}^{0}, F_{2}\right)\right)\right)$

Figure 8: Examples of automaton constructions.

```
\(W \leftarrow\) new Queue
Add \(\left(q_{1}^{0}, q_{2}^{0}\right)\) to \(W\)
\(Q^{\prime} \leftarrow \varnothing\)
while \(W\) is not empty do
    \(\left(q_{1}, q_{2}\right) \leftarrow \mathrm{first}(W)\)
    Remove \(\left(q_{1}, q_{2}\right)\) from \(W\)
    if \(\left(q_{1}, q_{2}\right) \in Q^{\prime}\) then
        continue
    end if
    \(Q^{\prime} \leftarrow Q^{\prime} \cup\left\{\left(q_{1}, q_{2}\right)\right\}\)
    for \(\sigma \in \Sigma\) do
        for \(q_{1}^{\prime}:\left(q_{1}, \sigma, q_{1}^{\prime}\right) \in \delta_{1}\) do
                for \(q_{2}^{\prime}:\left(q_{2}, \sigma, q_{2}^{\prime}\right) \in \delta_{2}\) do
                \(\delta^{\prime} \leftarrow \delta^{\prime} \cup\left\{\left(\left(q_{1}, q_{2}\right), \sigma,\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right)\right\}\)
                Add \(\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\) to \(Q\)
                end for
        end for
    end for
    for \(q_{1}^{\prime}:\left(q_{1}, \epsilon, q_{1}^{\prime}\right) \in \delta_{1}\) do
        \(\delta^{\prime} \leftarrow \delta^{\prime} \cup\left\{\left(\left(q_{1}, q_{2}\right), \epsilon,\left(q_{1}^{\prime}, q_{2}\right)\right)\right\}\)
        Add \(\left(q_{1}^{\prime}, q_{2}\right)\) to \(Q\).
    end for
    for \(q_{2}^{\prime}:\left(q_{2}, \epsilon, q_{2}^{\prime}\right) \in \delta_{2}\) do
        \(\delta^{\prime} \leftarrow \delta^{\prime} \cup\left\{\left(\left(q_{1}, q_{2}\right), \epsilon,\left(q_{1}, q_{2}^{\prime}\right)\right)\right\}\)
        Add \(\left(q_{1}, q_{2}^{\prime}\right)\) to \(Q\).
        end for
        end while
        return \(\left(Q^{\prime}, \delta^{\prime},\left(q_{1}^{0}, q_{2}^{0}\right), F_{1} \times F_{2}\right)\).
end function
```

The product automaton has at most $\left|Q_{1}\right| \cdots\left|Q_{2}\right|$ states, and the algorithm can be shown to have running time $O\left(\left|Q_{1}\right| \cdot\left|Q_{2}\right| \cdot|\Sigma|\right)$.

References

[1] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.
[2] Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st edition, 1996.

