
VRS Summer 2014 — Practice End Term

The practice final exam is supposed to give you an idea of the actual
exam.

There are six questions in this exam (numbered 0–5), and each question
may have subparts.

Each answer should be relatively short. If you find you are writing more
than several paragraphs, please think again whether what you are doing is
correct. I would recommend you start with Problems 0 and 1. You should
not spend more than 30 minutes on Problem 1.

The maximum score for this exam is 50 points.

Problem 0. Write your name and your student identification number.

Problem 1. (10 points.) There are 5 parts. Each part is worth 2 points.

a You are given a (reduced ordered) BDD b. How can you test in con-
stant time whether the formula represented by b is satisfiable?

b Suppose you are performing predicate abstraction of a state space us-
ing n predicates. We said that the number of states in the abstraction
is finite. How many states can there be in this finite abstraction?

c Let us define a new temporal modality ϕ1∃U∗ϕ2 with the following
semantics: A state s of a labeled transition system satisfies ϕ1∃U∗ϕ2

if there is a trace
s0 → s1 → . . .→ sk

for some k ≥ 0 such that s0 = s and sk satisfies ϕ1Uϕ2 (the “usual”
until formula).

Show that you can express ϕ1∃U∗ϕ2 as an STL formula.

d We showed in class that two states are bisimilar iff they agree on all
STL formulas. Extend that proof (you need only to write the new
parts) to show that two states are bisimilar iff they agree on all CTL
formulas.

e Suppose you have a Boolean formula ϕ and you are interested in find-
ing two distinct satisfying assignments to this formula. Show how you
can get two distinct satisfying assignments by making at most two
queries to a SAT solver.



Problem 2. (10 points total.)

1. (6 points) Consider an invariant verification problem with a formula
init(x) defining the initial states, a formula bad(x) defining the bad
states and a transition relation T (x, x′). Suppose there is a formula
I(x) with the following properties:

(a) init(x)⇒ I(x),

(b) I(x) ∧ bad(x) is unsatisfiable, and

(c) Post(I(x))⇒ I(x).

Prove that there is no trajectory that starts from the initial states in
init(x) and ends up in a bad state in bad(x).

2. (4 points) Let K = (S,→) be a transition system and let s0 ∈ S be
an initial state. A transition s → t is called reachable if s is reach-
able from s0. A set of transitions is called a transition invariant if it
contains every reachable transition. Give an enumerative model check-
ing algorithm to check that a given set of transitions is a transition
invariant.

Problem 3. (10 points total.)

1. (3 points) Show that (Nk,≤) is a well quasi order. Here, Nk is the set
of k-tuples of natural numbers and u ≤ v if for each i = 1, . . . , k, we
have ui ≤ vi. [Hint: You can use the observation from class that the
Cartesian product of two wqos is a wqo. Use induction on k.]

2. (4 points) Let (S,≤) be a wqo and let U0, U1, . . . be a sequence of
upward closed sets such that

U0 ⊆ U1 ⊆ . . .

Prove that there is some i such that Ui = Ui+1.

3. (3 points) Let K = (S,→,≤) be a well-structured transition system.
Let U be an upward closed set of states. Prove or disprove: Post(U)
is upward closed.

Problem 4. (10 points total.) For any set X, a binary relation R ⊆
X ×X is well-founded if there does not exist an infinite sequence s0, s1, . . .
of elements from X such that for each i ≥ 0, (si, si+1) ∈ R.



a (3 points) Is the relation > on natural numbers well-founded? What
about > on integers? (Give a short justification or a counterexample
in each case.)

Let S = (X,→) be a system with set of states X and transition relation
→. Let x0 ∈ X be a state of S. Let Reach be the set of states reachable
from x0. We say S terminates from initial state x0 ∈ X if there is no infinite
sequence of states

x0 → x1 → . . .

b (4 points) Show that S terminates from x0 if the relation→ ∩Reach×
Reach is well-founded.

A ranking function is a map r : X → N such that whenever s → t, we
have r(s) > r(t).

c (3 points) Show that if we can define a ranking function for S, then S
terminates from every initial state.

Problem 5. (10 points total.) Automatic test pattern generation (ATPG,
for short) is a technique in electronic design to generate a test input that,
when applied to a digital circuit, enables the designer to distinguish between
the correct behavior of the circuit and a faulty behavior caused by defects.
Such defects can appear in the circuit in the manufacturing process.

Let us first consider combinational circuits. These are circuits that take
some inputs x1, . . . , xn, and (for simplicity) produce a single output y, and
internally, have AND gates, OR gates, and NOT gates. We will consider
“stuck-at” faults, where the input to a gate in the circuit is stuck at a
particular logic value (0 or 1) instead of its proper value. If a circuit has k
wires, there are 2k stuck-at faults.

For example, take a circuit that has two inputs x1 and x2, and an output
y defined as the AND of x1 and x2. There are six stuck-at faults: the first
input to the AND gate may be stuck at 0 or 1, the second input may be
stuck at 0 or 1, and the output may be stuck at 0 or 1. In these cases, the
circuit may ouput a value different from the correct value (x1 ∧ x2).

Your job is to generate test cases that identify stuck-at faults. That is,
for each wire of the circuit, you have to produce two tests, if possible. The
first test will be an input such that the correct circuit (without the fault)
will have a different output than the circuit where the wire is stuck at 0.
The second one will similarly distinguish the correct circuit from the one in
which the wire is stuck at 1.



1. (8 points) Give a procedure to find such tests. Your procedure should
run in time polynomial in the size of the input circuit, but may make
calls to a SAT solver. [A high level sketch of the steps is sufficient.]

2. (2 points) How would your answer change if the circuit has registers?
(In a circuit with registers, the registers hold “state”. In each cycle,
the new value of registers is obtained as a combinational function of
the old values of the registers and the current inputs.) Again, a brief
answer is sufficient.


