Contents

3 Symbolic Graph Representation 1
3.1 Symbolic Invariant Verification 1
3.1.1 Symbolic Search oL, 2

3.1.2 Symbolic Implementation 4

3.2 Binary Decision Diagrams 7
3.2.1 Ordered Binary Decision Graphs 8

3.2.2 Ordered Binary Decision Diagrams 10

3.23 Operationson BDDs L. 14

3.2.4 Symbolic Search using BDDs 18

Computer-Aided Verification
© Rajeev Alur and Thomas A. Henzinger September 29, 1999

Chapter 3

Symbolic Graph Representation

3.1 Symbolic Invariant Verification

As the invariant-verification problem is Pspace-hard, we cannot hope to find
a polynomial-time solution. There are, however, heuristic that perform well
on many instances of the invariant-verification problem that occur in practice.
One such heuristic is based on a symbolic reachability analysis of the underlying
transition graph. Symbolic graph algorithms operate on implicit (or symbolic)
—rather than explicit (or enumerative)— representations of regions. While an
enumerative representation of the region o is a list of the states in o, a symbolic
representation of o is a set of constraints that identifies the states in o. For
example, for an integer variable z, the constraint 20 < x < 99 identifies the
set {20,21,...,99} of 80 states. A symbolic region representation may be much
more succinct than the corresponding enumerative representation.

Symbolic Graph Representation 2

3.1.1 Symbolic Search

Consider a transition graph G with the initial region of. Since the reachable
region ot equals (Ui € N. posti(cT)), it can be computed from o' by iterating
the function post on regions. This observation leads to a symbolic algorithm for
solving the reachability problem. Unlike enumerative algorithms, the symbolic
algorithm does not need to test membership of a state in a region, nor does it
require to enumerate all states in a region.

We use the abstract type symreg, called symbolic region, to represent regions.
The abstract type symreg supports five operations.

U: symreg x symreg — symreg. The operation o UT returns the union of the
regions ¢ and 7.

N: symreg X symreg — symreg. The operation o N7 returns the intersection
of the regions ¢ and 7.

=: symreg X symreg — B. The operation o = 7 returns true iff the regions o
and 7 contain the same states.

C: symreg x symreg — B. The region ¢ C 7 returns true iff every state in o
is contained in 7.

EmptySet: symreg. The empty set of states.

Since ¢ C 7 iff U7 = 7, the inclusion test can be implemented using the union
and equality test. Alternatively, the equality test can be implemented using two
inclusion tests: ¢ = 7 iff both ¢ C 7 and 7 C o.

The abstract type of transition graphs is changed to symgraph, called symbolic
graph, which supports two operations.

InitReg: symgraph — symreg. The operation InitReg(G) returns the initial
region of G.

PostReg: symreg x symgraph — symreg. The operation PostReg(o,G) re-
turns the successor region posts (o).

Algorithm 3.1 searches the input graph in a breadth-first fashion using symbolic
types for the input graph and for regions. After j iterations of the repeat loop,
the set o® equals post=7(cT). This is depicted pictorially in Figure 3.2.

Theorem 3.1 [Symbolic graph search] Let G be a transition graph, and let o7
be a region of G. Algorithm 3.1, if it terminates, correctly solves the reacha-
bility problem (G,o%). Furthermore, if there exists j € N such that (1) every
reachable state is the sink of some initialized trajectory of length at most j (i.e.
oft = (Ui < j.posti(al))), or (2) some state in the target region o is the sink
of some initialized trajectory of length j (i.e. o Npost?(ot) is nonempty), then
the algorithm terminates within j iterations of the repeat loop.

Symbolic Graph Representation 3

Algorithm 3.1 [Symbolic Search]

Input: a transition graph G, and a region o’ of G.
Output: the answer to the reachability problem (G, o7).

input G: symgraph; o’: symreg;

local of: symreg;
begin
o := InitReg(Q);
repeat
if o N o # EmptySet then return Yes fi;
if PostReg(c®,G) C of then return No fi;
of := oF U PostReg(c®,G)
forever
end.

Figure 3.1: Symbolic search

Figure 3.2: Symbolic computation of the reachable region

In particular, if the input graph G is finite with n states, then Algorithm 3.1
terminates within n iterations of the repeat loop.

Exercise 3.1 {T3} [Fixpoint view of breadth-first search] Let G = (£, 07, =) be
a transition graph. The subset relation C is a complete partial order on the set
2% of regions of G. Let f be a function from 2% to 2* such that for each region
o C3,

f(o) = o' Upostg(o).

(1) Prove that the function f is monotonic, |J-continuous, and [)-continuous.
(2) What is the least fixpoint uf, and what is the greatest fixpoint v f? Conclude
that Algorithm 3.1 can be viewed as a computation of the least fixpoint uf by
successive approximation. l

Symbolic Graph Representation 4

Exercise 3.2 {T2} [Enumerative region operations] Suppose we implement the
abstract type symreg as a queue of states. Write algorithms that implement all
boolean operations, emptiness test, equality test, and inclusion test. What is
the cost of each operation, and what is the total cost of Algorithm 3.17 Repeat
the exercise assuming that the type symreg is implemented as a boolean array
indexed by states. B

Exercise 3.3 {P2} [Witness reporting in symbolic search] Write an algorithm
for symbolic search that, given an input transition graph G and a region o’
of G, outputs Done, if the reachability problem (G,o7T) has the answer No;
and a witness for the reachability problem (G,o7), otherwise. Assume that the
following two additional operations are supported by our abstract types.

Element: symreg — state. The operation Element (o) returns a state belong-
ing to o.

PreReg: symreg x symgraph — symreg. The operation PreReg(o, G) returns
the predecessor region preg(o).

3.1.2 Symbolic Implementation

Consider the transition graph over the state space Lx for a finite set X of
typed variables. Let the type of a variable z be denoted by T,. The type
Tx denotes the product type II,cxT,. Then, the type state is the product
type Tx. The type symreg is parametrized by the state type state, and we
write symreg|state]. A transition is a pair of states, and thus, has type Tx x
Tx. Equivalently, a transition can be viewed as a valuation for the set X U
X', where the values of the unprimed variables specify the source state of the
transition and the values of the primed variables specify the sink state of the
transition. Consequently, the type of a transition is T xx:. Then, the symbolic
representation of the transition graph G with the state space Y x is a record
{G}s with two components, (1) the initial region {0}, of type symreg[Tx]
and (2) the transition relation {—}, of type symreg[Txyx’].

We consider the operations renaming and existential-quantifier elimination on
the abstract type symreg[Tx].

Rename: variable x variable x symreg[Tx] — symreg[T x,.—,]. For variables
z and y of the same type, the operation Rename(z,y,o) returns the re-
named region o[z :=y].

Ezists: variable x symreg|[Tx] — symreg[Tx\(;}]. The operation
Erists(x,0) returns the region {s € Xx\ (5} | (Im. s[z :=m] € 0)}.

Symbolic Graph Representation 5

The operations renaming and existential-quantifier elimination naturally ex-
tend to variable sets. For variable sets X = {z1,...2p,} and Y = {y1,...yn}
such that, for all 1 < 4 < n, the variables z; and y; are of the same type,
we write Rename(X,Y,0) for Rename(z,,yn, Rename(... Rename(x1,y1,0))).
Similarly, for a variable set X = {1, ...2,}, we write Exists(X, o) for Ezists(zy,
We implicitly use simple forms of type inheritence and type polymorphism. For
instance, if the set X of variables is a subset of Y then a region of type Tx is
also a region of type Ty; if the region o is of type Tx and the region 7 is of
type Ty then the intersection ¢ N7 has type Txyy -

Consider the symbolic representation ({o'},,{—}s) of a transition graph G,
and a region o. Then, to compute a representation of the region postg (o),
we can proceed as follows. First, we conjunct o with {—}; to obtain the set
of transitions originating in o. Second, we project the result onto the set X'
of variables by eliminating the variables in X. This yields a representation of
the successor region post (o) in terms of the primed variables. Renaming each
primed variable z' to x, then, leads to the desired result. In summary, the
operation PostReg can be implemented using existential-quantifier elimination
and renaming;:

PostReg(0,{G}s) = Rename(X', X, Ezists(X,0 N {—}s))

A natural choice for a symbolic representation of regions is boolean expressions.
An expression is usually represented by its parse tree, or by a directed acyclic
graph that allows sharing of common subexpressions to avoid duplication of
syntactically identical subexpressions. If X contains only propositions, then we
can represent a region as a propositional formula. The operation U corresponds
to disjunction of formulas, and the operation N corresponds to conjunction of
formulas. Both operations can be performed in constant time. The constant
EmptySet corresponds to the formula false. Renaming corresponds to textual
substitution, and can be performed in constant time. Existential-quantifier
elimination can be performed in linear time:

Ezists(z,p) = (plz := true] V p[z := false]).

The satisfiability problem for propositional formulas is NP-complete and, there-
fore, the validity problem and the equivalence problem for propositional formu-
las are coNP-complete. The equality test corresponds to checking equivalence,
and the inclusion test corresponds to checking validity of the implication. Thus,
both these operations are coNP-complete.

The representation of regions as propositional formulas is possible for the propo-
sitional invariant-verification problem. Given a propositional module P with the
set X of variables, the symbolic representation of the transition graph Gp con-
sists of (1) [the initial predicate] a propositional formula {o!}, = ¢! over X, and
(2) [the transition predicate] a propositional formula {—}s; = ¢7 over X U X"

Euists(... Exists(x1,0))).

Symbolic Graph Representation 6

The lengths of both formulas are linear in the size of the module description.
The initial predicate is obtained by taking conjunction of the initial commands
of all the atoms, and the transition predicate is obtained by taking conjunction
of the update commands of all the atoms.

Remark 3.1 [Module operations for formula representation] The parallel com-
position of modules corresponds to the conjunction of initial and transition
predicates, and the renaming of modules corresponds to the renaming of initial
and transition predicates. The hiding of module variables does not affect the
initial and transition predicates. l

Analogously, enumerated formulas can be used as a symbolic representation of
enumerated modules. Such a symbolic representation is linear in the size of the
enumerated module. The complexities of implementing various operations on
regions represented as enumerated formulas are analogous to the correspond-
ing complexities for propositional formulas. In particular, union, intersection,
renaming, and existential-quantifier elimination are easy, but equality and in-
clusion tests are hard, namely, coNP-complete.

Example 3.1 [Mutual exclusion] Recall Peterson’s mutual-exclusion protocol from
Chapter 1. A symbolic representation of the transition graph Gp, has the set
{pc,, pcy, z1, 12} of variables, the initial predicate g :

pcy = outC, (a1)
and the transition predicate g7 :

V (pe; = outC A pcy = reqC A zf = x3)

V (pe; = regC A (pey = outC V x1 # x2) A pcf = inC A x) = x1)
V (pe; = inC A pc = outC A x| = x1)

V(pcl =pey A x) = 11).

Given a propositional formula p, PostReg(p) corresponds to
Rename({pcll ’ pcIQ, xlla mIQ}J {pcl y PCoy, X1, w2}7 E.’II’LStS({pCl y PCo, T1, x2}7p N q{))

Consider the computation of PostReg(ql). First, we take the conjunction of ¢f
and ¢f . The resulting formula can be rewritten after simplification as

V (pe; = outC A pci = reqC A x| = x3)
V (pe; = outC A pci = outC A zf = z4).

After eliminating the variables pc,, z1, and z2, we obtain
pcy = outC V pcy = reqC.

Finally, renaming the primed variables to unprimed ones, yields the expression
pey = outC V pey = reqC

whcih captures the set of states reachable from the initial states in one round.
|

Symbolic Graph Representation 7

Exercise 3.4 {P2} [Mutual exclusion] Give the initial predicate and the transi-
tion predicate for Peterson’s protocol Py || P,. Simulate Algorithm 3.1 for check-
ing that Peterson’s protocol satisfies the mutual-exclusion requirement. For
each iteration of the repeat loop, give the state predicate {o%}, after quantifier
elimination and simplification. B

Recall the definition of a latch-reduced transition graph of a module from Chap-
ter 2. The initial and transition predicates of the reduced graph can be ob-
tained from the corresponding predicates of the original graph using existential-
quantifier elimination. Let P be a module with latched variables latchX p,
initial predicate ¢!, and transition predicate ¢*. Then, the initial region of the
reduced transition graph G5 equals Ezists(Xp\latchX p,q'), and the transition
predicate of GL equals Exists((Xp U X5)\(latchX p U latchX'p), 7).

Exercise 3.5 {P2} [Message passing] Give the initial predicate and the transition
predicate for the reduced transition graph of the send-receive protocol SyncMsg
from Chapter 1. l

Exercise 3.6 {P3} [Propositional invariant verification] (1) Write algorithms that
implement the type symreg as propositional formulas supporting the operations
U, N, =, EmptySet, C, Rename, and Exists. (2) Write an algorithm that, given
a propositional module P, constructs the symbolic representation of the transi-
tion graph G p. The size of the symbolic graph representation should be within
a constant factor of the size of the module description. B

Exercise 3.7 {P3} [Enumerated invariant verification] Write a symbolic algo-
rithm for solving the enumerated invariant-verification problem. The size of the
symbolic graph representation should be within a constant factor of the size of
the module description. B

Exercise 3.8 {T3} [Backward search] (1) Develop a symmetric version of Algo-
rithm 3.1 that iterates the operator pre starting with the target region o7.
Which region operations are used by your algorithm? (2) Given a symbolic
representation {o}s of the region o, define a symbolic representation of the re-
gion pre(o) (use only positive boolean operations and quantifier elimination).

3.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) provide a compact and canonical represen-
tation for propositional formulas (or, equivalently, for boolean functions). The
BDD-representation of propositional formulas is best understood by first con-
sidering a related structure called an ordered binary decision graph (BDG).

Symbolic Graph Representation 8

3.2.1 Ordered Binary Decision Graphs

Let X be a set containing k boolean variables. A boolean expression p over
X represents a function from B* to B. For a variable z in X, the following
equivalence, called the Shannon expansion of p around the variable x, holds:

p = (—z A plz = false]) V (z A plz := true]).

Since the boolean expressions p[z := true] and p[z := false] are boolean func-
tions with domain B*~!, the Shannon expansion can be used to recursively
simplify a boolean function. This suggests representing boolean functions as
decision graphs.

A decision graph is a directed acyclic graph with two types of vertices, terminal
vertices and internal vertices. The terminal vertices have no outgoing edges,
and are labeled with one of the boolean constants. Each internal vertex is
labeled with a variable in X, and has two outgoing edges, a left edge and a
right edge. Every path from an internal vertex to a terminal vertex contains,
for each variable z, at most one vertex labeled with z. Each vertex v represents
a boolean function r(v). Given an assignment s of boolean values to all the
variables in X, the value of the boolean function r(v) is obtained by traversing
a path starting from v as follows. Consider an internal vertex w labeled with
z. If s(x) is 0, we choose the left-successor; if s(z) is 1, we choose the right-
successor. If the path terminates in a terminal vertex labeled with 0, the value
s(r(v)) is 05 if the path terminates in a terminal vertex labeled with 1, the value
s(r(v)) is 1.

Ordered decision graphs are decision graphs in which we choose a linear order
< over X, and require that the labels of internal vertices appear in an order
that is consistent with <.

Ordered Binary Decision Graph

Let X be a finite set of propositions, and < be a total order over X. An
ordered binary decision graph B over (X, <) consists of (1) [Vertices] a finite
set V of vertices that is partitioned into two sets; internal vertices V¥ and
terminal vertices V7, (2) [Root] a root vertex v! in V, (3) [Labeling] a
labeling function label : V — X U B that labels each internal vertex with
a variable in X, and each terminal vertex with a constant in B, (4) [Left
edges] a left-child function left : VY + V that maps each internal vertex v
to a vertex left(v) such that if left(v) is an internal vertex then label(v) <
label(left(v)), and (5) [Right edges] a right-child function right : VN — V
that maps each internal vertex v to a vertex right(v) such that if right(v)
is an internal vertex then label(v) < label(right(v)).

The requirement that the labels of the children are greater than the label of a
vertex ensures that every BDG is a finite and acyclic. Note that there is no re-
quirement that every variable should appear as a vertex label along a path from

Symbolic Graph Representation 9

o Lo fod [of fof o] Lo [a] [of o] Lo [x][n][u][r][s]

Figure 3.3: Ordered Binary Tree for (z A y) V (' A y')

the root to a terminal vertex, but simply that the sequence of vertex labels along
a path from the root to a terminal vertex is monotonically increasing according
to <. The semantics of BDGs is defined by associating boolean expressions with
the vertices.

Boolean Function of a BDG

Given a BDG B over (X, <), let r be a function that associates each element
of V with a boolean function over X such that r(v) equals label(v) if v is a
terminal vertex, and equals

(=label (v) A r(left(v))) V (label(v) A r(right(v)))

otherwise. Define r(B) = r(v!) for the root v’.

Example 3.2 [Binary decision graphs] A boolean constant is represented by a
BDG that contains a single terminal vertex labeled with that constant. Fig-
ure 3.3 shows one possible BDG for the expression (z A y) V (z' A y') with the
ordering z < y < ' < y'. The left-edges are labeled with 0, and the right-edges
are labeled with 1. The BDG of Figure 3.3 is, in fact, a tree. Figure 3.4 shows a
more compact BDG for the same expression with the same ordering of variables.
[|

Exercise 3.9 {T3} [Satisfying assignments] Write an algorithm that, given a
BDG B over (X, <), outputs an assignment s to X such that s satisfies 7(B).
Write an algorithm that, given a BDG B over (X, <), outputs the number
of distinct assignments s to X such that s satisfies r(B). What are the time
complexities of your algorithms? W

Two BDGs B and C' are isomorphic if the corresponding labeled graphs are
isomorphic. Two BDGs B and C are equivalent if the boolean expressions r(B)

Symbolic Graph Representation 10

Figure 3.4: Ordered Binary Decision Diagram for (z A y) V (z' A ¢')

and r(C) are equivalent. If B is a BDG over (X, <), and v is a vertex of B, then
the subgraph rooted at v is also a BDG over (X, <). Two vertices v and w of
the BDG B are isomorphic, if the subgraphs rooted at v and w are isomorphic.
Similarly, two vertices v and w are equivalent, if the subgraphs rooted at v and
w are equivalent.

Example 3.3 [Isomorphic and equivalent BDGs] The binary decision graphs of
Figures 3.3 and 3.4 are not isomorphic, but are equivalent. In Figure 3.3, the
subgraph rooted at vertex vz is a BDG that represents the boolean expression
z' A y'. The subgraphs rooted at vertices vs, v4, and vy, are isomorphic. On
the other hand, the vertices vs and vg are not isomorphic to each other. il

Remark 3.2 [Isomorphism and Equivalence of BDGs] Let B and C be two BDGs
over a totally ordered set (X, <). Checking whether B and C are isomorphic
can be performed in time linear in the number of vertices in B. Isomorphic
BDGs are equivalent. However, isomorphism is not necessary for equivalence,

as evidenced by the two nonisomorphic, but equivalent, BDGs of Figures 3.3
and 3.4. B

3.2.2 Ordered Binary Decision Diagrams

An ordered binary decision diagram (BDD) is obtained from a BDG by applying
the following two steps:

1. Identify isomorphic subgraphs.
2. Eliminate internal vertices with identical left and right successors.

Each step reduces the number of vertices while preserving equivalence. For in-
stance, consider the BDG of Figure 3.3. Since vertices v3 and v4 are isomorphic,
we can delete one of them, say v4, and redirect the right-edge of the vertex v; to
vs. Now, since both edges of the vertex v; point to vs, we can delete the vertex
v1 redirecting the left-edge of the root vg to vs. Continuing in this manner, we
obtain the BDD of Figure 3.4. It turns out that the above transformations are
sufficient to obtain a canonical form.

Symbolic Graph Representation 11

Ordered Binary Decision Diagram

An ordered binary decision diagram over a totally ordered set (X, <) is an
ordered binary decision graph B over (X, <) with vertices V and root v’
such that (1) [No isomorphic subgraphs] if v and w are two distinct vertices
in V, then v is not isomorphic to w, and (2) [No redundancy] for every
internal vertex v, the two successors left(v) and right(v) are distinct.

The next two proposition assert the basic facts about representing boolean ex-
pressions using BDDs: every boolean function has a unique, upto isomorphism,
representation as a BDD.

Proposition 3.1 [Existence of BDDs] If p is a boolean expression over the set
X of propositions and < is a total order over X then there is a BDD B over
(X, <) such that r(B) and p are equivalent.

Proposition 3.2 [Canonicity of BDDs] Let B and C be two BDDs over an or-
dered set (X, <). Then, B and C are equivalent iff they are isomorphic.

Exercise 3.10 {T5} [Existence and canonicity] Prove Proposition 3.1 and Propo-
sition 3.2. W

For a boolean function p and ordering < of variables, let B, ~ be the unique
BDD B over (X, <) such that r(B) and p are equivalent.

Remark 3.3 [Checking Equivalence, Satisfiability, and Validity] Checking equiv-
alence of two BDDs, with the same variable ordering, corresponds to checking
isomorphism, and hence, can be performed in time linear in the number of ver-
tices. The boolean constant 0 is represented by a BDD with a single terminal
vertex labeled with 0, and the boolean constant 1 is represented by a BDD
with a single terminal vertex labeled with 1. A boolean expression represented
by the BDD B is satisfiable iff the root of B is not a terminal vertex labeled
with 0. A boolean expression represented by the BDD B is valid iff the root of
B is a terminal vertex labeled with 1. Thus, checking satisfiability or validity
of boolean expressions is particularly easy, if we use BDD representation. Con-
trast this with representation as propositional formulas, where satisfiability is
NP-complete and validity is coNP-complete. B

The BDD of a boolean expression has the least number of vertices among all
BDGs for the same expression using the same ordering.

Proposition 3.3 [Minimality of BDDs] Let B be an BDD over an ordered set
(X,=). If C is a BDG over (X, <) and is equivalent to B, then C contains at
least as many vertices as B.

Symbolic Graph Representation 12

0 1

Ordering: z <y <2’ <9/ Ordering: z <z' <y <y’

Figure 3.5: Two BDDs for (z < y) A (' < o).

Exercise 3.11 {T2} [Support sets] Let p be a boolean function over variables
X. The support-set of p contains those variables x in X for which the boolean
functions p[z := true] and p[z := false] are not equivalent. Show that a variable
z belongs to the support-set of p iff no vertex in the BDD B, is labeled with
z. B

The size of the BDD may be exponential in the number of variables. Further-
more, one ordering may result in a BDD whose size is linear in the number of
variables, while another ordering may result in a BDD whose size is exponential
in the number of variables.

Example 3.4 [Variable ordering and BDD size] The size of the BDD representing
a given predicate depends on the choice of the ordering of variables. Consider
the predicate (z < y) A (&' < y'). Figure 3.5 shows two BDDs for two
different orderings. W

Exercise 3.12 {T2} [Representation using BDDs] Consider the boolean expres-
sion

(.’El N o N 323) \Y (‘!33'2 /\.’L‘4) \Y (—|.Z'3 A .’E4)

Choose a variable ordering for the variables {z1,z2, 23,24}, and draw the re-
sulting BDD. Can you reduce the size of the BDD by reordering the variables?
[|

Symbolic Graph Representation 13

Exercise 3.13 {T3} [Exponential dependence on variable-ordering] Consider the
set X = {z1,22,... 22} with 2k variables. Consider the boolean expression

p: (.’L‘l A .Z'z) \% (1’3 A .CL'4) V-V (1'219—1 A .Z'Qk).

Show that (1) for the ordering 1 < z3 < - -- < ®ay, the resulting BDD has 2k+2
vertices, and (2) for the ordering x1 < Tp11 < T2 < Tpyo < -+ < Tg < Tay, the
resulting BDD has 2¢+1 vertices. B

Given a boolean expression p over X, the linear order < over X is optimal for
p if, for every linear order <’ over X, B, « has at least as many vertices as
By, <. Choosing an optimal ordering can lead to exponential saving, however,
computing the optimal oredring itself is computationally hard.

Proposition 3.4 [Complexity of optimal ordering] The problem of checking, given
a BDD B over (X, <), whether the ordering < is optimal for r(B), is coNP-
complete.

There are boolean functions whose BDD representation does not depend on the
chosen ordering, and the BDD representation of some functions is exponential
in the number of variables, irrespective of the ordering.

Example 3.5 [BDD for parity] Let X be a set of propositions. Consider the
parity function Parity: for an assignment s, s(Parity) = 1 if the number of
variables z with s(z) = 1 is even, and s(Parity) = 0 if the number of variables x
with s(z) = 1is odd. If X contains k variables, then irrespective of the chosen
ordering <, Bpgrity,< contains 2k + 1 vertices. W

Exercise 3.14 {T3} [BDD for addition] Let X be the set {zq, z1, Yo, y1, outo, out1, carry}.
Choose an appropriate ordering of the variables, and construct the BDD for the
requirement that the output outqoutg, together with the carry bit carry, is the

sum of the inputs 2129 and y1yo. Is your choice of ordering optimal? B

Exercise 3.15 {T5} [BDD for multiplication] Let X contain 2k variables {zo,...,Zx_1,Y0,---,Yk—1}-
For 0 <4 < 2k, let Mult; denote the boolean function that denotes the i-th bit

of the product of the two k-bit inputs, one encoded by the bits z; and another

encoded by the bits y;. Prove that, for every ordering < of the variables in

X, there exists an index 0 < 4 < 2k such that the BDD Bjgpy;, < has at least

2k/8 vertices. This shows that BDDs do not encode multiplication compactly

irrespective of the variable ordering. l

Exercise 3.16 {T3} [Deterministic finite automata and BDDs] Given a variable
ordering, a boolean formula can be defined as a regular language over B. A
boolean expression p defines the region [p] that contains all states s that satisfy

Symbolic Graph Representation 14

p. Let 21 < ... <z be the enumeration of the variables according to <. Each
state s is an assignment to the variables in X, and can be represented by the
vector s(x1) ... s(zy) over B. Thus, [p] is a language over B that contains words
of length k. Since [p] is a finite language, it is regular, and can be defined
by a deterministic finite automaton (DFA). DFAs also have canonical forms:
every regular language is accepted by a unique minimal DFA. This suggests
that we can use DFAs as a representation of boolean functions. (1) Give an
example of a boolean expression whose DFA representation is smaller than its
BDD representation. (2) Give an example of a boolean expression whose BDD
representation is smaller than its DFA representation. H

3.2.3 Operations on BDDs

Let us turn our attention to implementing regions as BDDs. Every vertex of
a BDD is itself a BDD rooted at that vertex. This suggests that a BDD can
be represented by an index to a global data structure that stores vertices of all
the BDDs such that no two vertices are isomorphic. There are two significant
advantages to this scheme, as opposed to maintaining each BDD as an individual
data structure. First, checking isomorphism, or equivalence, corresponds to
comparing indices, and does not require traversal of the BDDs. Second, two
non-isomorphic BDDS may have isomorphic subgraphs, and hence, can share
vertices.

Let X be an ordered set of k propositions. The type of states is then BF.
The type of BDDs is bdd, which is a pointer or an index to the global data
structure BddPool. The type of BddPool is set of bddnode, and it stores
the vertices of BDDs. The vertices of BDDs have type bddnode which equals
([1..k] x bdd x bdd) UB. The type bddnode supports the following operations:

Label: bddnode — [1..k]. The operation Label(v), for an internal vertex v, re-
turns the index of the variable labeling v.

Left: bddnode — bdd. The operation Left(v), for an internal vertex v, returns
a pointer to the global data structure BddPool that points to the left-
successor of v.

Right: bddnode — bdd. The operation Right(v), for an internal vertex v, re-
turns a pointer to the global data structure BddPool that points to the
right-successor of v.

The type set of bddnode, apart from usual operations such as Insert and
IsMember, also supports

Indez : bddnode — bdd. For a vertex v in BddPool, Index(v) returns a pointer
to v.

Symbolic Graph Representation 15

function MakeVertex

Input: i: [1..k], By, By : bdd.

Output: B : bdd such that r(B) is equivalent to (—z; A 7(Bp)) V
(z; A\ r(By)).

begin
if By = B; then return By fi;
if =IsMember ((i, Bo, B1), BddPool) then
Insert((i, By, By), BddPool) fi;
return Indez((i, By, B1))
end.

Figure 3.6: Creating BDD vertices

[]: set of bddnode x bdd — bddnode. The operation BddPool[B] returns
the root vertex of the BDD B.

For such a representation, given a pointer B of type bdd, we write r(B) to
denote the propositional formula associated with the BDD that B points to. To
avoid duplication of isomorphic nodes while manipulating BDDs, it is necessary
that new vertices are created using the function MakeVertex of Figure 3.6. If
no two vertices in the global set BddPool were isomorphic before an invocation
of the function MakeVertex, then even after the invocation, no two vertices in
BddPool are isomorphic. The global set BddPool initially contains only two
terminal vertices, and internal vertices are added only using MakeVertex.

Exercise 3.17 {T3} [BDD with complement edges] A binary decision graph with
complement edges (CBDG) is a binary decision graph B with an additional
component that associates a boolean value with each right-edge. The predicate
r(v), for an internal vertex v, is redefined so that r(v) equals (—label(v) A
r(left(v))) V (label(v) A r(right(v))) if the value associated with the right-edge
of v is 1, and (—label(v) A r(left(v))) V (label(v) A —r(right(v))) otherwise.
Thus, when the right-edge is labeled with 0, we negate the function associated
with the right-child. (1) Define binary decision digrams with complement edges
(CBDD) as a subclass of CBDGs such that every boolean function has a unique
representation as a CBDD. (2) Is there a function whose CBDD representation
is smaller than its BDD representation? (3) Suppose we store vertices of all the
functions in the same global pool. Show that CBDD representation uses less
space than BDDs. (4) Show that the canonicity property is not possible if we
allow complementing left-edges also. B

To be able to build a BDD-representation of a given predicate, and to imple-
ment the primitives of the symbolic reachability algorithm, we need a way to

Symbolic Graph Representation 16

construct conjunctions and disjunctions of BDDs. We give a recursive algorithm
for obtaining conjunction of BDDs. The algorithm is shown in Figure 3.7.

Consider two vertices v and w, and we wish to compute the conjunction r(v) A
r(w). If one of them is a terminal vertex, then the result can be determined
immediately. For instance, if v is the terminal vertex labeled with false, then
the conjunction is also false. If v is the terminal vertex labeled with true, then
the conjunction is equivalent to r(w).

The interesting case is when both v and w are internal vertices. Let i be the
minimum of the indices labeling v and w. Then, z; is the least variable in the
support-set of r(v) A r(w). The label of the root of the conjunction is ¢, the
left-successor is the BDD for (r(v) A r(w))[z; := 0], and the right-successor is
the BDD for (r(v) A r(w))[z; := 1]. Let us consider the left-successor. Observe
the equivalence

(r(v) A r(w))[z; :==0] = r()[z; :=0] A r(w)[z; :=0] (1).

If v is labeled with 4, the BDD for r(v)[z; := 0] is the left-successor of v. If
the label of v exceeds 4, then the support-set of r(v) does not contain z;, and
the BDD for r(v)[z; := 0] is v itself. The BDD for r(w)[z; := 0] is computed
similarly, and then the function Conj is applied recursively to compute the
conjunction (1).

The above described recursion may call the function Conj repeatedly with the
same two arguments. To avoid unnecessary computation, a table is used that
stores the arguments and the corresponding result of each invocation of Conj.
When Conj is invoked with input arguments v and w, it first consults the table
to check if the conjunction of r(v) and r(w) was previously computed. The
actual recursive computation is performed only the first time, and the result is
entered into the table.

A table data structure stores values that are indexed by keys. If the type of
values stored is value, and the type of the indexing keys is key, then the type
of the table is table of key x value. The abstract type table supports the
retrieval and update operations like arrays: T'[¢] is the value stored in the table
T with the key ¢, and the assignment T[¢] := m updates the value stored in T'
for the key i. The constant table EmptyTable has the default value L stored
with every key. Tables can be implemented as arrays or as hash-tables. The
table used by the algorithm uses a pair of BDDs as a key, and stores BDDs as
values.

Let us analyze the time-complexity of Algorithm 3.2. Suppose the BDD pointed
to by By has m vertices and the BDD pointed to by B; has n vertices. Let us
assume that the implementation of the set BddPool supports constant time
membership tests and insertions, and the table Done supports constant-time

Symbolic Graph Representation 17

Algorithm 3.2 [Conjunction of BDDs|

Input: By, B; : bdd.

Output: B : bdd such that r(B) is equivalent to r(Bgy) A r(By).
Local: Done : table of (bdd x bdd) x bdd.

begin
Done := EmptyTable;
return Congj(By, By)
end.

function Conj

input By, B; : bdd

output B : bdd

local Vo, V1 bddnode; B7 Boo, BOl; BlO; Bll : bdd, i,j: []. . k]

begin
vo := BddPool[By];
vy := BddPool[By];
if 9 = 0 or v; = 1 then return By fi;
if v9 = 1 or v1 = 0 then return B, fi;
if Done[(By, B1)] #.L then return Done[(By, B1)]
if Done[(B1,By)] #.L then return Done[(B1, By)]
1= Label(vo); Bo() = Leﬂ(vo); B()1 = R’ight(’l)o);
j = Label(vl); Bl() = Left(vl); BH = Right(vl)
if i = j then B := MakeVertex(i,Conj(Bgo,B10), Conj(Bo1,B11))

fi;

if i < j then B := MakeVertex(j,Conj(Boo,B1),Conj(Bo1,B1)) fi;
if i > j then B := MakeVertex(j,Conj(Bo,B10),Conj(Bo,B11)) fi;
Done[(Bo, B1)] := B;
return B
end.

?

fi
fi;

Figure 3.7: Conjunction of BDDs

Symbolic Graph Representation 18

creation, access, and update. Then, within each invocation of Conj, all the
steps, apart from the recursive calls, are performed within constant time. Thus,
the time-complexity of the algorithm is the same, within a constant factor, of
the total number of invocations of Conj. For any pair of vertices, the function
Conj produces two recursive calls only the first time Conj is invoked with this
pair as input, and zero recursive calls during the subsequent invocations. This
gives an overall time-complexity of O(m - n).

Proposition 3.5 [BDD conjunction] Given two BDDs By and By, Algorithm 3.2
correctly computes the BDD for 7(By) A r(B1). If the BDD pointed to by
By has m vertices and the BDD pointed to by By, has n vertices, then the
time-complexity of the algorithm is O(m - n).

Exercise 3.18 {T3} [Quadratic lower bound] The time complexity of Algorithm 3.2
is proportional to the product of the number of vertices in the component BDDs.
Show that the size of the BDD representing conjunction of two BDDs grows as
the product of the sizes of the components, in the worst case. l

Exercise 3.19 {T3} [Cost of recomputation] Show that, removing the update
step Done[(By, By)] := B from Algorithm 3.2, makes the worst-case time com-
plexity exponential. B

Exercise 3.20 {T3} [From expressions to BDDs] Give an algorithm to construct
the BDD-representation of a boolean expression given as a propositional for-
mula. What is the time-complexity of the algorithm? B

Exercise 3.21 {T3} [Substitution in BDDs] (1) Let p be a propositional formula,
x be a variable, and m € B be a value. Give an algorithm to construct the
BDD representation of p[z := m] from the BDD-representation of p. (2) Give
algorithms for computing the disjunction and existential-quantifier elimination
for BDDs. B

Exercise 3.22 {T3} [BDD operations] The control schema underlying Algorithm 3.2
works for both conjunction and disjunction. What are the conditions on a binary
operator on BDDs that make that control schema work? Wl

3.2.4 Symbolic Search using BDDs

We have all the machinery to implement the symbolic search algorithm using
BDDs as a representation for symbolic regions. It can be used immediately to
solve the propositional invariant verification problem, and can be adopted to
solve the enumerated invariant verification problem.

Symbolic Graph Representation 19

Exercise 3.23 {T3} [Symbolic verification of enumerated modules] An enumer-
ated variable whose type contains k values can be encoded by [log k] boolean
variables. Give an algorithm which, given an enumerated invariant verification
problem (P,p), constructs a propositional invariant verification problem (Q, q)
such that (1) the answers to the two verification problems are identical, and (2)
the description of the problem (Q, q) is at most [log k] times the description of
(P,p), where every variable of P has an enumerated type with at most k values.
[|

We will consider some heuristics that are useful in different steps of applying
Algorithm 3.1 for solving the invariant verification problem using BDDs.

Given the propositional invariant verification problem (P, p), the first step is to
construct the symbolic representations for the target region p, the initial pred-
icate ¢! of P, and the transition predicate ¢© of P. The BDD representations
of a boolean expression can be exponentially larger, and is very sensitive to the
ordering of variables. Heuristics are usually tailored to keep the representation
of ¢7 small.

Computing with the frontier

Recall the symbolic algorithm of Figure 3.2 that searches the input graph in a
breadth-first manner. A modified version of the algorithm is shown in Figure 3.8.
In addition to the region o containing the states known to be reachable, Algo-
rithm 3.3 maintains an additional region o" called the frontier. In each iteration
of the repeat loop, the frontier " equals the subset of the reachable region o®
containing only the newly discovered states. More precisely, after j iterations
of the repeat loop, the region o® equals post<7(c'), and the frontier o¥ equals
postSI (o) \ post=i—1(oT). Consequently, to find out which states are reachable
in j 4+ 1 rounds, it suffices to compute the successor region of the frontier o'
rather than the reachable region ¢. In practice, Algorithm 3.8 typically out-
performs Algorithm 3.2 in terms on computational resource requirements. The
correctness statement for Algorithm 3.3 is identical to the one for Algorithm 3.1.

Theorem 3.2 [Symbolic graph search using the frontier] Let G be a transition
graph, and let o7 be a region of G. Algorithm 3.3, if it terminates, correctly
solves the reachability problem (G,o7). Furthermore, if there exists j € N such
that (1) every reachable state is the sink of some initialized trajectory of length
at most j (i.e. o = (Ui < j. posti(a?))), or (2) some state in the target region
o is the sink of some initialized trajectory of length j (i.e. ol N posti(al) is
nonempty), then the algorithm terminates within j iterations of the repeat loop.

Remark 3.4 [Optimizing the frontier computation] For the correctness of Algo-
rithm 3.3, it suffices if, after j iterations of the repeat loop, the frontier ¢4 is any

Symbolic Graph Representation 20

Algorithm 3.3 [Symbolic Search using the Frontier]

Input: a transition graph G, and a region o’ of G.
Output: the answer to the reachability problem (G, o7).

T

input G: symgraph; o': symreg;

local of: symreg; o': symreg;
begin
o® := InitReg(Q); of := o&;
repeat

if oF N o™ # EmptySet then return Yes fi;
if PostReg(c¥,G) C of then return No fi;
of := oF U PostReg(a¥', G);
of := 0%\ PostReg(c¥,Q)
forever

end.

Figure 3.8: Symbolic search using the frontier

region that contains at least post<J (o) \ post=i=1(o') and at most post=J (o).
That is, the frontier should at least contain the newly discovered states, and
should not contain any state not known to be reachable. This gives us freedom
to choose the frontier so as to reduce the sise of its representation. l

Choice of variable ordering

First, we need to choose an ordering < of the variables in Xp U X5. One of
the steps in the computation of the successor-region is to rename all the primed
variables to unprimed variables. This renaming step can be implemented by
renaming the labels of the internal vertices of the BDD if the ordering of the
primed variables is consistent with the ordering of the corresponding unprimed
variables. This gives us our first rule for choosing <;

Variable Ordering Rule 1: For a reactive module P, choose the order-
ing < of the variables X pUX}, so that for all variables z,y € Xp,
z<yiff &' <y’

As the second rule of thumb to minimize the size of B,r, a variable should
appear only after all the variables it depends on:

Variable Ordering Rule 2: For a reactive module P, choose the or-
dering < of the variables Xp U X}, so that (1) for every atom U
in atomsp, if 2 € readXy and y € ctrXy then z < ', and (2) if
the variable y awaits the variable z then z' < y'.

Symbolic Graph Representation 21

Since the set of atoms of a module is consistent, there exists an ordering that
satisfies both the above rules.

Exercise 3.24 {T2} [Disjoint Dependence] Let p be a boolean function with
support-set X, and let <1= x1,Z2,...2; be an optimal ordering of X for p.
Let ¢ be a boolean function with support-set Y, and let <o= y1,¥y2...y; be an
optimal ordering of Y for ¢q. Suppose X; N X> is empty.

(1) Show that the ordering z1, s, ...%k, y1,Y2 - .-y is an optimal ordering for
pV q as well as for p A ¢q. (2) If the optimal BDD for p has m; vertices and the
optimal BDD for ¢ has my vertices, how many vertices does the optimal BDD
for p A ¢ have?

Exercise 3.24 suggests that the variables that are related to each other should
be clustered together. In particular, instead of ordering all the primed variables
after all the unprimed variables, we can try to minimize the distance between a
primed variable and the unprimed variables it depends on.

Variable Ordering Rule 3: For a reactive module P, choose the or-
dering < of the variables Xp U X5 so as to minimize the sum of
the differences j — 4 such that j-th variable according to < is a
primed variable z' that depends on the i-th variable according
to <.

Exercise 3.25 {P2} [Ordering of module variables] The BDD for the transition
relation of an atom is the disjunction of the BDDs for individual guarded as-
signments in its update command. Give a heuristic to order the variables that
attempts to exploit this structure. Write an algorithm that, given a module P,
constructs a variable ordering according to the heuristics discussed so far. B

Partitioned transition relation

Another approach to constructing the BDD for the transition predicate is to
avoid building it a priori.

Conjunctive Partitioning

A conjunctively-partitioned representation of a boolean expression p is a set
{B4i,... By} of BDDs such that p is equivalent to the conjunction r(B;) A
-+ A r(Byg).

The total number of vertices in a conjunctively partitioned representation can be
exponentially smaller than the number of vertices in the BDD for p itself. Since
the transition predicate of a module is the conjunction of the update commands
of its atoms, it leads to a natural conjunctively partitioned representation. This

Symbolic Graph Representation 22

approach avoids building the BDD for the entire transition relation. Let us
revisit the computation of the reachable region using symbolic search. Starting
from the initial predicate gy = ¢!, we successively compute the predicates g;
using

i1 = 3X.q A DX =X] (2.

The computation (2) involves obtaining the conjunction ¢; A ¢%. If ¢* is con-
junctively partitioned, ¢ A --- A g}, then we need to compute the conjunction
GANGE A A q,?. Thus, it appears that we have only postponed the complex-
ity of conjoining multiple BDDs, and in fact, we are now required to construct
the conjunction at each step. The advantage is that, the size of By, 5 ,r can be
much smaller than the size of B,r. This is because ¢; contains only reachable
states, and thus constrains the source states for ¢”. Thus, the conjunctively
partitioned representation is an on-the-fly symbolic representation. While com-
puting the BDD for the conjunction ¢; A g&' A - - qkT, we do not need to construct
Bz first. We can compute the conjunction from left to right, starting with the
construction of By, » 7.
Remark 3.5 [Two-level representations] The idea of on-the-fly representation of
the transition relation can be extended further. Each conjunct ¢} , representing
the update command of a single atom, is a disjunction of predicates obtained
from individual guarded assignments. When the number of guarded assignments
in a single update command is large, it may not be suitable to construct the BDD
for the update command, and maintain it in a disjunctively-partitioned form.
It is possible to maintain two-level, or even multi-level, BDD-representation of
the transition predicate, and manipulate it only during the computation of (2).
|

Early quantifier elimination

Observe the equivalence
dxe.pANgqg = p A3dz.gq if z is not in the support-set of p

If z is a support variable for ¢, then B3, , can have less number of vertices than
B,. This implies that to compute B3, ;4 from B, and By, if z is not a support
variable of p, the best strategy is to first compute B3;. , and then conjoin it with
B,,. This strategy to apply the projection operation before conjunction is called
early quantifier-elimination.

The computation (2) requires the computation of the projection of a conjunction
of BDDs onto a set of variables, and thus, demands the use of early quantifier-
elimination. It is even more effective if we are computing the reachable region of
the reduced transition graph of a module P. Then the transition predicate ¢”
is itself a projection of the transition predicate of Gp onto the latched variables.

Symbolic Graph Representation 23

The region predicate g¢; is an expression over the latched variables latchX p, and
(2) is rewritten as

g1 = (3Xp.3Xp\latchX's.q; A gl A -+ A g})[latchX s := latchX p]

Example 3.6 [Early-quantifier elimination in computing PostReg] Consider a
synchronous 3-bit counter that is incremented in every round. The variables of
the module are outg, out1, out:. The update of the bit outq is specified by

qt: outy + —outo,
of the bit out; by
gl : out) + outy ® outy
and of the bit outy by
@ : outy & (outy A outr) ® outs,

where @ denotes exclusive-or operation. The transition predicate is the con-
junction ¢ A ¢F' A ¢F. A good variable-ordering according to our rules is

outo < outy < outy < out] < outs < outs.

We choose not to construct ¢ a priori, but to maintain it in a conjunctively
partitioned form. Consider a predicate p, and we wish to compute the predicate

Houto, outy, outa}. (0 A gf A gl Agl). (1)

If we first compute the conjunction p A ¢f, we cannot eliminate any of the
variables. However, since conjunction is associative and commutative, we can
choose the ordering of the conjuncts. In particular, if we first conjunct p and
¢F, then none of the remaining conjuncts depend on outs, and hence, we can
eliminate outs. Thus, (1) can be rewritten to

Jouto. (qf A Jouts. (¢F A Jouts. (g2 A p))).

Thus, the support-sets of various BDDs are examined to determine an ordering
of the conjuncts so as to eliminate as many variables as early as possible. B

Exercise 3.26 {T3} [Don’t care simplification] This exercise describes an effec-
tive heuristic for simplifying each conjunct of the transition relation with respect
to the current reachable region Given predicates p and g over the set X of vari-
ables, the predicate r over X is said to be a p-simplification of ¢if p — (¢ +)
is valid. Thus, a p-simplification of ¢ must include states that satisfy both p
and ¢, must exclude states that satisfy p but not ¢, and can treat the remaining
states as “don’t care” states. Observe that a p-simplification of ¢ is not unique,

Symbolic Graph Representation 24

and its BDD representation can have much smaller size compared to the BDD
representation of q.

(1) Give an algorithm that computes, given the BDD representations of two
predicates p and ¢, BDD representation of some p-simplification of q. The
objective should be to reduce the size of the output BDD by exploiting the
freedom afforded by “don’t care” when p is false. (2) Show that the conjunction
gAgi A--- q;f during the computation of the successor region can be replaced by
g A r1 A -1 where each r; is a g-simplification of the conjunct g7. Observe
that this strategy simplifies different conjuncts independently of each other,
rather than sequentially as in early quantifier elimination, and hence, is not
sensitive to the ordering of the conjuncts. l

Dynamic variable reordering

As Algorithm 3.1 computes the reachable region using successive approxima-
tions, the BDD representing ¢; grows with 4, and successive applications of
PostReg require more and more time. If the number of vertices exceeds beyond
a threshhold, we can attempt to reduce its size by choosing a new ordering of
the variables. This step is called dynamic variable reordering.

If we want to switch the ordering of two adjacent variables, its effect on the
BDD is local: if we switch the variables z; and x;41, then the structure of the
BDD for vertices labeled less than ¢ or greater than ¢ + 1 does not change.

Exercise 3.27 {T4} [Swapping of Variables] Consider a boolean function p, and
its Bp, < using the linear order 1 < -+ < xp. For 1 <i < n, let <[;/;41) be the
linear order

T1 <[ifir1] " R[ifi+1] Tit1 <[ifi+1] Ti <[i/i+1] Tit+1 <[i/i+1] """ Tn
obtained by swapping the order of x; and z;;. Show that (1) a vertex of
B, _ that is labeled with an index j that is greater than ¢ 41 is also a vertex in
Byp,<:)i41» and (2) the subgraph of B, < containing vertices labeled with indices
less than ¢ is isomorphic to the subgraph of By <. .., containing vertices labeled

with indices less than 7. Give an algorithm to construct B, <, What is the
complexity of your algorithm? H

i1]"

This suggests a variety of greedy heuristics for reordering. Suppose ¢ is the index
such that maximum number of vertices of B are labeled with . Then, we can
try swapping z; with z;1 or x; with x;_1. If one of the swaps reduces the size
of the BDD, we choose the resulting order. Alternatively, one can try successive
local swaps till BDD size is reduced. Note that if we update the ordering of
the variables for one BDD, all the other BDDs need to be updated. Thus,
dynamic variable reordering is a costly step, and is invoked only in extreme
cases. Efficient memory management techniques for garbage collection of BDD-
vertices not in use is also essential in practice.

Symbolic Graph Representation 25

Appendix: Notation
Orders and fixpoints

A binary relation < over a set A is a preorder if it is reflexive and transitive,
and a partial order if it is reflexive, transitive, and antisymmetric. Let < be a
preorder on A, and let > be the inverse of <. If < is a partial order, then so
is »; if < is an equivalence, then > = <. The preorder < induces the equivalence
<N >, which is called the kernel of <. Given B C A and a € A, we write B < a
if for all b € B, b < a; in this case, a is an upper <-bound for B. An upper
>-bound for B is called a lower <-bound for B. Moreover, a is a least upper
=<-bound for B if (1) a is an upper <-bound for B, and (2) a is a lower <-bound
for the set of upper <-bounds for B. A least upper >-bound is called a greatest
lower <-bound. If < is a partial order, then all least upper <-bounds and
all greatest lower <-bounds are unique. The partial order < is complete if all
subsets of A have least upper <-bounds (and hence greatest lower <-bounds);
in this case we write \/ B for the least upper <-bound for B, and A B for the
greatest lower <-bound for B. Every complete partial order < has the unique
lower <-bound \/ @ for A, called bottom, and the unique upper <-bound A 0
for A, called top. For example, the subset relation C is a complete partial order
on the powerset 2¢ of any set C. In this case, the least upper C-bound for a
set E of subsets of C' is the union |J E; the greatest lower C-bound for E is the
intersection (] E; the bottom is the empty set §; and the top is the entire set C.

Let < be a complete partial order on A with the bottom L and the top T, and
let f be a function from A to A. The function f is monotonic if for all a,b € A,
if a < bthen f(a) < f(b). The argument a € A is a fixpoint of f if f(a) = a. If
f is monotonic, then < is a complete partial order on the fixpoints of f.! The
bottom fixpoint, denoted pf, is called the least fixpoint of f; the top fixpoint,
denoted v, is the greatest fixpoint of f. The function f is \/-continuous if for all
B C A, f(\VB) =V f(B), and A-continuousiffor all B C A, f(A B) = A\ f(B).
If f is monotonic and \/-continuous, then uf = \/{f*(L) | & € 0}.23 If, in
addition, A is countable, then uf = \/{f!(L) | i € N}; if A is finite, then there
is a natural number i such that uf = f{(L). Analogous results apply to the
greatest fixpoint of a monotonic and A-continuous function.

Exercise 3.28 {} [Fixpoint theorems] Prove all claims made in the previous
paragraph. l

1This is the Knaster-Tarski fixpoint theorem.
2By O, we denote the set of ordinals. For a limit ordinal X, let f*(a) = \/{f*(a) | & < A}.
3This is the Kleene fixpoint theorem.

