Contents

2 Invariant Verification 1
2.1 Transition Graphs oo .. 2
2.1.1 Definition of Transition Graphs 2
2.1.2 From Reactive Modules to Transition Graphs 4
2.1.3 The Reachability Problem 10

2.2 Invariants Lo e e 12
2.2.1 The Invariant-Verification Problem 13
2.2.2 From Invariant Verification to Reachability 19
2.2.3 Monitors 20

2.3 Graph Traversal 24
2.3.1 Reachability Checking 24
2.3.2 Enumerative Graph and Region Representations 28
2.3.3 Invariant Verification. 32
2.3.4 Three Space Optimizations 36

2.4 State Explosion®, 42
2.4.1 Hardness of Invariant Verification. 43
2.4.2 Complexity of Invariant Verification 46

2.5 Compositional Reasoning 49
2.5.1 Composing Invariants 49
2.5.2 Assuming Invariants 53

Computer-Aided Verification
© Rajeev Alur and Thomas A. Henzinger September 17, 1999

Chapter 2

Invariant Verification

In this chapter, we study the formulation and verification of the simplest but
most important kind of system requirements, called invariants. An invariant
classifies the states of a reactive module into safe and unsafe, and asserts that
during the execution of the module, no unsafe state can be encountered.

Invariant Verification 2

2.1 Transition Graphs

The information about a module which is necessary for checking invariants is
captured by the transition graph of the module. Consequently, invariant verifi-
cation is performed on transition graphs.

2.1.1 Definition of Transition Graphs

At every point during the execution of a system, the information that is neces-
sary to continue the execution is called the state of the system. The state of a
discrete system changes in a sequence of update rounds. Every possible state
change is called a transition of the system. The behaviors of a discrete system
can thus be captured by a directed graph whose vertices represent the system
states and whose edges represent the system transitions. Such a graph is called
a transition graph.

Transition graph

A transition graph G consists of (1) a set ¥ of vertices, (2) a subset o/ C &
of the vertices, and (3) a binary edge relation — C %2 on the vertices. The
vertices in ¥ are called states, the vertices in o are called initial states,
and the edges in — are called transitions. We refer to the set ¥ of states
as the state space of G. Every subset of states from X is called a region; in
particular, of is the initial region of G. Every binary relation on ¥ is called
an action; in particular, — is the transition action of G.

Properties of transition graphs

The following properties of transition graphs are important. First, the transition
action of every deadlock-free system is serial: for every state s, there is at least
one successor state ¢t with s — ¢. Second, the mathematical analysis of a system
is often simplified if the transition action is finitely branching: for every state s,
there are at most finitely many successor states ¢ with s — ¢. Third, if the
system may decide, in every update round, to leave the state unchanged, then
the transition action is reflexive: every state s is its own successor state; that is,
s — s. Last, systems are amenable to analysis by graph algorithms if the state
space is finite.

Serial, finitely branching, reflexive, finite transition graph

The transition graph G = (X,0!,—) is serial if (1) the initial region o is

nonempty and (2) the transition action — is serial. The transition graph G
is finitely branching if (1) the initial region o/ is finite and (2) the transition
action — is finitely branching. The transition graph G is reflexive if the
transition action — is reflexive. The transition graph G is finite if the state
space X is finite.

Invariant Verification 3

Figure 2.1: The transition graph G

Remark 2.1 [Finite implies finite branching] Every finite transition graph is
finitely branching. B

Trajectories of transition graphs

The execution of a discrete system follows a path in the corresponding transition
graph. Such a path starts in an initial state and proceeds through successive
transitions. We are interested only in the states that are encountered within
a finite number of transitions. The resulting finite paths are called initialized
trajectories.

Trajectory of transition graph

Let G = (%,07,—) be a transition graph. A trajectory of G is a nonempty
word 31..., over the alphabet ¥ of states such that s; — s;41 forall 1 <i <
m. The first state s; is the source, the last state s,, is the sink, and the
number m of states is the length of the trajectory 3;..,,,. The trajectory 31,
is an initialized trajectory of G if the source s; is an initial state of G. The
set of initialized trajectories of G, denoted Lg, is called the state language
of the transition graph G.

Remark 2.2 [Seriality implies trajectories of arbitrary length] Let G be a serial
transition graph, and let s be a state of G. For every positive integer 4, there is
at least one trajectory of G with source s and length i. In particular, for every
positive integer i, there is at least one initialized trajectory of G with length i.
It follows that for serial transition graphs G, the state language L is infinite.
|

Invariant Verification 4

Example 2.1 [Transition graph] Figure 2.1 shows a finite transition graph with
four states (sg, s1, s2, and s3). The two states so and s are initial, as is
indicated by the short arrows without source state. The transition graph G has
a total of six transitions. Since every state has at least one outgoing transition,
G is serial. The infinite state language L, includes the following four initialized
trajectories:

50

50508050
50505283
528352535353 52

The state language Ly is the regular set s§ U (s§s2(s4 s2)*s3). B

Remark 2.3 [Languages defined by transition graphs] For a transition graph G
with state space ¥, the state language L¢g is a language over the alphabet X.
We say that G defines the language Lg. If G is finite, then Lg is a regular
language. But not every subset of ¥* is definable by a transition graph with
state space X, and not every regular language is definable by a finite transition
graph. This is shown in the following exercise. B

Exercise 2.1 {T2} [Languages defined by transition graphs] Let A be an alpha-
bet, and let L C A* be a language over A. (a) Prove that the language L is
definable by a transition graph iff L is prefix-closed and fusion-closed. (Fusion
closure captures the fact that the system state determines the possible future
behaviors of the system.) (b) Prove that the language L is definable by a tran-
sition graph with the initial region A iff L is prefix-closed, fusion-closed, and
suffix-closed. (c) Prove that the language L is definable by a reflexive transition
graph iff L is prefix-closed, fusion-closed, and stutter-closed. B

2.1.2 From Reactive Modules to Transition Graphs

We associate with every reactive module a serial transition graph that captures
the behaviors of the module.

The states of a module

The state of a module between two rounds is determined by the values of all
module variables. This is because the possible outcomes of the next and all
future update rounds are determined solely by the current values of the module
variables, and do not depend on any previous values.

State space of a module

Let P be a reactive module. A state of P is a valuation for the set Xp of
module variables. We write X p for the set of states of P.

Invariant Verification)

Remark 2.4 [Existence of states] Every module has at least one state. The
empty module, with the empty set of module variables, has exactly one state.
|

The state s of a module is initial if after the initial round, all module variables
may have the values indicated by s. Consider a variable xz. If x is external,
then s can map z to any value of the appropriate type. If z is controlled
by an atom U, then all variables in awaitXy are initialized before z. In this
case, the initial value s(z) depends on the initial values of the awaited variables
of U. The dependence is specified by the initial command inity, which defines
a relation between the valuations for the primed awaited variables await X7, and
the valuations for the primed controlled variables ctrXy;. In the following, if s is
a valuation for a set X of unprimed variables, we write prime(s) for the valuation
for the set X' of corresponding primed variables such that prime(s)(z') = s(x)
for all variables z € X.

Initial region of a module

Let P be a reactive module, let s be a state of P, and let s' = prime(s).
The state s is an initial state of P if for every atom U of P,

(s'[awaitX (], s'[ctrX;]) € [inity].

We write oL, for the set of initial states of P.

Example 2.2 [Mutual exclusion] Recall Peterson’s solution to the asynchronous
mutual-exclusion problem from Figure 1.23. The module Pete has 3x2x3x2 =
36 states. Four of the states —s1, ss, s3, and s4,— are initial:

s1(pey) = outC, s1(x1) = true, s1(pcy) = outC, s1(xa) = true;

sa(pey) = outC, so(x1) = true, sa2(pcy) = outC, sa(x2) = false;

s3(pey) = outC, s3(x1) = false, s3(pcy) = outC, s3(x2) = true;

sa(pey) = outC, sq(x1) = false, sq(pcy) = outC, s4(x2) = false.
It follows that the initial value of pc; and pc, is outC, and the initial values of
z1 and x5 are unspecified. l

Lemma 2.1 [Existence of initial states] Every module has an initial state.

Proof. Consider a module P. We prove the stronger claim that for every
valuation s, for the external variables of P, there is an initial state s of P
such that s[extlXp] = s.. Consider a valuation s, for extlXp and an execution
order Uy,...,U, for the atoms of P. We construct a sequence sg,s1,...,Sp
of valuations for Xp as follows (let s; = prime(s;) for all 0 < ¢ < n): first,
choose sg so that sg[extlXp] = s.; then, for all 1 < i < n and Y; = Xp\ctrXy,,
let s;[Y;] = s;_1[Y;] and choose s;[ctrXy;,] so that (s, [awaitX7,], si[ctrX7;]) €

Invariant Verification 6

[inity;]. At each step, at least one choice is possible because the binary relation
[inity,] is serial. The construction ensures that for all module variables z of P,
if z is an external variable, then s,(x) = s¢(z), and if z is a controlled variable
of the atom Uj;, then s,(z) = s;(z). It follows that s, is an initial state of P
with s,[extlXp] = s.. B

The transitions of a module

Consider two states s and ¢t of a module. If the state s indicates the current
values of the module variables at the beginning of an update round, and the
state t indicates possible next values of the module variables at the end of the
update round, then the state pair (s,t) is a transition of the module. For a
formal definition of transitions, consider a variable z. If x is external, then
t can map z to any value of the appropriate type. If x is controlled by an
atom U, then all variables in awaitXy are updated before z. In this case, the
next value #(z) depends on the current values of the read variables of U and
on the next values of the awaited variables. The dependence is specified by the
update command update;;, which defines a relation between the valuations for
the unprimed read variables read Xy and the primed awaited variables await Xy,
on one hand, and the valuations for the primed controlled variables ctrX;; on
the other hand.

Transition action of a module

Let P be a reactive module, let s and ¢ be two states of P, and let ' =
prime(t). The state pair (s,t) is a transition of P if for every atom U of P,

(s[read Xy] U t'[awaitX(/], t'[ctr X{;]) € [updatey].

We write — p for the set of transitions of P.

Example 2.3 [Mutual exclusion] Consider the state s; of the module Pete from
Example 2.2. There are four transitions —(s1, $1), (51, 85), (81, 86), and (s1, s7)—
whose first component is the initial state s;:

ss(pey) = reqC, ss5(z1) = true, s5(pey) = outC, s5(xa) = true;
se(pcy) = outC, sg(x1) = true, sg(pcy) = reqC, sg(xa) = false;
s7(pey) = reqC, s7(x1) = true, s7(pey) = reqC, s7(x2) = false.

The transition (s1, s1) corresponds to an update round in which both processes
sleep; the transition (s, s5) corresponds to an update round in which the first
process proceeds and the second process sleeps; the transition (s1,sg) corre-
sponds to an update round in which the first process sleeps and the second
process proceeds; and the transition (s1, s7) corresponds to an update round in
which both processes proceed. B

Invariant Verification 7

Lemma 2.2 [Existence of transitions] Let P be a module. For every state s of P,
there is a state t of P such that s —p t.

Exercise 2.2 {T1} [Proof of Lemma 2.2] Let P be a module. Prove that for
every state s of P, and every valuation ¢, for the external variables of P, there
is a state t of P such that (1) s »p ¢ and (2) t[extlXp] = t.. Lemma 2.2 follows.
|

The transition graph of a module

We can now collect together the state space, initial region, and transition action
of a module, thus obtaining a transition graph.

Transition graph of a module

Given a reactive module P, the transition graph underlying P is Gp =
(EPJ 01137 _)P) -

Terminology. From now on, we freely attribute derivatives of the transition
graph Gp to the module P. For example, each trajectory of Gp is called a
trajectory of P; the state language Lg, is called the state language of P, and
denoted Lp. R

Example 2.4 [Mutual exclusion] Figure 2.2 shows the transition graph G pe. for
Peterson’s mutual-exclusion protocol. The label 01¢0 denotes the state s with
s(per) = outC, s(x1) = true, s(pc,) = inC, and s(xz2) = false, etc. Each state
s has a reflexive transition of the form s — s, and these transitions are omitted
from the figure. Note that some states at the left and right borders of the figure
are identical, so as to avoid a large number of crossing edges in the figure. It can
be checked that the state sequence shown in Figure 1.24 is indeed an initialized
trajectory of G pete. B

Proposition 2.1 [Seriality of transition graphs that underlie modules] For every
module P, the transition graph Gp is serial.

Proof. Proposition 2.1 follows from Lemmas 2.1 and 2.2. &

Remark 2.5 [Transition graphs for finite, closed, deterministic, and passive mod-
ules] If P is a finite module, then Gp is a finite transition graph. If all external
variables of P have finite types, then G p is a finitely branching transition graph.
In particular, for every closed module, the underlying transition graph is finitely
branching, and for every closed deterministic module P, the underlying tran-
sition graph has branching degree 1: there is exactly one initial state, and for
each state s, there is exactly one successor state t with s —p t. If P is a passive
module, then the transition action — p is reflexive. B

Invariant Verification 9

The transition graph Gp captures only the behaviors of the module P, and
not its interface structure. First, transition graphs do not distinguish between
controlled and external variables. Hence there is no composition operation on
transition graphs. Second, transition graphs do not distinguish between private
and observable variables. Hence asynchronicity does not correspond to a prop-
erty of transition graphs, and there is no hiding operation on transition graphs
(the hiding of variables does not alter the transition graph of a module).

Exercise 2.3 {T2} [Transition graph of compound modules] Consider two com-
patible modules P and . (a) Assume that the two modules have no pri-
vate variables (privXp = privXy =), and that the interface variables of one
module are the external variables of the other module (intfXp = extlX and
extlXp = intfXg). Then the two modules and the compound module have the
same state space: Xp = Xg =X P|Q- Prove that the transition action of the
compound module P||Q is the intersection of the transition actions of the two
component modules P and @Q; that is, s = p|q t iff s =p t and s —¢ t. What
can you say about the initial states of the compound module P||Q? (b) Assume
that the two modules have no variables in common (Xp N Xg = @). Then
Yplo = {s1Usy | s1 € ¥p and s, € ¥g}. Prove that the transition action
of the compound module is the cartesian product of the transition actions of
the two component modules; that is, (s1 U s2) —pjq (t1 U te) iff sy —p ¢ and
s2 =@ t2. What can you say about the initial states of P||Q? (c) Now consider
the general case. Consider two states s and ¢ of the compound module P||Q.
Prove that (1) s € ot iff s[Xp] € 0p and s[Xg] € 0§, and (2) s = p|q t iff
s[Xp] =p t[Xp] and s[Xg] —¢ t[Xg]. K

The following proposition asserts that the (initialized) trajectories of a com-
pound module are determined by the (initialized) trajectories of the component
modules. In particular, for two compatible modules P and @, if the two modules
have the same state space, then Lpjg = Lp N Lq.

Proposition 2.2 [Trajectories of compound modules] For every pair P and @ of
compatible modules, a sequence 5 of states in ¥ pj is an (initialized) trajectory
of the compound module P||Q iff 5[Xp] is an (initialized) trajectory of P and
5[Xg] is an (initialized) trajectory of Q.

Proof. Proposition 2.2 follows from part (c) of Exercise 2.3. l

Exercise 2.4 {T1} [Least constraining environments] The module @ is a least
constraining environment for the module P if (1) P and @ are compatible,
(2) the compound module P||Q is closed, and (3) Gp|g = Gp. Prove that for
every module P, if all external variables of P have finite types, then there exists
a least constraining environment for P. Can a module have more than one least
constraining environment? B

Invariant Verification 10

An interpreter for reactive modules

Following the informal execution model of Chapter 1, we are now equipped to
build an interpreter for reactive modules. The execution of a module for a finite
number of rounds yields an initialized trajectory of the module. Therefore, if the
interpreter receives as input the module P, it returns as output an initialized
trajectory of P. Since P may have many initialized trajectories, the output
of the interpreter is nondeterministic. Indeed, every initialized trajectory of P
must be a possible output of the interpreter.

The interpreter, Algorithm 2.1, proceeds in three phases. The first phase com-
putes an execution order for the atoms of P. The second phase simulates the
initial round, by executing the initial commands of all atoms in the chosen ex-
ecution order. The third phase simulates a finite number of update rounds, by
iteratively executing the update commands of all atoms in the chosen execution
order. Algorithm 2.1 uses the following notation. The function Ezecute(T,s),
shown below, computes the result of executing the guarded command T" on the
valuation s. If I" is a guarded command from X to Y, then s must be a val-
uation for X, and the function Execute returns a valuation ¢ for Y such that
(s,t) € [T]:

function Execute(T, s)
Assume T is a guarded command from X to Y;
Choose a guarded assignment «y of ' such that s(p,) = true;
Let ¢ be the valuation for the empty set of variables;
foreach y in Y do t := t[y — s(e7)] od;
return t.

If s is a valuation for a set X' of primed variables, we write unprime(s) for
the valuation for the set X of corresponding unprimed variables such that
unprime(s)(z) = s(z') for all variables x € X.

2.1.3 The Reachability Problem

For a transition graph G that captures the behaviors of a system, we are inter-
ested only in the states of G that occur on initialized trajectories. These states
are called reachable. By deleting the unreachable states from G, we obtain the
reachable subgraph of G. The reachable subgraph can often be significantly
smaller than the complete transition graph.

Invariant Verification 11

Algorithm 2.1 [Module Execution] (schema)

Input: a reactive module P.
Output: an initialized trajectory 3;. ., of P.

Preparation.
Topologically sort the atoms of P with respect to the precedence
relation <« p, and store the result as (U,...,Uy);

Initial round.
Choose an arbitrary valuation s for extlXp;
for j :=1 to n do s := s U Ezecute(inity,, s) od;
s1 := unprime(s);

Update rounds.
Choose an arbitrary positive integer m;
for i := 2 to m do
Choose an arbitrary valuation s for extlXp;
for j :=1ton do s := s U Ezecute(update;, , s;—1 U s) od;
8; := unprime(s)
od.

Reachability

Let G = (%,0!,—) be a transition graph, and let s be a state of G. The state
s is reachable in 4 transitions, for a nonnegative integer 4, if the transition
graph G has an initialized trajectory with sink s and length ¢ + 1. The
state s is a reachable state of G if there is a nonnegative integer i such that
s is reachable in 4 transitions. The transition graph G is finitely reaching
if there is a nonnegative integer ¢ such that every reachable state of G is
reachable in at most i transitions. The reachable region of G is the set ot of
reachable states of G. The reachable subgraph of G is the transition graph
GE = (of, 0!, —%), where = = — [0!] is the restriction of the transition
action — to the reachable region 0. The transitions of GF are called the
reachable transitions of G.

Example 2.5 [Reachable subgraph] In the simple transition graph G from Ex-
ample 2.1, the state s; is unreachable, and so is the transition from s; to s3.
The reachable subgraph of G is shown in Figure 2.3. B

Example 2.6 [Mutual exclusion] Figure 2.4 shows the reachable subgraph of the
transition graph G pese from Example 2.4 (reflexive transitions are suppressed).
It has four initial states, 20 reachable states, and 64 reachable transitions. In
other words, 16 of the states in Figure 2.2 are unreachable. B

Invariant Verification 12

G

o
G

Figure 2.3: The reachable subgraph of G

Remark 2.6 [Finite vs. finitely branching vs. finitely reaching] Every finite tran-
sition graph is finitely reaching. If a transition graph G is both finitely branching
and finitely reaching, then the reachable subgraph G is finite. B

The most important questions in computer-aided verification can be phrased as
reachability questions. A reachability question asks if any state from a given
region is reachable in a given transition graph. If the reachable subgraph is finite,
then the reachability question can be solved using graph-traversal algorithms
(see Section 2.3).

Reachability problem

An instance (G, o) of the reachability problem consists of (1) a transition
graph G and (2) a region o7 of G, which is called the target region. The
answer to the reachability question (G,o7) is Yes if a state in the target

region o7 is reachable, and otherwise No. A witness for a Yes-instance
(G,0T) of the reachability problem is an initialized trajectory of G whose
sink is in o7

Remark 2.7 [Emptiness problem for finite automata] The reachability problem
is equivalent to the one-letter emptiness problem for finite automata, which asks
if a given finite automaton with a singleton input alphabet accepts any input
word. To see this, view the target region as an accepting region. Bl

2.2 Invariants

To an observer, only the values of the interface and external variables of a module
are visible. We therefore specify properties of module states by constraints on

Invariant Verification 13

Figure 2.4: The reachable subgraph of G pete

the values of the observable variables. For example, if x is an observable integer
variable, then the constraint > 5 is satisfied by the states that map z to a
value greater than 5, and the constraint is violated by the states that map =
to a value less than or equal to 5. A constraint r on the observable variables
of a module P is an invariant of P if all reachable states of P satisfy r. If r is
an invariant of P, then it cannot happen that within a finite number of rounds,
the module P moves into a state that violates r. Many important requirements
on the behavior of reactive modules can be expressed as invariants.

Example 2.7 [Mutual exclusion] Peterson’s protocol meets the mutual-exclusion
requirement iff the constraint

mutez ,

T =(pc; = inC A pcy = inC)

is an invariant of the module Pete. This constraint asserts that at most one
of the two processes is inside its critical section. Note that the status of each
process can be observed, because both pc; and pc, are interface variables. It
is evident from inspecting the reachable subgraph of G pes. (see Example 2.6)
that every reachable state of Pete satisfies the constraint r™**¢_ It follows that
7™ is an invariant of the module Pete. W

2.2.1 The Invariant-Verification Problem

If P is a reactive module, then a constraint on the values of module variables is
called a state predicate for P. We do not allow the occurrence of event variables

Invariant Verification 14

in state predicates, because the value of an event variable in any given state
is immaterial. A state predicate that constrains only the values of observable
variables is called an observation predicate. In particular, observation predicates
cannot constrain the values of private variables.

State predicate

Let P be a reactive module. A state predicate for P is a boolean expression
over the set Xp\eventXp of module variables that are not event variables.
The state predicate ¢ is an observation predicate if all free variables of ¢
are observable variables of P. The observation predicate ¢ is an interface
predicate if all free variables of ¢ are interface variables, and q is an external
predicate if all free variables of g are external variables. Given a state
predicate ¢ for P, we write [¢]p for the set of states of P that satisfy gq.

Remark 2.8 [Regions defined by state predicates] Let P be a module, and let g
and 7 be two state predicates for P. We say that the state predicate p defines
the region [¢]p = {s € £p | s = ¢} of P. The regions of P that are definable
by state predicates form a boolean algebra:

[true]p = Tp and [false]p = 0;
[anr]e =lalp N[r]p and [gV r]p = [g]lp U[r]e;
[-qlr = Sp\dlp.

Invariant

Let P be a reactive module, and let r be an observation predicate for P.
The predicate r is an invariant of P if all reachable states of P satisfy r.

In other words, given a module P with the reachable region %%, the observation
predicate r is an invariant of P iff o C [r]p.

Remark 2.9 [Monotonicity of invariants] Let P be a module, and let ¢ and r
be two observation predicates for P. (1) The observation predicate true is an
invariant of P. If ¢ is an invariant of P, and ¢ — r is valid, then r is also
an invariant of P. It follows that every valid observation predicate for P is an
invariant of P. (2) If both ¢ and r are invariants of P, then g A r is also an
invariant of P. B

Invariant-verification problem

An instance (P,r) of the invariant-verification problem consists of (1) a
reactive module P and (2) an observation predicate r for P. The answer to
the invariant-verification question (P,r) is Yes if 7 is an invariant of P, and
otherwise No. An error trajectory for a No-instance (P,r) of the invariant-
verification problem is an initialized trajectory of P whose sink violates r.

Invariant Verification 15

Figure 2.5: Railroad example

If the observation predicate r is not an invariant of the module P, then error
trajectories present evidence to the designer of P as to how the module can end
up in a state that violates r. Error trajectories thus provide valuable debugging
information on top of the answer No to an invariant-verification question.

Example 2.8 [Railroad control] Figure 2.5 shows two circular railroad tracks,
one for trains that travel clockwise, and the other for trains that travel coun-
terclockwise. At one place in the circle, there is a bridge which is not wide
enough to accommodate both tracks. The two tracks merge on the bridge, and
for controlling the access to the bridge, there is a signal at either entrance. If
the signal at the western entrance is green, then a train coming from the west
may enter the bridge; if the signal is red, the train must wait. The signal at the
eastern entrance to the bridge controls trains coming from the east in the same
fashion.

A train is modeled by the asynchronous and passive module Train shown in
Figure 2.6. When the train approaches the bridge, it sends an arrive event to
the railroad controller and checks the signal at the entrance to the bridge (pc =
wait). When the signal is red, the train stops and keeps checking the signal.
When the signal is green, the train proceeds onto the bridge (pc = bridge).
When the train exits from the bridge, it sends a leave event to the controller
and travels around the circular track (pc = away). The traveling around the
circular track, the checking of the signal, and the traveling time across the bridge
each take an unknown number of rounds. There are two trains, one traveling
clockwise and the other traveling counterclockwise. The first train, which arrives
at the western entrance of the bridge, is represented by the module

module Trainy is
Train[pc, arrive, signal, leave := pcyy, arrivew , signalyy, , leavew |,

Invariant Verification 16

module Train is
interface pc: {away, wait, bridge}; arrive, leave: E
external signal: {green, red}
lazy atom controls arrive reads pc

update
[pc = away — arrive!

lazy atom controls leave reads pc
update
[pc = bridge — leave!

lazy atom controls pc reads pc, arrive, leave, signal awaits arrive, leave

init
| true — pc' := away
update
| pc = away A arrive? — pc' := wait
| pc = wait A signal = green — pc' := bridge
¢ = bridge A leave? — pc' = awa
I » 9 y

Figure 2.6: Train

and the second train, which arrives at the eastern entrance, is represented by
the module

module Traing is
Train[pc, arrive, signal, leave := pc g, arriveg, signal g, leaveg].

We are asked to design a passive controller module Controller that prevents
collisions between the two trains by ensuring the train-safety requirement that
in all rounds, at most one train is on the bridge. The module Controller enforces
the train-safety requirement iff the observation predicate

safe .

r —(pey = bridge A pcp = bridge)

is an invariant of the compound module

module RailroadSystem is
hide arrivew , arriveg, leavew , leave in
|| Trainw
|| Traing
|| Controller.

The external variables of the module Controller should be arrivew, arriveg,
leavew , and leaveg.

Invariant Verification 17

module Controller! is
interface signalyy,, signal g : {green, red}
external arrivew , arriveg, leavew , leaveg : E

passive atom controls signaly,, signal g
reads signalyy, signal , arrivew , arriveg, leavew , leave g
awalits arrivew, arriveg, leavew, leave g
init
| true — signaly, := green; signal’y := green
update
| arrivew? — signal’y := red
| arriveg? — signalyy, := red
| leavew? — signaly := green
| leavep? — signaly, := green

Figure 2.7: First attempt at railroad control

PCw away | wait | bridge | away | eway | wait bridge
arrivew

leavey

pCy away | wait | wait wait | bridge | bridge | bridge
arrivey

leavew

signaly, || green | green | green | green | green | greem | green
signaly || green | red red green | green | red red

Figure 2.8: An error trajectory that violates train safety

Invariant Verification

module Controller? is
private neary,nearg: B
interface signalyy, signal g : {green, red}
external arrivew, arriveg, leavew , leaveg : E

passive atom controls neary
reads neary, arrivey , leavey
awaits arrivey , leavey
init
-
[true — nearly, = false
update
o P -
[arrivew? — neary, := true
A
[leavew? — nearyy, := false

passive atom controls nearg
reads nearg, arriveg, leaveg
awalits arriveg, leaveg
init
| true — near’y := false
update
| arriveg? — near'y := true
[leaveg? — near'’; := false

lazy atom controls signalyy,, signal g

reads nearw, near g, signaly,, signal g

init

| true — signaly, := red; signal’y := red

update
nearw A signalg = red — signaly, := green
nearg A signaly, = red — signal’y := green
—neary — signaly, = red
—nearg — sz'gnal}; = red

S

Figure 2.9: Second attempt at railroad control

18

Invariant Verification 19

Figure 2.7 shows a first attempt at designing the railroad controller. Initially,
both signals are green. A signal turns red whenever a train approaches the
opposite entrance to the bridge, and it turns back to green whenever that train
exits from the bridge. If both trains approach the bridge in the same round,
then only one of the two signals turns red (the one that turns red is chosen non-
deterministically), and the other train is admitted to the bridge. Unfortunately,
the resulting railroad system does not have the invariant 7°%¢. This is evidenced
by the error trajectory shown in Figure 2.8, which leads to a state with both
trains on the bridge. If both trains approach the bridge simultaneously, then
one is admitted to the bridge. When that train exits from the bridge, the other
train is admitted to the bridge. At that point both signals are green. So when
the first train returns while the second train is still on the bridge, the two trains
will collide. It can be checked that the state sequence shown in Figure 2.8 is in
fact the shortest initialized trajectory whose sink violates r*¥*. B

Exercise 2.5 {P2} [Railroad control] Figure 2.9 shows a second attempt at de-
signing a railroad controller for Example 2.8. How many states does the module
Trainw || Traing || Controller2 have? How many of these states are reachable?
Is there a reachable state with both trains on the bridge? To answer the latter
two questions, draw the reachable subgraph of the transition graph.

2.2.2 From Invariant Verification to Reachability

Given a reactive module P, the execution of P generates a single initialized tra-
jectory of P. By contrast, for solving an invariant-verification question about P,
we must systematically explore all initialized trajectories of P. This can be done
by solving a reachability question about the underlying transition graph Gp.

Proposition 2.3 [Reduction from invariant verification to reachability] The an-
swer to an instance (P,r) of the invariant-verification problem is Yes iff the
answer to the instance (Gp,[-r]p) of the reachability problem is No. Further-
more, if (P,r) is a No-instance of the invariant-verification problem, then every
witness for the reachability question (Gp,[—r]p) is an error trajectory for the
invariant-verification question (P,r).

It follows that we can answer the question if an observation predicate r is
an invariant of a reactive module P if we can solve the reachability question
(Gp,[—r]p). Furthermore, if r is not an invariant of P, then we can provide
an error trajectory by generating a witness for the Yes-instance (Gp,[-r]p)
of the reachability problem. We will discuss several algorithms for solving and
generating witnesses for reachability questions. Yet it is important to clearly
distinguish between the two problems: the input to the invariant-verification
problem is a module and an observation predicate; the input to the reachability
problem is a transition graph and a region. While the former can be reduced

Invariant Verification 20

to the latter, this reduction typically requires exponential amount of work: in-
deed, as we shall see, invariant verification is inherently harder —for finite state
spaces, by an exponential factor— than reachability.

Remark 2.10 [State predicates as invariants] Our formulation of the invariant-
verification problem allows us to check whether r is an invariant of a module P
when r refers only to the observable variables of P. The prohibition of require-
ments that refer to private variables is a good specification discipline, which
can be exploited by reduction techniques such as minimization (see Chapter 5).
However, it should be evident that one can check whether all reachable states
of a module P satisfy a state predicate r by solving the reachability question
(Gp,[—r]p) even when r refers to private variables of P. Bl

Exercise 2.6 {T1} [Transition invariants] Invariants cannot be used to directly
specify module requirements that involve events, because observation predicates
are interpreted over individual states. It is possible, however, to generalize in-
variants from observation predicates to transition predicates, which are inter-
preted over individual transitions and therefore can refer to the presence and
absence of events. Let P be a reactive module. A transition predicate for P is a
boolean expression over the set Xp U X}, of unprimed and primed module vari-
ables, with the restriction that event variables can occur only in subexpressions
of the form z? (which stands for ' # z). A pair (s,t) of states of P satisfies
the transition predicate r' if (sUt) = r'. It follows that every transition pred-
icate r' defines an action [r']p C X%, which contains all pairs of states of P
that satisfy r'. The transition predicate r' is observable if no private variables
(unprimed or primed) of P occur in r'. The observable transition predicate r’ is
a transition invariant of P if all reachable transitions of P satisfy r'; that is, if
—% C [r']p. An instance (P,r') of the transition-invariant verification problem
consists of (1) a reactive module P and (2) an observable transition predicate
r' for P. The answer to the transition-invariant question (P,r') is Yes if r' is a
transition invariant of P, and otherwise No.

Define a notion of error trajectories for the transition-invariant problem and
reduce the problem, including the generation of error trajectories, to the fol-
lowing transition-reachability problem. An instance (G,a”) of the transition-
reachability problem consists of (1) a transition graph G and (2) an action a”
of G, which is called the target action. The answer to the transition-reachability
question (G, aT) is Yes if a transition in the target action o is reachable, and
otherwise No. The answer Yes can be witnessed by an initialized trajectory of
G of the form 3y, with m > 2 and (s;u_1,5m) €a”. R

2.2.3 Monitors

Invariants can distinguish between two trajectories only if one of the trajectories
contains a state that does not occur on the other trajectory. Hence there are

Invariant Verification 21

module MonMonitor is
interface alert: {0,1}
external z: N
passive atom controls alert reads x awaits x
init
| true — alert' :=0
update
[>z — alert' :==0
| 2' <z — alert' :=1

Figure 2.10: Monitoring monotonicity

requirements on the behavior of a reactive module P that cannot be expressed
as invariants of P. However, many such requirements can be expressed as in-
variants of the compound module P||M, for a monitor M of P. The module M
is a monitor of P if (1) M is compatible with P and (2) intfX NextlXp = 0.
If M is a monitor of P, then in every round, M may record the values of the
observable variables of P, but M cannot control any external variables of P.
Thus the monitor M can watch but not interfere with the behavior of P. In
particular, the monitor M may check if P meets a requirement, and it may
signal every violation of the requirement by sounding an observable alarm. The
module P then meets the given requirement iff the compound module P||M has
the invariant that no alarm is sounded by the monitor M.

Consider, for example, a module P with an interface variable z that ranges
over the nonnegative integers. Assume that, during every update round, it is
ok for P to increase the value of z, or to leave it unchanged, but it is not ok
for P to decrease the value of . This monotonicity requirement cannot be
expressed as an invariant of P. However, we can design a monitor MonMonitor
of P so that the monotonicity requirement can be expressed as an invariant
of the compound module P || MonMonitor. The monitor MonMonitor, shown
in Figure 2.10, has but one variable, alert, which is an interface variable and
ranges over the set {0,1} of two alertness levels. The monitor MonMonitor
watches for changes in the value of z. In every update round, if the value of x
does not decrease, then the new value of alert is 0, which indicates that there
is no reason for concern; if the value of z decreases, then the new value of
alert is 1, which sounds an alarm. The module P then meets the monotonicity
requirement iff the observation predicate alert # 1 is an invariant of the module
P || MonMonitor.

For a slightly more involved variation of the previous example, assume that it is
ok for P to decrease the value of x occasionally, but it is not ok to decrease the
value of z twice in a row, during two consecutive update rounds. Figure 2.11

Invariant Verification 22

module AltMonitor is
interface alert: {0,1,2}
external z: N
atom controls alert reads alert,x awaits x
init
| true — alert' :=0
update
[z >z — alert' :== 0
[alert =0 A o' <z — alert’ :==1
[alert =1 A 2’ <z — alert’ :=2

Figure 2.11: Monitoring alternation

module EqOppMonitor is
interface alert: {0,1,2,3}
external pc: {away, wait, bridge}; signal,, signal,: {green, red}
passive atom controls alert reads alert, pc, signal,, signal,
init
| true — alert' :=0
update

| alert =0 A pc = wait A signal, = red A signal, = green — alert' :=

[alert =1 A signal; = green — alert’ :
[alert =1 A signal; = red A signal, = red — alert’ :
[alert =2 A signal; = green — alert’ :
[alert =2 A signal; = red A signal, = green — alert’ :=

Figure 2.12: Monitoring equal opportunity

shows a monitor of P that checks this alternation requirement. The interface
variable alert of the monitor AltMonitor ranges over the set {0,1,2} of three
alertness levels. If the value of z does not decrease during an update round,
then alert = 0, which indicates that there is no immediate danger of P violating
the alternation requirement; if alert = 0 and the value of z decreases during
an update round, then alert = 1, which indicates that there is an immediate
danger of P violating the alternation requirement; if alert =1 and the value of
x decreases during an update round, then alert = 2, which indicates that P has
violated the alternation requirement. The module P then meets the alternation
requirement iff the observation predicate alert # 2 is an invariant of the module
P|| AltMonitor.

Example 2.9 [Railroad control] This is a continuation of Example 2.8. Fig-

Invariant Verification 23

pCw away | wait | wait | wait | wait wait | wait | wait | wait
arriveyy

leaveyw

pcE away | eway | wait | wait | bridge | away | wait | wait | bridge
arrivewy

leavew

signaly, || red red red | red red red red | red red
signalp || red red red | green | green | red red | green | green
alertw 0 0 0 0 1 1 2 2 3
alertp 0 0 0 0 0 0 0 0 0

Figure 2.13: An error trajectory that violates equal opportunity

ure 2.9 presents an asynchronous railroad controller that enforces the train-
safety requirement. Yet the module Controller2 is not a satisfactory railroad
controller, because it may keep a train waiting at a red signal while the other
train is allowed to cross the bridge repeatedly. In particular, the resulting rail-
road system does not meet the equal-opportunity requirement that, while a
train is waiting at a red signal, it is not possible that the signal at the opposite
entrance to the bridge turns from green to red and back to green. Since the
equal-opportunity requirement is violated by trajectories, and not by individual
states, we need to employ monitors. The module

module EqOppMonitory, is
EqOppMonitor|alert, pc, signal,, signal, := alertw , pcyy, signalyy, signal ;]

monitors the equal-opportunity requirement for the train that travels clockwise,
where EqOppMonitor is shown in Figure 2.12. The monitor has four levels of
alertness. The alertness level is 0 as long as the train is not waiting at a red
signal while the other signal is green, in which case the alertness level rises
to 1. The alertness level rises to 2 when the other signal turns red, and to 3,
when the other signal turns green again, while the train is still waiting at a red
signal. An alertness level of 3 sounds an alarm that indicates a violation of the
equal-opportunity requirement for the train that travels clockwise. The equal-
opportunity requirement for the train that travels counterclockwise is monitored
by the module

module EqOppMonitor g is
EqOppMonitor|[alert, pc, signal , signal, := alertg, pcg, signal g, signalyy]

in the same manner. The module RailroadSystem then meets the equal-opportunity
requirement iff the observation predicate

—(alertw =3 V alertg = 3)

Invariant Verification 24

is an invariant of the compound module
RailroadSystem || EqOppMonitory, || EqOppMonitor .

The error trajectory of Figure 2.13 shows that this is not the case. B

Exercise 2.7 {P3} [Mutual exclusion] The first-request-first-in requirement for
mutual-exclusion protocols asserts that the first process to request admission
to the critical section (meaning: pc = regC) is the first process with an op-
portunity to enter the critical section (meaning: the guard is true for some
guarded command that updates pc from regC to inC). (If both processes re-
quest to enter simultaneously, no order is specified.) (a) Write a monitor that
checks the first-request-first-in requirement for mutual-exclusion protocols, and
reduce the question of whether a mutual-exclusion protocol meets the first-
request-first-in requirement to a invariant-verification question. (b) Does Pe-
terson’s mutual-exclusion protocol (Figure 1.23) meet the first-request-first-in
requirement? What about the synchronous mutual-exclusion protocol from Fig-
ure 1.227 (c¢) How does the first-request-first-in requirement relate to the acces-
sibility requirement specified in Chapter 17 (Does one imply the other?)

The equal-opportunity requirement for mutual-exclusion protocols asserts that,
while a process is requesting to enter its critical section, it is not possible that
the other process enters its critical section more than once. Equal opportunity,
then, is a weaker requirement than first-request-first-in. Repeat parts (a)—(c)
for the equal-opportunity requirement. B

2.3 Graph Traversal

The reachability problem, and therefore the invariant-verification problem, can
be solved by classical graph-search algorithms.

2.3.1 Reachability Checking

Graph-search algorithms traverse a graph one edge at a time, moving from a
given vertex to its successor (or predecessor) vertices. It is useful to view these
algorithms in terms of the following notions.

Predecessor and successor regions

Let G = (%,0!,—) be a transition graph, and let s be a state of G. The
state t of G is a predecessor of s if t — s, and ¢ is a successor of s if s — t.
The predecessor region preg(s) of s is the set of predecessors of s, and the
successor region post(s) of s is the set of successors of s. We write preg;(s)
for the so-called source region (Ui € N | prel,(s)) of s, and post,(s) for the
sink region (U i € N | posts,(s)).

Invariant Verification 25

Algorithm 2.2 [Enumerative Graph Search] (schema)

Input: a transition graph G = (3,01, —).
Output: the reachable region of of G.
Local: a multiset 7 of states from X.

Initialize o to 0;
Initialize 7 to o’;
while 7 #£ () do
Choose a state s in 7, and remove s from 7;
if s ¢ o then
Add s to of;
Add all states in posts(s) to T
fi
od.

In other words, given a transition graph G and a state s of G, the source region
prel;(s) contains the sources of all trajectories of G with sink s, and the sink
region postf,(s) contains the sinks of all trajectories of G’ with source s.

Terminology. The functions preg, posts, preg,, and posty, are extended to re-
gions in the natural way: for a region o of the transition graph G, let preg (o) =
(U s € 0| preg(s)) —i.e., the region pres (o) contains the predecessors of all
states in o— let postg(0) = (U s € o | postg(s)) —i.e., the region posts(o)
contains the successors of all states in o— etc. As usual, if the transition graph
underlies a module P, we write prep instead of preg,, etc. If the transition
graph is understood, we suppress the subscript altogether. B

Remark 2.11 [Reachability] Let G be a transition graph with the initial re-
gion o', let s be a state of G, and let o7 be a region of G. The state s is reach-
able in i transitions iff s € post’(c'), and s is reachable iff s € post*(o7); that is,
post*(a?) is the reachable region of G. The transition graph G is finitely reaching
iff there is a nonnegative integer i such that post*(c!) = (U j < i | post?(c?)).
The answer to the reachability question (G, o) is Yes iff post*(cf)No”T # 0 or,
equivalently, iff o' N pre*(cT) # 0. B

Enumerative graph search

Algorithm 2.2 shows a generic schema for graph search. As the algorithm finds
new reachable states, they are explored by traversing all transitions to successor
states. Throughout the algorithm, the multiset 7, which is called the frontier,
contains the states that have been found but not yet explored; the set of* always

Invariant Verification 26

contains the states that have been both found and explored. Algorithm 2.2 is
said to be enumerative, because the states in the frontier 7 are processed one
state at a time. Therefore the multiset 7 is best implemented by an enumer-
ation of its members. If 7 is implemented as a queue (when choosing a state
from 7, always choose the state that was inserted least recently), then we ob-
tain breadth-first search. If 7 is implemented as a stack (always choose the
state that was inserted most recently), then we obtain depth-first search. Al-
gorithm 2.2 terminates iff the reachable subgraph G¥ of the input graph G is
finite. Consider a state s of G with m® reachable incoming transitions; that
is, m® = |pre(s) N o®|. If s is reachable but not initial, then s is added to the
frontier 7 exactly m£ times; if s is initial, then s is added to 7 exactly 1+ mP
times; if s is not reachable, then s is never added to 7. Every iteration of the
while loop removes one state from 7. It follows that the while loop is executed
n! + mf times, where n! is the number of initial states of G, and m* is the
number of reachable transitions.

Lemma 2.3 [Enumerative graph search] Let G be a transition graph with n! ini-
tial states and m® reachable transitions. Algorithm 2.2 computes the reachable
region o within n! + m® iterations of the while loop.

Remark 2.12 [Backward search] Algorithm 2.2 performs a forward search of the
input graph, starting from the initial region. Symmetrically, the graph may
be searched backward from the target region, using the predecessor operation
pre instead of the successor operation post. While forward search explores only
reachable states, this is not necessarily the case for backward search. Hence the
running time of backward search cannot be bounded by the number of reachable
transitions. Wl

Depth-first reachability checking

Algorithm 2.3 shows a recursive depth-first implementation of graph search for
solving the reachability problem. The implementation differs from the schematic
Algorithm 2.2 in three respects. First, for checking reachability, the graph search
is aborted when a state in the target region is found. Second, the recursive im-
plementation of depth-first search allows the construction of witnesses without
bookkeeping. Third, the input graph is assumed to be finitely branching and
the input region is assumed to be finite, so that the initial region, the successor
region of each state, and the target region all can be represented as queues of
states. More specifically, Algorithm 2.3 uses the following abstract types. As-
suming a given type state for states, the type of a finitely branching transition
graph is enumgraph, and the type of a finite region is enumreg. The abstract
type enumgraph supports two operations:

InitQueue: enumgraph — queue of state. The operation InitQueue(G) re-
turns a queue that contains the initial states of GG, in some order.

Invariant Verification 27

Algorithm 2.3 [Depth-first Reachability Checking]

Input: a finitely branching transition graph G, and a finite region
T of G
o' of G.
Output: Done, if the instance (G,oT) of the reachability prob-
lem has the answer No; a witness for the reachability question
(G, 0T), otherwise.

input G: enumgraph; o7: enumreg;

local oF: enumreg; 7: stack of state; t: state;
begin
o® := EmptySet;
T := EmptyStack;
foreach t in InitQueue(G) do
if DepthFirstSearch(t) then return Reverse(r) fi
od;
return Done
end.

function DepthFirstSearch(s): B
local ¢: state;
begin
7 := Push(s,7);
if not IsMember(s,o't) then
if IsMember(s,o”l) then return true fi;
o := Insert(s,o®);
foreach ¢ in PostQueue(s,G) do
if DepthFirstSearch(t) then return true fi;
od
fi;
T := Pop(T);
return false
end.

Invariant Verification 28

PostQueue: state x enumgraph — queue of state. The operation PostQueue(s, G)
returns a queue that contains the successors of s, in some order.

The abstract type enumreg supports three standard set operations:
EmptySet: enumreg. The operation EmptySet returns the empty region.

Insert: state X enumreg — enumreg. The operation Insert(s,o) returns the
region that results from adding the state s to the region o.

IsMember : state x enumreg — B. The operation IsMember (s, o) returns true
if the region o contains the state s, and otherwise returns false.

If all states in the target region are unreachable and the reachable subgraph of
the input graph is finite, then the algorithm terminates once every reachable
state is found; if some state in the target region is reachable in a finite number
of transitions, then the algorithm may terminate even if the reachable subgraph
is infinite. This is because as soon as a state in the target region ¢ is found,
the search is aborted. At this point, the stack 7 of unexplored states contains a
witness for the given reachability question, in reverse order. To see this, observe
that 7 always contains an initialized trajectory of the input graph G, in reverse
order.

Lemma 2.4 [Partial correctness of depth-first reachability checking] If Algo-
rithm 2.3 terminates, then it solves the reachability question (G, o”) and returns
a witness, if one exists.

2.3.2 Enumerative Graph and Region Representations

For the analysis of the time and space requirements of Algorithm 2.3, we need to
agree on the representation of the abstract types enumgraph and enumreg.
For this purpose, we restrict ourselves to finite input graphs. We distinguish
between two cases, depending on whether or not the type state is atomic.

e In the state-level model, every variable of type state is stored in constant
space, and constant time is required for every read or write access to a
state. This is the standard model used in the analysis of graph algorithms.
It is appropriate if the number of states is bounded. For example, for com-
puters with 64-bit words, the state-level model is realistic if the number of
states does not exceed 264; otherwise, the storage of a state requires more
than a single word.

e The bit-level model is more detailed and makes no assumptions about
the number of states. If the total number of states is n, then in the bit-
level model, every variable of type state is stored in ©(logn) space, and
O(logn) time is required for every read or write access to a state. The bit-
level model is of particular interest in computer-aided verification, where
we regularly encounter very large state spaces.

Invariant Verification 29

In the following analysis, we consider a transition graph G with n states, n!

initial states, and m transitions, and we consider a region o of G. We first
discuss state-level data structures for representing G and o, and then we move
on to bit-level data structures.

State-level data structures

The finite transition graph G can be represented using adjacency lists, by a
record {G}se with two components:

enumgraph = (queue of state) x (array[state] of queue of state)

The first component of {G}se is a queue that contains the initial states of G.
The second component of {G};. is an array, indexed by the states of G, which
points, for each state s, to a queue that contains the successors of s. The record
{G}se is called the state-enumerative representation of the transition graph G,
because it is built from atomic components of the type state to facilitate the
enumerative graph operations InitQueue and PostQueue. The state-level data
structure {G} ;. requires ©(n+m) space and supports the operations InitQueue
and PostQueue in constant time. The state-enumerative representation of the
region o is a boolean array, denoted {0} ., which is indexed by the states of G,
so that a state s is contained in o iff {o}4e[s] = true:

enumreg = array[state] of B

The state-level data structure {o};. requires ©(n) space and supports the enu-
merative region operations EmptySet, Insert, and IsMember: the first in O(n)
time, the second and third in constant time.

Remark 2.13 [Space-efficient state-level data structures] The state-enumerative
graph and region representations {G'}s. and {0} optimize the running time,
in the state model, of Algorithm 2.3. If we want to optimize, instead, the space
requirements of the data structures, different choices are necessary. We can
define an alternative state-enumerative graph representation {G}Z, which uses
O(n! + m) space, and an alternative state-enumerative region representation
{o}T which uses ©(|o|) space, both of which are optimal. In both cases, we re-
place the array indexed by states with a balanced binary search tree over states:
the second component of the record {G}Z, is a tree whose nodes represent the
states that have nonempty queues of successors; the nodes of the tree {o}Z,
represent the states that are members of the region . The search-tree imple-
mentations of the abstract data types enumgraph and enumreg support the
operations InitQueue and EmptySet in constant time, the operation PostQueue
in O(logn) time, and the operations Insert and IsMember in O(log |o|) time. W

Invariant Verification 30

Bit-level data structures

In the bit-level model, we cannot have arrays indexed by states, as the index
elements are no longer representable by a fixed number of bits. Without loss
of generality, we assume that each state of the transition graph G is identified
by a unique sequence of [logn] bits. For example, the transition graph Gp
of a module with k£ boolean variables has 2* states, and each state can be
represented by a sequence of k bits denoting the values of the module variables.
The bit-enumerative representation {0} e of the region o is a binary tree whose
paths represent the states of G that are members of o. The height of the
tree is [logn], the number of leaves is |o|, and the total number of nodes is
O(lo|- (1 +logn —log|o])) or, less precisely, ©(min(|o|-logn,n)). In particular,
if n is a power of 2 and o contains all n states, then {o}s. is the complete
binary tree with 2n nodes. The bit-enumerative representation {G}. of the
transition graph G is, like the state-enumerative representation, a record whose
first component is a queue of the initial states, and whose second component is
an index structure over states which points to queues of successor states. The
index structure is implemented as a binary tree whose paths represent the states
of G that have nonempty queues of successors. A queue of pairwise distinct
states can be implemented in a space-efficient way by sharing common suffixes
of the bitvector representations of the states in the queue. This is achieved by a
binary tree with child-to-parent pointers, whose leaf-to-root paths represent the
states in the queue, and whose leaves are connected by pointers that represent
the order of the states in the queue. If the queue contains ¢ states, then the bit-
level queue representation requires ©(min(¢-logn,n)) bits. The following lemma
completes the space and time analysis of the bit-enumerative data structures.

Lemma 2.5 [Bit-enumerative graph and region representations] Let G be a tran-
sition graph with n states, n! initial states, and m transitions, and let s be a
sequence of [logn] bits. The bit-enumerative graph representation {G}e uses
O(min(n!-logn,n)+min(m-logn,n?)) space. The operations InitQueue({G}s.)
and PostQueue(s,{G}pe) require O(1) and O(logn) time, respectively. Let
o be a region of G. The bit-enumerative region representation {o},. uses
O(min(|o]| - logn,n)) space. The operation EmptySet requires O(1) time; the
operations Insert(s,{o}pe) and IsMember(s,{o}pe) each require O(logn) time.

Exercise 2.8 {T2} [Proof of Lemma 2.5] Let G be a transition graph whose states
are the bitvectors of length k, and let ¢ be a region of G. Give formal definitions
of the bit-enumerative graph and region representations {G}y. and {o}pe, and
prove Lemma, 2.5. B

Time and space requirements of depth-first reachability checking

To determine the time complexity of Algorithm 2.3, let n be the total number
of states of the input graph, let n! be the number of initial states, and let mF?

Invariant Verification 31

be the number of reachable transitions. Recall the analysis of the schematic
Algorithm 2.2. In particular, if s is an initial state with m® reachable incoming
transitions, then the function DepthFirstSearch is invoked with input state s at
most 1 +m¥ times; if s is reachable but not initial, then DepthFirstSearch is in-
voked with input s at most m£ times; if s is unreachable, then DepthFirstSearch
is never invoked with input s. The first time that DepthFirstSearch is in-
voked with input s, the function call performs O(|post(s)|) state-level work, and
O(logn + |post(s)]|) bit-level work, in addition to invoking DepthFirstSearch for
every successor of s. Each subsequent call of DepthFirstSearch with input state
s terminates, after a single membership test IsMember(s,o™), within constant
state-level time and O(logn) bit-level time. It follows that the total time re-
quired by all invocations of DepthFirstSearch is, in the worst case, O(n! +mf)
time in the state-level model, and O((n! +m®)-logn) time in the bit-level model.
The worst case is obtained when no state in the target region is reachable. The
initialization of the region of* requires O(n) state-level time vs. constant bit-
level time. The space complexity of Algorithm 2.3 is dominated by the space
requirements of the input representations. The complete analysis is summarized
in the following theorem.

Theorem 2.1 [Depth-first reachability checking] Let G be a finite transition
graph with n states, of which n! are initial, and m transitions, of which m® are
reachable. Let ol be a region of G. In the state-level model, given the input
{G}se and {o1}se, Algorithm 2.3 solves the reachability question (G,o?) and
computes a witness, if one exists, in O(n + m#) time and ©(n + m) space. In
the bit-level model, given the input {G}s. and {67 }4., Algorithm 2.3 requires
O((nf +m*)-logn) time and O(min(n!-logn,n)+min(m-logn,n?)+min(|o7|-
logn,n)) space.

Remark 2.14 [Time complexity of state-level reachability checking] In the state-
level model, the running time of Algorithm 2.3 is proportional to the size n of
the state space, no matter how quickly a state in the target region is found. This
is caused by the initialization of the array {oF}. for representing the region
of explored states. In practice, this behavior is undesirable, and alternative
representations of the region o are preferred. One such representation, based
on search trees, is studied in Exercise 2.9; another one, based on hashing, and
by far the most popular in practice, will be discussed in Section 2.3.3. B

Exercise 2.9 {T2} [Space-efficient state-level data structures] Suppose that the
input to Algorithm 2.3 is given by the alternative state-enumerative graph and
region representations {G}Z, and {o7}7, introduced in Remark 2.13, and that
the region o of explored states is stored in the same manner. What is the
resulting time and space complexity of Algorithm 2.3 in the state-level model?
Under which conditions on the input G and ¢” are the alternative data struc-
tures preferable in order to optimize running time? Under which conditions are

they preferable in order to optimize memory space?

Invariant Verification 32

Algorithm 2.4 [Enumerative Invariant Verification] (schema)

Input: a finite module P, and an observation predicate r for P.

Output: Done, if the instance (P,r) of the invariant-verification
problem has the answer Yes; an error trajectory for the invariant-
verification question (P,r), otherwise.

Construct the enumerative graph representation {Gp}.;
Construct the enumerative region representation {[—r]p}.;
Return the result of Algorithm 2.3 on the input {Gp}. and {[-r]pr}e.

Exercise 2.10 {P2} [Nonrecursive depth-first reachability checking] Write a non-
recursive, state-level version of Algorithm 2.3 with the same time and space
complexity, assuming that the input (G,o7) is given by the state-enumerative
graph and region representations {G}s. and {01 } ;.. Be careful with the witness
construction. W

Exercise 2.11 {P3} [Breadth-first reachability checking] Algorithm 2.3 traverses
the input graph in depth-first fashion. Write a breadth-first algorithm for
reachability checking, including witness construction, assuming that the input
(G,0T) is given, first, by the state-enumerative graph and region representations
{G};. and {67}, and second, by the bit-enumerative representations {G} .
and {07 }pe. (Maintain the frontier 7 of unexplored states as a queue.) Deter-
mine the time and space requirements of your algorithm in both the state-level
and bit-level models. W

Exercise 2.12 {P2} [Transition invariants] Modify Algorithm 2.3, without chang-
ing its state-level and bit-level time and space requirements, to solve the transition-
reachability problem from Exercise 2.6. For this purpose, you must define state-
enumerative and bit-enumerative representations for transition predicates. B

2.3.3 Invariant Verification

For finite modules P, invariant-verification questions of the form (P,r) can be
reduced to reachability checking, as is shown in Algorithm 2.4. In terms of the
size of the input (P,), the asymptotic amount of work for constructing and the
asymptotic amount of space required for storing the enumerative representations
of the transition graph Gp and the target region [-r]p are independent of
whether the state-level or bit-level model is used. Hence, as in Algorithm 2.4,
if the argument G is a transition graph that underlies a module, we write {G'}.
as a place-holder for either the state-enumerative representation {G}s. or the

Invariant Verification 33

bit-enumerative representation {G}.; similarly, we write {c}. if the region o
is defined by a state predicate. The translation from the module P to the
enumerative graph representation {Gp}., as well as the translation from the
observation predicate r to the enumerative region representation {[-r]p}., may
involve an exponential amount of work. To make these claims precise, we need
to agree on a syntax for the legal expressions in the initial and update commands
of reactive modules.

Propositional modules

The most basic type is the boolean type. In propositional modeling, we restrict
ourselves to variables of this type, which are called propositions. If all variables
of a module are propositions, then the module is said to be a propositional
module. Every propositional module is finite, and dually, every finite module
can be viewed propositionally —by replacing each variable of a finite type with
k values by [k] boolean variables. For the propositional modules, we now agree
on a specific syntax. In particular, all expressions that occur in the textual
description of a propositional module result from combining propositions using
a standard set of logical connectives.

Propositional module

A proposition is a variable of type boolean. The propositional formulas are
the boolean expressions generated by the grammar

p == x| true| false | p1 Apa | p1 Vp2 | —p1 | p1 = p2 | p1 & po,

where z is a proposition, and p; and p, are propositional formulas. A propo-
sitional module is a reactive module P such that (1) all module variables of
P are propositions, and (2) every expression that appears in the initial and
update commands of P is a propositional formula.

Remark 2.15 [Transition graphs for propositional modules] If P is a proposi-
tional module with k variables, then the transition graph G p has 2* states and
at most 4% transitions. W

From propositional modules to enumerative graph representations

Let P be a propositional module with k variables, and let |P| be the number
of symbols in the textual description of P. Note that |P| > k. In the first step
of Algorithm 2.4, we need to construct the enumerative representation {Gp}.
of the underlying transition graph. In the following analysis, it is immaterial
whether or not each of the 2* states can be stored and accessed atomically: in
terms of the parameters |P| and k, an asymptotically equal amount of work
is required to construct, for sufficiently small k (say, k < 64), the state-level
representation {Gp}se or, for arbitrary k, the bit-level representation {Gp}pe;

Invariant Verification 34

module Nondet is

interface z1,...,25: B
atom controls z;
initupdate

[true = 2 := true
| true — i := false

atom controls zy,
initupdate
| true = x}, := true
[true — z}, := false

Figure 2.14: Unconstrained propositional module

we therefore use the notation {Gp}.. To construct the queue of initial states
of P, we generate each state s of P and check if s is an initial state of P.
Similarly, for every state s, to construct the queue of successors of s, we generate
each state ¢ of P and check if (s,t) is a transition of P. Since each state of P
is a bitvector of length k, we can generate all states in O(2*) time. The next
lemma shows that each of the 2* initiality checks and each of the 4* transition
checks can be performed in linear time. It follows that the construction of the
enumerative graph representation {Gp}. can be completed in O(4* - |P|) time.

Lemma 2.6 [Initial states and transitions for propositional modules] Given a
propositional module P, and two states s and ¢ of P, it can be checked in
O(|P|) time if s is an initial state of P and if (s,t) is a transition of P.

Exercise 2.13 {T2} [Proof of Lemma 2.6] Given a propositional module P, con-
struct two propositional formulas g5, and ¢%, whose lengths are linear in | P|: the
initial predicate ¢F is a boolean expression over the set X p of module variables
so that for every state s of P, the expression qIID evaluates to true in s iff s is an
initial state of P; the transition predicate q1T3 is a boolean expression over the
set Xp U Xp of unprimed and primed module variables so that for every pair
(s,t) of states of P, the expression g} evaluates to true in s Ut iff (s,t) is a
transition of P. Since each state of P is a bitvector of length k, where £ is the
number of propositions of P, and since |P| > k, Lemma 2.6 follows. B

The construction time of the enumerative graph representation {Gp}. is expo-
nential in the number k of variables. This exponential amount of work cannot
be avoided, as the record {G p}. may require exponentially more space than the
textual description of the module P. Consider the propositional module Nondet

Invariant Verification 35

with k£ boolean interface variables such that all initial values are arbitrary, and
in every update round, the values of all variables can change arbitrarily. If
every variable is controlled by a separate atom, then P can be specified using
©(k) symbols, as shown in Figure 2.14. The transition graph G nonget is the
complete graph with 2% states, all of which are initial, and 4% transitions. It
follows that the enumerative graph representation {G nondet}e requires ©(4%)
space, independent of whether we can use the state-level model or must resort
to the bit-level model.

Propositional invariant verification

If we restrict our attention to propositional modules, then we obtain a special
case of the invariant-verification problem.

Propositional invariant-verification problem

An instance (P, r) of the invariant-verification problem is propositional if P
is a propositional module and r is a propositional formula. The instances
of the propositional invariant-verification problem are the propositional in-
stances of the invariant-verification problem. The propositional instance
(P,r) has k variables if the module P has k module variables.

Let (P,r) be a propositional instance of the invariant-verification problem with
k variables. The enumerative representation {[-r]p}. of the target region can
be constructed in O(2* - |r|) time, by generating each state s of P and checking
if s satisfies the predicate r. The constructed data structure {[-r]p}. occupies
O(2*) space. Both construction time and memory space are independent of
whether we use the state-enumerative region representation {[-r]p}se or the
bit-enumerative region representation {[-r]p}se. Together with Exercise 2.13
and Theorem 2.1, this gives exponential time and space bounds for solving the
propositional invariant-verification problem which are independent of the state-
level vs. bit-level issue.

Theorem 2.2 [Propositional invariant verification] Let (P,r) be a propositional
instance of the invariant-verification problem with k variables. Algorithm 2.4
solves the invariant-verification question (P, r) and computes an error trajectory,
if one exists, in O(4* - (|P| + |r|)) time and ©(4*) space.

Exercise 2.14 {T4} [Equational modules with interpreted constants] An ic-equational
term is either a variable or an interpreted constant. Like variables, constants are
typed. Each interpreted constant denotes a fixed value of its type. Examples of
interpreted constants are the boolean constant true and the integer constant 19.

In particular, for two interpreted constants, it is known if they denote equal or
different values. The ic-equational formulas are the boolean expressions that

are generated by the grammar

p == fi=fa|p1 Ap2 |1,

Invariant Verification 36

where f; and f» are ic-equational terms of the same type, and p; and po are
ic-equational formulas. An ic-equational module is a reactive module P such
that (1) every guard that appears in the initial and update commands of P
is an ic-equational formula, and (2) every assignment that appears in the ini-
tial and update commands of P is an ic-equational term. An instance (P,r)
of the invariant-verification problem is ic-equational if P is an ic-equational
module and r is an ic-equational formula. The instance (P,r) is finite if the ic-
equational module P is finite. Suppose we wish to use Algorithm 2.4 for solving
the ic-equational instances of the invariant-verification problem. (a) Given an
ic-equational instance (P,r) of the invariant-verification problem, find a finite
propositional instance (P’,r') that has the same answer as (P,r). (b) Write a
preprocessor that, given the ic-equational module P and the ic-equational for-
mula r, constructs the enumerative graph representation {Gp'}. and the enu-
merative region representation {[-']pr }.. What are the space requirements of
your representations as a function of the size of the input (P,r)? What are the
running times of your preprocessor and of Algorithm 2.4 in terms of the size of
(P,r)? Does it make a difference if the state-level model or the bit-level model
is used? W

Exercise 2.15 {P3} [Backward search] Write a backward-search algorithm for
reachability checking, and an invariant-verification algorithm that invokes your
backward-search algorithm. In your algorithms, assume that the abstract type
enumgraph supports the operation

PreQueue: state x enumgraph — queue of state

which, given a transition graph G and a state s of G, returns a queue that
contains the predecessors of s, in some order. Assuming that the state-level
model is adequate, suggest a representation for transition graphs that supports
the three operations InitQueue, PostQueue, and PreQueue in constant time,
and write an algorithm that constructs your representation for the transition
graphs of propositional modules. Give the running time required to construct
and the memory space required to store your representation. l

2.3.4 'Three Space Optimizations

The exponential space requirements of Algorithm 2.4 (Theorem 2.2) are a serious
obstacle to practical applications. The problem is caused by the enumerative
graph representation {Gp}. for the input module P, and by the enumerative
region representations for the sets o7 of target states and o of explored states,
all of which require space at least proportional to the number of states of P.
For many invariant-verification questions, the number of states is too large for
the transition graph and its regions to be stored explicitly. The following three
observations allow us to reduce the space requirements of invariant verification.
First, on-the-fly methods avoid the enumerative representations of the input

Invariant Verification 37

graph and target region. Second, state-hashing methods avoid the enumerative
storage of the explored states. Third, latch-reduction methods reduce both the
size and number of frontier states and explored states that need to be stored.

On-the-fly graph and region representations

Consider an instance (P,r) of the invariant-verification problem. Instead of
constructing, at once, the space-intensive enumerative graph representation
{Gp}. from the input module P, we can construct portions of the graph only
as needed, whenever the operations InitQueue and PostQueue are invoked in
Algorithm 2.3. Similarly, instead of constructing, at once, the space-intensive
region representation {[-r]p}. from the input predicate r, we can answer each
query in Algorithm 2.3 of the form IsMember(s,c’) by evaluating the predicate
—r in the state s. Such an “on-the-fly” implementation of Algorithm 2.3 relies
on the following data structures for representing the input graph and the target
region.

e On-the-fly representations for graphs are restricted to transition graphs
that underly modules. Given a module P, the on-the-fly representation
{Gp}os for the transition graph G p is a queue that contains the atoms of
the module P in some execution order.

e On-the-fly representations for regions are restricted to regions that are
defined by state predicates. Given a module P and a state predicate ¢
for P, the on-the-fly representation {[g]r}.s for the region [¢]p is the
predicate gq.

In an on-the-fly implementation of Algorithm 2.3, the input graph G is given by
the queue {Gp}or and the input region o7 is given by the predicate {[-r]p}of
(the region o® of explored states, which is not defined by a state predicate, has
no on-the-fly representation). Clearly, the space requirements of the on-the-
fly graph and region representations {Gp}.s and {[-r]p}os are linear in the
input (P,r) to the invariant-verification problem. The overall time and space
requirements of on-the-fly invariant verification for propositional modules are
analyzed in the following exercise.

Exercise 2.16 {P3} [On-the-fly invariant verification for propositional modules]
Consider a propositional module P with k variables, and an observation pred-
icate r for P. (a) Write an algorithm that computes the on-the-fly repre-
sentation {Gp},s of the underlying transition graph. What is the running
time of your algorithm? (b) Write algorithms for computing the operations
InitQueve({Gp}op), PostQueue(s,{Gp}os), and IsMember (s, {[-r]p}.s), where
s is a state of P. What are the running times of your algorithms? (c) Using
the state-level array representation {o%},. for the region of explored states,
solve the propositional instance (P,r) of the invariant-verification problem in

Invariant Verification 38

O((2¥ +m®)-(|P|+|r|)) time and O (2% +|P|+|r|) space, where m® is the num-
ber of reachable transitions of the transition graph Gp. (d) Using the state-level
search-tree representation {o#}7L, or the bit-level representation {o'}, for the
region of explored states, solve the instance (P,r) of the invariant-verification
problem in O((n! + m®) - (|P| + |r|)) time and ©(n® + |P| + |r|) space, where
n! is the number of initial states and nf is the number of reachable states of
the transition graph Gp. B

Remark 2.16 [On-the-fly invariant verification for finitely branching modules]
The on-the-fly representation {Gp}os of the transition graph does not require
that the input module P is finite. Neither does the on-the-fly representation
{[-r]p}or of the target region require that the input predicate r evaluates to
true in all but finitely many states of P. Rather, the on-the-fly implementation
of Algorithm 2.3 can be applied to input modules with finitely branching tran-
sition graphs and infinite target regions. As observed earlier, Algorithm 2.3 is
guaranteed to terminate if the reachable subgraph G£ of the input module P
is finite. The algorithm may terminate even when GE is infinite, if it visits a
state that belongs to the target region. B

Exercise 2.17 {P3} [Integer modules with addition] The integer terms with ad-
dition are the nonnegative integer expressions generated by the grammar

fu=a|m|fi+folfi—fo,

where z is a variable of type N, where m is a nonnegative integer (i.e., an
interpreted constant of type N), and f; and f» are integer terms with addition.
The integer formulas with addition are the boolean expressions generated by
the grammar

p = filfa|pAp|-p,

where f; and fo are integer terms with addition. An integer module with
addition is a reactive module P such that (1) all module variables of P are of
type N, (2) every guard that appears in the initial and update commands of P
is an integer formula with addition, and (3) every assignment that appears in
the initial and update commands of P is an integer term with addition. The
instance (P,r) of the invariant-verification problem is an integer instance with
addition if P is an integer module with addition and r is an integer formula
with addition. (a) Suppose we wish to apply an on-the-fly implementation of
Algorithm 2.3 to the integer instances with addition of the invariant-verification
problem. In order to obtain a finitely branching transition graph, we need to
restrict ourselves to integer modules with addition which are closed. Write
algorithms that, given a closed integer module P with addition, computes the
operations InitQueue and PostQueue for the transition graph Gp on the fly,
and write an algorithm that, given an integer formula r with addition, computes

Invariant Verification 39

the operation IsMember for the region [-r]p on the fly. What are the running
times of your algorithms? (b) Give an example of a closed, deterministic integer
module P with addition and a state s of P so that the set prep(s) is infinite.
What are the ramifications for on-the-fly backward search for integer modules
with addition? W

Hashing of explored states

On-the-fly implementations of Algorithm 2.3 reduce the space required by the
transition graph G and the target region o, but they do not address the space
required by the region o® of explored states. In particular, in the state-level
model, neither the array representation {o},, nor the search-tree representa-
tion {o®}T perform satisfactorily in practice: the array representation {o%},
is exponential in the number of input variables, even if the region ¢®, which
is initially empty, remains small compared to the size of the state space; the
search-tree representation {o®}1, is space-optimal, but the rebalancing over-
head involved in the frequent insertions adversely affects the verification time
in practice. State hashing is a compromise which often offers the best practical
performance. In state hashing, the region o is represented by a hash table
{oB}H that consists of (1) a hash function that maps each state s to an integer
between 0 and N, for a suitably chosen nonnegative integer N, and (2) an array
of length N whose i-th entry, for 1 < ¢ < N, points to a queue of states that
are mapped to ¢ by the hash function:

enumreg = (state — {0..N}) x (array[0..N] of queue of state)

The choice of N is determined by the expected number of reachable states and
by the word size of the computer on which the hash table is implemented; for
example, N = 264 — 1. The hash table {o®}Z is a state-level data structure
which uses ©(N + |of|) space. The running time of Algorithm 2.3 depends
crucially on the complexity of the membership test for the hash table {o®}1
which in turn depends on the choice of hash function and on the ratio of N to
the number of explored states. A detailed analysis of hashing can be found in

[Knuth:Vol.1].

Remark 2.17 [Bit-state hashing] While hashing is an effective technique to rep-
resent the set of explored states, often the number of reachable states is too
large to be stored in memory. In such cases, an approximate strategy, known
as bit-state hashing, can be used. This approach uses a hash table of size N
whose i-th entry, for 1 <+4¢ < N, is a single bit. The insertion of a state, which is
mapped to an integer i between 0 and N by the hash function, is implemented
by setting the i-th bit of the hash table to 1. All hash collisions are ignored.
Suppose that two states s and ¢t are mapped to the same integer i, and s is
inserted in the hash table first. When the state ¢ is encountered, as the i-th bit
of the hash table is already set, the membership test returns a positive answer.

Invariant Verification 40

Consequently, Algorithm 2.3 does not explore the successors of . Hence, only
a fraction of the reachable region is explored. The algorithm may return false
negatives (the false answer No for Yes-instances of the reachability problem),
but no false positives (the false answer Yes for No-instances of the reachability
problem). In particular, every error trajectory that is found indeed signals a vi-
olation of the invariant. More general approximation schemes will be discussed
in detail in Chapter 5.

What fraction of the reachable region is visited by bit-state hashing depends
on the choice of table size and hash function. The table size can be increased
iteratively until either an error trajectory is found or all available memory space
is used. The performance of bit-state hashing can be improved dramatically by
using two bit-state hash tables that employ independent hash functions. Each
explored state is stored in preferably both, but at least in one hash table, so
that a collision occurs only if both table entries are already occupied. If N is the
size of the hash tables, this strategy typically ensures that, if necessary, close to
N reachable states are explored. l

Latch reduction for event variables and history-free variables

If, for every state s of a module, the value s(x) of the module variable z is not
needed for determining the successors of s, then in Algorithm 2.2 the value of
x does not have to be stored as part of the frontier 7 of unexplored states nor
as part of the region o of explored states. This is the case for event variables,
whose values in a given state are immaterial, and for variables whose values are
never read, only awaited. The variables whose values are not read are called
history-free; their values in a given state depend (possibly nondeterministically)
on the values of other variables in the same state. The space savings that
arise from not storing the values of event variables and history-free variables
during graph search can be substantial. For example, in synchronous circuits, all
variables that represent input and output wires of gates and latches are history-
free, and only the variables that represent the internal states of the latches need
to be stored. Motivated by this example, we refer to the variables that are
neither event variables nor history-free as latched. The set of latched variables
of a module can be computed easily from the module and atom declarations.
The projection of the transition graph of a module to the latched variables is
called the latch-reduced transition graph of the module.

Invariant Verification 41

Latch-reduced transition graph of a module

A variable z of the module P is latched if (1) z does not have the type E,
and (2) z is read by some atom of P. We write latchX p for the set of
latched module variables of P. The latch-reduced transition graph of P is
the transition graph G5 = (X p[latchX p], oL[latchX p], —%), where sL =%
L iff there is a transition s —p t such that s¥ = s[latchX p] and t& =
t[latchX p].

Example 2.10 [Latch-reduced transition graph for three-bit counter] Recall the
circuit from Figure 1.20 which realizes a three-bit binary counter. For the
module Sync3BitCounter, all variables except the three output bits outy, outy,
and out,, are history-free. Consequently, the latch-reduced transition graph of
Sync3BitCounter has only 8 states, which correspond to the possible values of
the three output bits. Each state of the latch-reduced transition graph encodes
a counter value, and there is a transition from state s to state ¢ iff the value
encoded by t is one greater (modulo 8) than the value encoded by s. B

Exercise 2.18 {P1} [Latch-reduced transition graph for railroad control] Con-
sider the module Trainw || Traing || Controller! of Example 2.8. Which vari-
ables are latched? Draw the latch-reduced transition graph of the module. B

Remark 2.18 [Latch-reduced transition graphs] The latch-reduced transition graph
GL of a module P may be finite even if the transition graph Gp is not, and G%
may be finitely branching even if Gp is not. B

The latched-reduced transition graph of a module can be used for invariant
verification. Let (P,r) be an instance of the invariant verification problem. If
the observation predicate r contains only latched variables —that is, free(r) C
latchX p— then the invariant-verification question (P, r) reduces to the reacha-
bility question (G%, [-r]p). If the observation predicate r refers to some history-
free variables, then a transition-reachability question on the latch-reduced tran-
sition graph G§ needs to be answered. To see this, we make use of the following
definitions.

Latch-satisfaction of a state predicate

Let P be a module, and let ¢ be a state predicate for P. The initial state
sl of the latch-reduced transition graph G% latch-satisfies g if there is an
initial state s of P such that s = s[latchX p] and s |= q. The transition
(sL,tL) of GL latch-satisfies ¢ if there is a transition (s,t) of P such that
sl = s[latchX p] and L = t[latchX p] and t = q.

Exercise 2.19 {P2} [Latch-satisfaction] Consider a propositional module P and
a propositional formula ¢ which is a state predicate for P. Implement the fol-
lowing four functions. The function LatchReducedInit({Gp}of) returns a queue

Invariant Verification 42

containing the initial states of the latch-reduced transition graph G5. Given a
state s of Gk, the function LatchReducedPost(s’, {Gp}of) returns a queue con-
taining the successors of s in the latch-reduced transition graph G%. Given an
initial state s© of G%, the boolean function InitLatchSat(s™, {Gp}.s,q) checks
if sl latch-satisfies g. Given a transition (s¥,#X) of G%, the boolean function
TransLatchSat (st t%, {Gp}os,q) checks if (s, tl) latch-satisfies . What are
the running times of your algorithms in terms of the size of the input (P, ¢)? B

Proposition 2.4 [Latch-reduced invariant verification] The answer to the invariant-
verification question (P,r) is No iff there is an initialized trajectory 3% , of the
latch-reduced transition graph G% such that either m = 1 and the initial state
s¥ latch-satisfies r, or m > 1 and the transition (sZ,_,, sZ) latch-satisfies r.
Exercise 2.20 {T2} [Proof of Proposition 2.4] Consider a module P and three
states s”, tL, and ul of the latch-reduced transition graph G%. Prove that
if st =L t&' »L 4l then there are three states s, t, and u of P such that
sl = s[latchX p] and t* = t[latchX p] and ul = u[latchX p] and s =p t —p u.
Proposition 2.4 follows. l

Proposition 2.4 gives a recipe for invariant verification using the latch-reduced
transition graph instead of the full transition graph of a module: the invariant
verifier Algorithm 2.4 can call the reachability checker Algorithm 2.3 on the
latch-reduced transition graph G5 of the input module P, provided that the
membership test IsMember(s,o”) for the target region is replaced by appro-
priate applications of the boolean functions InitLatchSat and TransLatchSat.
The space savings may be substantial, as the type state needs to store only the
values for the latched variables of P.

Exercise 2.21 {P3} [On-the-fly, latch-reduced transition-invariant verification]
Since the latch-satisfaction of a state predicate is based on transitions, rather
than states, latch reduction lends itself naturally to checking transition in-
variants (cf. Exercise 2.6). Give a detailed algorithm for solving the proposi-
tional transition-invariant verification problem, using both on-the-fly and latch-
reduction techniques. Use the functions LatchReducedInit and LatchReducedPost
from Exercise 2.20, and modify TransLatchSat for transition invariants. Choose
either the state-level or the bit-level model. In either case, for every proposi-
tional instance (P,r') of the transition-invariant problem, you should aim for the
time complexity O(4F - (|P| +|r'|)) and the space complexity O(2* + |P| + |r']),
where k is the number of latched variables of the input module P. B

2.4 State Explosion*

The exponential difference between reachability checking for transition graphs
(Theorem 2.1) and invariant verification for reactive modules (Theorem 2.2) is

Invariant Verification 43

intrinsic and, in general, cannot be avoided: in this section, we formally prove
that the complexity class of the propositional invariant-verification problem is
Pspace, and therefore, in absence of any major breakthroughs in complexity
theory, the invariant-verification problem cannot be solved efficiently. The stark
contrast to the complexity class of the reachability problem, Nlogspace, is caused
by the fact that a module provides an exponentially more succinct description of
a transition graph than an enumerative graph representation. This phenomenon
is called state explosion. The source of state explosion is the number of module
variables: for a module P, the number of states of the transition graph G p grows
exponentially with the number of variables of P. State explosion is the single
most important obstacle to verification practice, for two reasons. First, state
explosion does not arise from any peculiarities of our modeling framework —any
discrete system with & boolean variables gives rise to 2¥ states— and therefore is
present in all modeling frameworks. Second, state explosion arises in invariant
verification, which asks the simplest kind of global questions about the dynamics
of a discrete system, and therefore is present for all verification questions. This
prominence has thrust state explosion into the center of verification research.
At the same time, the results of this section show that all approaches to alleviate
the state-explosion problem are ultimately doomed to be heuristics that work
well in certain limited cases. Several of the next chapters will present such
heuristics which have proved useful in practice.

2.4.1 Hardness of Invariant Verification

We first prove that in the propositional case —where all variables are boolean—
the invariant-verification problem is hard for Pspace, and then, that in the
general case —specifically, in the presence of integer variables— the invariant-
verification problem is undecidable. Both proofs are similar, in that reactive
modules are used to simulate Turing machines: polynomial-space Turing ma-
chines in the boolean case; arbitrary Turing machines in the integer case.

Pspace-hardness of propositional invariant verification

The Pspace-hardness of propositional invariant verification follows from the fact
that with a polynomial number of boolean variables, one can simulate the be-
havior of a Turing machine that visits a polynomial number of tape cells.

Theorem 2.3 [Hardness of propositional invariant verification] The propositional
invariant-verification problem is Pspace-hard.

Proof. We polynomial-time reduce the acceptance problem for polynomial-
space Turing machines to the propositional invariant-verification problem. We
are given a deterministic Turing machine M that accepts or rejects every input
in polynomial space, and we are given an input word @ for M. We need to
construct, in time polynomial in the specification of M and the length of @,

Invariant Verification 44

a propositional module Py; 5z and an observation predicate ryrz so that the
invariant-verification problem (P g,rwm,z) has the answer Yes iff the Turing
machine M accepts the input @. Since determining whether or not a polynomial-
space Turing machine accepts an input is, by definition, Pspace-hard, it follows
that the propositional invariant-verification problem is also Pspace-hard.

As the given Turing machine M uses only polynomial space, there is a polyno-
mial function p(-) so that M accepts or rejects every input of length 4 by visiting
at most p(i) tape cells. Let A be the tape alphabet of M, containing the blank
letter, and let @ be the set of control modes of M, containing the initial mode ¢y,
the accepting mode g4, and the rejecting mode ¢gr. Let n be the length of the
given input word @. The Turing machine starts in the control mode ¢y, its read
head at the first tape cell, with the first n tape cells containing the input @,
and the remaining p(n) — n tape cells containing blanks. The Turing machine
accepts the input by entering the control mode g4, and it rejects the input by
entering the control mode ggr. Let ¢t be the number of computation steps that
M needs for accepting or rejecting the input a.

We construct a finite, closed, deterministic module Py g, which, for simplicity,
is not necessarily propositional; the task of turning Py, 7 into an appropriate
propositional module is left to the reader (Exercise 2.22). The module Py 3
has p(n) variables, z1,...,Z,(,), each of the finite type A, and p(n) variables,
Y1,---Yp(n), €ach of the finite type Q U {L}. The value of z; indicates the
contents of the i-th tape cell. If the read head of M is located at the i-th tape
cell, then the value of y; indicates the control mode of M; otherwise y; has the
value L. In this way, every state s of the module Py g, such that s(y;) belongs
to @ for precisely one i between 1 and p(n), encodes a configuration of the
Turing machine M. All variables are interface variables and are controlled by a
single atom, Upsz. The initial and update commands of Ujsz ensure that the
unique trajectory of Pys g of length ¢ encodes the computation of M on input a.
The initial command of Ujs z contains a single guard assignment, which assigns
the input letter a; to z; for all 1 < ¢ < n, assigns the blank letter to z; for
all n < i < p(n), assigns the initial mode gr to y1, and assigns L to y; for
all 1 < ¢ < p(n). Then, the unique initial state of Py 5 encodes the initial
configuration of M. The Turing machine M is specified by a set of transition
rules, which are tuples in (Q x A) x (Q x A x {left, right}). For example, the
transition rule ((g,a), (¢, a', right)) specifies that “if the control mode is ¢ and
the tape letter at the read head is a, then switch the control mode to ¢', write
letter a’ onto the tape, and move the read head one tape cell to the right.”
For each transition rule of M, the update command of Uy contains p(n) — 1
guarded assignments, which simulate the effect of the rule. For example, for the
transition rule ((g,a), (¢, a', right)), for each 1 < i < p(n), the update command
contains the guarded assignment

ri=aANyi=q = zi:=ad; y;:=1; yi,, =¢.

Invariant Verification 45

Then, for all j < ¢, the unique initialized trajectory of Pasz of length j encodes
the first j computation steps of M on input @. Consequently, the observation
predicate

rma: (AN1<i<p(n)|y #qr)

is an invariant of the module Py 7 iff the Turing machine M accepts the input a.
If the specification of M contains | M| symbols, then the textual description of
Prgz has O(|M| - p(n)) symbols, and the predicate 75z consists of O(p(n))
symbols; so both Pz and rarg can be constructed in time polynomial in the
size of (M,a). &

Remark 2.19 [Hardness of propositional invariant verification] The module Py 5
constructed in the proof of Theorem 2.3 contains a single atom that controls a
polynomial number of variables. Instead, we can construct a module that has
polynomial number of atoms, each of which controls a single variable, reads a
constant number of variables, awaits none, and has initial and update commands
of constant size. Thus, the state explosion is independent of the number or
complexity of atoms; it occurs when all module variables are controlled by a
single atom, and when each atom controls a single variable. Also note that, in
the proof of Theorem 2.3, nondeterminism plays no role in establishing Pspace-
hardness. B

Exercise 2.22 {T3} [Hardness of propositional invariant verification] (a) Com-
plete the proof of Theorem 2.3 by turning the module Pps5z and the predi-
cate ryr5, in polynomial time, into a propositional module and a propositional
formula with the appropriate properties. (b) The module Pz used in the proof
of Theorem 2.3 is synchronous. Prove that the invariant-verification problem is
Pspace-hard even if the problem instances are restricted to propositional mod-
ules with (1) a single atom which is a speed-independent process, and (2) mul-
tiple atoms each of which is a speed-independent process controlling a single
variable. B

Undecidability of invariant verification with counters

For infinite modules, the invariant-verification question can be algorithmically
undecidable. To see this, we define a class of reactive modules which make use
of nonnegative integer variables in a very restricted way. A counter is a variable
of type N which can be initialized to 0 or 1, tested for 0, incremented, and
decremented. If all variables of a module are counters, then the module is said
to be a counter module. Thus, the counter modules are a proper subset of the
integer modules with addition from Exercise 2.17.

Invariant Verification 46

Counter module

A counter module is a reactive module P such that (1) all module variables
of P are of type N, (2) every guard that appears in the initial and update
commands of P is a finite (possibly empty) conjunction of predicates of the
form ¢ = 0 and & > 0, (3) every assignment that appears in the initial
commands of P is either 0 or 1, and (4) every assignment that appears in
the update commands of P has the form = + 1 or z—1. The variables of
a counter module are called counters. An instance (P,r) of the invariant-
verification problem is a counter instance if P is a counter module and the
predicate r has the form z = 0. The instances of the counter invariant-
verification problem are the counter instances of the invariant-verification
problem.

A classical counter machine is a discrete, deterministic system with a finite num-
ber of control modes and a finite number of counters. Since each control mode
¢ can be replaced by a counter, whose value is 1 iff the control is in the mode ¢,
and otherwise 0, every counter machine can be simulated by a closed, determin-
istic counter module. Since every Turing machine can, in turn, be simulated,
by a counter machine —in fact, two counters suffice to encode the contents of
an unbounded number of tape cells— it follows that the reachability problem
for counter machines, which asks if a given counter machine ever enters a given
control mode, and therefore also the counter invariant-verification problem, is
undecidable.

Theorem 2.4 [Hardness of counter invariant verification] The counter invariant-
verification problem is undecidable.

2.4.2 Complexity of Invariant Verification

The Pspace lower bound for propositional invariant verification (Theorem 2.3)
can be tightly matched by an upper bound. However, Algorithm 2.3 uses Q(2%)
space for solving an invariant-verification question with k variables, even if on-
the-fly methods are employed, and independent of state-level vs. bit-level anal-
ysis, because the region o® of explored states may contain up to 2* states. A
different approach is needed if we wish to use only space polynomial in k. We
now present such an algorithm and give a detailed, bit-level space analysis. (Bit-
level analysis is, strictly speaking, not necessary, as the state-level and bit-level
space requirements of any algorithm can differ at most by a polynomial factor
of k.)

Let P be a propositional module with k& variables, and let r be a propositional
formula that is an observation predicate for P. Since P has 2* states, a state s
of P is reachable iff there is an initialized trajectory with sink s and length at

Invariant Verification 47

Algorithm 2.5 [Pspace algorithm for invariant verification] (schema)

Input: a propositional module P, and a propositional formula, r.
Output: the answer to the instance (P,) of the invariant-verification
problem.

Let k be the number of module variables of P;
foreach s,t € ¥p do
if s € oL and not ¢ = r then
if PSpaceSearch(s,t,2¥) then return Yes fi
fi
od;
return No.

function PSpaceSearch(s,t,i): B
if s =t then return true fi;
if ¢ > 1 and s —p t then return true fi;
if ¢ > 2 then
foreach u € ¥p do
if PSpaceSearch(s,u,[i/2]) and PSpaceSearch(u,t,[i/2]) then
return true
fi
od
fi;
return false.

Invariant Verification 48

most 2*. This suggests Algorithm 2.5, which performs a binary search to check
reachability on the transition graph Gp. Given two states s and ¢t and a positive
integer 7, the boolean function PSpaceSearch(s,t,i) returns true iff there is a
trajectory with source s and sink ¢ of length at most 4. The function is computed
recursively by attempting to find a state u at the midpoint of the trajectory.
Since every state of P is a bitvector of length k, all pairs of states can be
enumerated one after the other in O(k) space. By Lemma 2.6, given two states
s and t, it can be determined in O(|P| + |r|) time, and therefore linear space,
if s is initial, if ¢ satisfies r, and if ¢ is a successor of s. In Algorithm 2.5, the
space used by the first recursive call of the function PSpaceSearch can be reused
by the second recursive call. Hence, the total space used by Algorithm 2.5 is
O(k-d+|P|+]|r|), where d is the depth of the recursion. Since each recursive call
searches for a trajectory of half the length, starting from length 2*, the depth
of the recursion is bounded by k. Thus, Algorithm 2.5 can be implemented
in O(k®> + |P| + |r|) space, which is quadratic in the size of the input. This
establishes that the propositional invariant-verification problem can be solved
in Pspace.

Theorem 2.5 [Complexity of invariant verification] The propositional invariant-
verification problem is Pspace-complete.

Remark 2.20 [Depth-first search versus Pspace search] Algorithm 2.5 has an
Q(8%) time complexity, even in the state-level model, and thus pays a price in
running time for achieving polynomial space. In practice, one always prefers
search algorithms whose running time is at worst proportional to the number of
transitions (say, O(4* - (|P| + |r|)) for propositional instances of the invariant-
verification problem with k variables), or better yet, proportional to the number
of states and reachable transitions (as is the case for on-the-fly depth-first-
search). H

Remark 2.21 [Nondeterministic complexity of invariant verification and reacha-
bility] An alternative, conceptually simpler proof that the propositional invariant-
verification problem belongs to Pspace can be based on the knowledge that de-
terministic and nondeterministic polynomial space coincide (i.e., every nondeter-
ministic polynomial-space Turing machine can be simulated, using only polyno-
mial space, by a deterministic Turing machine). Hence it suffices to give a non-
deterministic approach for solving the propositional invariant-verification prob-
lem in polynomial space. Such an approach is outlined in Algorithm 2.6. The
nondeterministic algorithm solves propositional invariant-verification questions
with k variables using only the local variables s, m, i, and ¢, in ©(k + |P| + |r]|)
space. Essentially the same nondeterministic algorithm, applied to inputs of
the form (G, 07), where G is a transition graph and o7 is a region of G, shows
that the reachability problem belongs to Nlogspace (i.e., the algorithm uses only
logarithmic space in addition to the space occupied by the input). B

Invariant Verification 49

Algorithm 2.6 [Npspace schema for invariant verification]

Input: a propositional module P, and a propositional formula r.
Output: one of the nondeterministic runs returns Yes iff the instance
(P,r) of the invariant-verification problem has the answer Yes.

Let k be the number of module variables of P;
Choose an arbitrary state s € X p;
if not s € o}, then return No fi;
Choose an arbitrary nonnegative integer m between 0 and 2¥;
for i := 1 tom do
Choose an arbitrary state t € X p;
if not s —p t then return No fi;
s:=t
od;
if not s |= r then return No fi;
return Yes.

2.5 Compositional Reasoning

Complex systems are often built from parts of small or moderate complexity.
For example, circuits are built from individual gates and memory cells. In such
a setting, state explosion is caused by the parallel composition of many modules,
each with a small number of variables. When possible, we want to make use of
the structure inherent in such designs for verification purposes. In particular, the
state-explosion problem may be avoided if an invariant of a compound module
can be derived from invariants of the component modules.

2.5.1 Composing Invariants

A divide-and-conquer approach to verification attempts to reduce a verification
task about a complex system to subtasks about subsystems of manageable com-
plexity. If the reduction follows the operators that are used in the construction
of the complex system, then the divide-and-conquer approach is called compo-
sitional reasoning. Complex reactive modules are built from simple modules
using the three operations of parallel composition, variable renaming, and vari-
able hiding. Hence, for compositional invariant verification, we need to know
how invariants distribute over the three module operations.

Proposition 2.5 [Compositionality of invariants] If the observation predicate r
is an invariant of the module P, then the following three statements hold.

Invariant Verification 50

Parallel composition For every module @ that is compatible with P, the obser-
vation predicate r is an invariant of the compound module P||Q.

Variable renaming For every variable renaming p for the module variables of P,
the renamed observation predicate r[p] is an invariant of the renamed
module PJ[p].

Variable hiding For every interface variable z of P, the observation predicate
(3z | r) is an invariant of the module hide z in P. In particular, if does
not occur freely in 7, then r is an invariant of hide z in P.

Proof. The first part of Proposition 2.5 follows from Proposition 2.2. The
second and third parts are immediate. H

The compositionality and monotonicity of invariants (the first part of Propo-
sition 2.5 and Remark 2.9) suggest the following verification strategy, called
compositional invariant verification:

Let P and @ be two compatible modules, and let r be an observation
predicate for the compound module P||@. In order to show that r
is an invariant of P||Q, it suffices to find an observation predicate p
for P, and an observation predicate ¢ for @), such that (1) p is an
invariant of P, (2) ¢ is an invariant of @), and (3) the implication
pAq— ris valid.

The local invariants p and g represent the guarantees that the components P
and @) make as to jointly maintain the global invariant . Compositional invari-
ant verification is usually beneficial if the state spaces of P and @) are smaller
than the state space of the compound module P||@Q, which is the typical sce-
nario. It should be noted, however, that the compound module may have fewer
reachable states than either component module, in which case decomposition
does not achieve the desired effect. This happens when the two components are
tighly coupled, strongly restraining each others behaviors, and have few private
variables.

Example 2.11 [Compositional verification of railroad control] Let us revisit Ex-
ample 2.8 and prove that the railroad controller Controller2 from Figure 2.9
enforces the train-safety requirement that in all rounds, at most one train is on
the bridge. More precisely, we wish to establish that the observation predicate

safe .

r —(pey = bridge A pcp = bridge)

is an invariant of the module

module RailroadSystem?2 is
hide arrivew, arriveg, leavew , leave in
|| Trainw
|| Traing
|| Controller2.

Invariant Verification 51

To decompose the verification problem, we observe that the controller ensures
that (1) the train traveling clockwise is allowed to proceed onto the bridge only
when the western signal is green and the eastern signal is red, and symmet-
rically, (2) the train traveling counterclockwise is allowed to proceed onto the
bridge only when the eastern signal is green and the western signal is red. The
conjunction of these two assertions entails the train-safety requirement. The
formal argument proceeds in six steps:

1. We establish that

rf,{ife: peyy = bridge — (signaly, = green A signalp = red)

is an invariant of the module Trainw || Controller2.

2. By the second part of Proposition 2.5 (variable renaming in invariants),
we deduce that the renamed predicate

r3e. pey = bridge — (signal; = green A signaly, = red)

is an invariant of the renamed module Traing || Controller2.

3. By the first part of Proposition 2.5 (compositionality of invariants), we

deduce that both rif/® and 7327 are invariants of the compound module
Trainw || Traing || Controller2.

4. By the second part of Remark 2.9 (monotonicity of invariants), we de-
duce that the conjunction ri’;fe A ri?fe is an invariant of the module

Trainw || Traing || Controller2.

5. Since the implication rf,{}fe A r%“fe — 1% is valid, by the first part of
Remark 2.9 (monotonicity of invariants), we deduce that 7°¢/¢ is also an
invariant of Trainw || Traing || Controller.

6. Finally, by the third part of Proposition 2.5 (variable hiding in invariants),

we conclude rf}{if ¢ is an invariant of the module RailroadSystem?2.
Only the first step requires state-space exploration, namely, the solution of
a reachability problem on the latch-reduced transition graph of the module
Trainw || Controller2. The savings are easy to compute: the latch-reduced tran-
sition graph of Trainy || Controller2 has 48 states; the latch-reduced transition
graph of entire system RailroadSystem?2 has 144 states. B

Exercise 2.23 {P2} [Composing invariants] Consider the two-bit arbiter module
BinArbiter from Figure 2.15. When the control input ekout is high, then one
of the two data inputs in; and ins is relayed to the data output out. If in; is
relayed, ¢ = 1,2, then the corresponding control output akin; is set to 1, and

Invariant Verification 52

module BinArbiter is
private turn: {1,2}
interface akiny, akins, out: B
external ing, ing, akout: B

atom controls turn reads turn awaits akout
init
[true = turn' ;=1
[true — turn' ;=2
update
[akout’ A turn =1 — turn’ := 2
[akout’ A turn =2 — turn’ :=1

atom controls oking, akin,, out awaits turn, iny, ino, akout
initupdate
| turn' =1 — akin} = akout'; akiny := 0; out' := in}
| turn' = 2 — akin} := 0; akiny := akout'; out' := in,

Figure 2.15: Two-bit round-robin arbiter

the other control output, ekinz_;, is set to 0. When the control input akout is
low, then both control outputs ekin; and ekiny are set to 0, as to indicate that
none of the data inputs is relayed. The variable turn controls which data input
is relayed and alternates the two choices. (a) Using three two-bit arbiters, we
can build the four-bit round-robin arbiter

module QuadArbiter is
hide inys, ins4, akings, akingg in
|| BinArbiter[iny, ins, akiny, aking := inya, insyg, akings, aking,]
|| BinArbiter[out, akout := iniy, akings]
|| BinArbiter[iny, ina, aking , akina, out, akout := ing, ing, aking, aking, ingy, aking,]

whose abstract block diagram is shown in Figure 2.16. Why is QuadArbiter
called a round-robin arbiter? Prove compositionally that the two observation
predicates

p2: (V1<i<4|akin; — out = in;)
ga: akout < (1< <4 akiny)

are invariants of the module QuadArbiter. First, find suitable invariants p; and
q1 for the two-bit arbiter BinArbiter and prove them by inspecting the latch-
reduced transition graph (Proposition 2.4). Then, use compositional reasoning
(Proposition 2.5 and Remark 2.9) to establish the invariants ps and ¢» of the
four-bit arbiter QuadArbiter. (b) Compositional reasoning permits us to prove
invariants for entire module classes, not only individual modules. An example

Invariant Verification 53

out akout
! QuadArbiter T J/ '
N BinArbiter N
: in1,in2, akout < akini, aking, out !
: in1 aking ino aking .
: ini2 akingy :
: akinia N34 :
' out akout out akout '
. BinArbiter BinArbiter .
. in1,ing, akout < akini, akins, out in1,ing, akout < akini, akins, out .
. in1 aking ing akina .
iny aking ino akins ing aking ing aking

Figure 2.16: Abstract block diagram for four-bit round-robin arbiter

of this is the class of all 2*-bit round-robin arbiters, for positive integers k,
which are built by connecting 2¥ — 1 two-bit arbiters to form a binary tree
of height k. The construction of the resulting module schema TreeArbiter is
shown in Figure 2.17. Use compositional reasoning to derive, for all k¥ > 1, the
invariants

pr: (V1 <i<2F|akin; — out = in;)
qr: akout « (31 <1i < 2F| akin;)

of the 2*-bit arbiter TreeArbiter from the invariants p; and ¢ of the two-bit
arbiter BinArbiter. The integer k is a parameter that occurs in the module
definition, the invariant definition, and the derivation. B

2.5.2 Assuming Invariants

The compositional approach that was advocated in the previous section has
limited applicability. Suppose that the predicate r is an invariant of the com-
pound module P||Q. A decomposition of the global invariant r into a local
invariant p of P and a local invariant ¢ of), which together imply r, may not
be possible. Rather, it is often necessary to make certain assumptions about

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Invariant Verification

out akout

TreeArbiter T J/

BinArbiter

= =

BinArbiter BinArbiter

L L

H H

BinArbiter BinArbiter

— = — =

BinArbiter BinArbiter BinArbiter BinArbiter

R e T

e e o o o e e oo s eeceeeeeeeeseeeeeseeeeeeoeseeeseas

54

level k&

level £k — 1

level 2

level 1

in1 akiny Mok akingk

Figure 2.17: Schematic construction of 2*-bit round-robin arbiter

the environment of the component P in order for P to do its share in ensuring
the global invariant r by maintaining the local invariant p. The assumptions on
the environment of P need then to be discharged against (). Symmetrically, @
may contribute to r by maintaining ¢ only if its environment meets assumptions
that can be discharged against P. The situation becomes apparently cyclic if
the environment invariant ¢ is the very assumption necessary for establishing
that p is invariant with respect to P, and the environment invariant p is the
assumption needed to establish the invariance of ¢ with respect to @.

For a concrete illustration, Figure 2.18 presents a series of small examples. First,
consider the two modules Py, controlling z, and @1, controlling y. We want to
prove compositionally the invariant y = 0 of the compound module P; || Q1.
This follows from the invariant = 0 of P; and the invariant y = z of Q;.
Second, consider the two modules P, and (). In this case, the invariant y = 0
of the module P; || Q2 cannot be established compositionally, because the truth
of y = 0 in one round depends on the truth of £ = 0 in the previous round. Still,

Invariant Verification

95

module P is
interface z: B
external y: B
atom controls z reads =
init
[true — z':=0
update
[true — z':=z

module P is
interface z: B
external y: B
atom controls r reads z

init

[true — z':=0
update

[true — z':==x

module P; is
interface z: B
external y: B
atom controls z reads y
init
[true — z':=0
update
[true — 2':=y

module @), is
interface y: B
external z: B
atom controls y awaits z
initupdate

[true — y':=a'

module Q> is
interface y: B
external z: B
atom controls y reads z
init
[true — y':=0
update
[true — ¢ ===

module Q3 is
interface y: B
external z: B
atom controls y reads =
init
[true — y':=0
update
[true — y' ===z

Figure 2.18: Three forms of collaboration to maintain the invariant y =0

Invariant Verification 56

the problem can be solved with the help of transition invariants (Exercise 2.6).
The transition invariant y' = 0 of P || Q2 follows from the invariant x = 0
of P; and the transition invariant y' = z of @Q;. Together with the fact that
initially y = 0, this establishes the invariant y = 0 of P2 || Q2. Finally, consider
the two modules P3 and Q3. In this case, the invariant ' = 0 of the module
Ps || Q3 cannot be established from the transition invariants y' = = of Ps and
2" = y of Q3. In order for @3 to guarantee the desired invariant y = 0, we
need to assume that the environment of (3 maintains the invariant x = 0.
Symmetrically, P3 guarantees the invariant £ = 0 only under the assumption
that, in turn, the environment of P; keeps y = 0 invariant. Then, induction
on the length of the initialized trajectories of the compound module P;|| Q3
resolves the cyclic interdependence between assumptions and guarantees and
establishes the global invariant £ = 0 A y = 0. This kind of compositional
proof strategy is called assume-guarantee reasoning. In this chapter, we restrict
ourselves to both assumptions and guarantees which are invariants.

Let P be a module, and let r be an external predicate for P. The assumption
that the environment of P maintains the invariant r can be represented by
composing P with a simple module whose only purpose is to keep r invariant
and, while doing so, permitting as many initialized traces as possible. The
most permissive module that ensures the invariance of r is called the r-assertion
module.

Assertion module

Let r be a satisfiable boolean expression whose free variables have finite
types. We define the r-assertion module Assert(r) as follows. The sets of
private and external variables of Assert(r) are empty; the set of interface
variables of Assert(r) is the set free(r) of variables which occur freely in r.
The module Assert(r) has a single atom, which controls all variables in
free(r), neither reads nor awaits any variables, and has identical initial and
update commands: for every valuation s of the variables in free(r) which
satisfies r, the initial and update commands contain a guarded assignment
with the guard true and for each variable x € free(r), the assignment s(x).

Remark 2.22 [Assertion module] The boolean expression r is an interface pred-
icate and an invariant of the r-assertion module Assert(r). In fact, r is the
strongest invariant of Assert(r); that is, for every invariant g of Assert(r), the
implication r — ¢ is valid. All variables of the r-assertion module Assert(r) are
history-free, and therefore, the latch-reduced transition graph of Assert(r) has
a single state. B

The following theorem formalizes our contention that if (1) the module P guar-
antees the invariant p assuming the environment maintains the external predi-
cate ¢ invariant, and (2) the module @) guarantees the invariant ¢ assuming the

Invariant Verification 57

environment maintains p invariant, then the compound module P||@ has both
p and q as invariants. As in the third example from Figure 2.18, the proof will
proceed by induction on the length of the initialized trajectories of P||Q.

Theorem 2.6 [Assume-guarantee reasoning for invariants] Let P and @ be two
compatible modules. Let p be an external predicate for @), and let ¢ be an
external predicate for P, such that all free variables of p and g have finite types.
If p is an invariant of P || Assert(q), and ¢ is an invariant of Assert(p) || @, then
p A q is an invariant of P||Q.

Proof. Consider two compatible modules P and (), an external predicate p
for (), and an external predicate ¢ for P. The free variables of p and ¢ have
finite types, so that the assertion modules Assert(p) and Assert(q) are well-
defined. Assume that p is an invariant of P || Assert(q), and ¢ is an invariant
of Assert(p) || @Q; that is, for every initialized trajectory s of P || Assert(q), the
projection S[extlXp] is an initialized trajectory of Assert(p), and for every ini-
tialized trajectory 5 of Assert(p)|| @, the projection S[extlX¢] is an initialized
trajectory of Assert(q). We show that for every initialized trajectory 5 of P||Q,
the projection 5[Xp] is an initialized trajectory of P || Assert(q), and the pro-
jection 3[X] is an initialized trajectory of Assert(p) || Q. It follows that p A ¢
is an invariant of P||Q.

We need to define some additional concepts. Given a module R, a set X C Xg
of module variables is await-closed for R if for all variables =z and y of R, if
y <p ¢ and y € X, then z € X. For an await-closed set X, the pair (3,t)
consisting of an initialized trajectory 5§ of R and a valuation ¢ for X is an X-
partial trajectory of R if there exists a state u of R such that (1) u[X] =t¢, and
(2) Su is an initialized trajectory of R. Thus, partial trajectories are obtained
by executing several complete rounds followed by a partial round, in which only
some of the atoms are executed. The following two crucial facts about partial
trajectories follow from the definitions.

(A) The partial trajectories of a compound module are determined by the
partial trajectories of the component modules: for every pair R; and Ry
of compatible modules, every await-closed set X for R; || Rz, every sequence
5 of states of Ry||R2, and every valuation ¢ for X, the pair (5,¢) is an X-
partial trajectory of Ry||Rs iff 3[Xg,] is an (X N Xg,)-partial trajectory
of Ry and 5[Xg,] is an (X N Xg,)-partial trajectory of Ry. This property
generalizes Proposition 2.2.

(B) If (5,t) is an X-partial trajectory of R, and w is a valuation for a set
Y C extlXpg of external variables of R which is disjoint from X, then
(3,t Uw) is an (X UY)-partial trajectory of R. This property is due the
nonblocking nature of modules; it generalizes Lemmas 2.1 and 2.2.

Invariant Verification 58

Let Xi,...,Xn, be a partition of Xp|q into disjoint subsets such that (1) each
X; either contains only external variables of P||@, or contains only interface
variables of P, or contains only interface variables of @, and (2) if y <pj@
and y € X;, then z € X for some j < i. Define Yy =0, and for all 0 < i < m,
define Y; 11 = Y;UX;. Each set Y; is await-closed for P||Q. For all 0 <i < m, let
L; be the set of Y;-partial trajectories of P||Q, and let L = (U 0 <1i < m | L;).
We define the following order < on the partial trajectories in L: for i < m,
if (5,t) € L; and (5,u) € L;y1 and u[Y;] = ¢, then (5,t) < (5,u); for i = m,
if (5,t) € L;, then (5,t) < (st,0). Clearly, the order < is well-founded. We
prove by well-founded induction with respect to < that for all 0 < i < m, if
(3,t) is a partial trajectory in L;, then (5[Xp],t[Xp]) is a (X; N Xp)-partial
trajectory of P || Assert(q), and (3[Xq], t[Xg]) is a (X; N Xg)-partial trajectory
of Assert(p)|| Q. In the following, for simplicity, we suppress projections.

Consider (5,0) in Lo. If 5 is the empty trajectory, then (3,0) is a trajectory
of all modules. Otherwise, 5 = tu for some state sequence t and state u of
P||Q. Then (t,u) is a Y,,-partial trajectory of P||Q, and (t,u) < (3,0). By
induction hypothesis, (£, u) is a Yy,,-partial trajectory of both P || Assert(q) and
Assert(p) || @, and hence, (5,0) is a Yp-partial trajectory of both P || Assert(q)
and Assert(p) || Q.

Consider (3,t) in L;4q for some 0 < ¢ < m. Let u = t[Y;]. Then (5,u) is
a Yj-partial trajectory of P||@, and (5,u) < (5,t). By induction hypothesis,
(3,u) is a Yj-partial trajectory of both P|| Assert(q) and Assert(p)||@. By
fact (A) about partial trajectories, (3,t) is a Y;1-partial trajectory of P and @,
and (3,u) is a Y;-partial trajectory of Assert(p) and Assert(q). It suffices to
show that (3,%) is a Yj11-partial trajectory of both Assert(p) and Assert(q).
Consider Y; 11 = Y; U X;. Without loss of generality, assume that X; contains
only interface variables of P. Then clearly, (3,t) is a Y;1-partial trajectory of
Assert(q). By fact (A), (5,t) is also a Y;1-partial trajectory of P || Assert(q).
By fact (B), there is an initialized trajectory sv of P|| Assert(q) such that
v[Yiy1] = t. By assumption, Sv is an initialized trajectory of Assert(p), which
implies that (3,t) is a Y;;1-partial trajectory of Assert(p). B

Remark 2.23 [Assume-guarantee reasoning]* For those interested in exactly which
of our modeling choices make assume-guarantee reasoning possible, let us review
the conditions of Theorem 2.6 by inspecting the proof. The condition that all
variables that occur freely in the predicates p and ¢ must have finite types is nec-
essary for the assertion modules Assert(p) and Assert(p) to be well-defined, be-
cause the initial and update commands of reactive modules contain only finitely
many choices in the form of guarded assignments. This requirement of reactive
modules, which is useful for other purposes, is not needed for the soundness of
assume-guarantee reasoning. The condition that all variables that occur freely
in the predicate ¢ must not be interface variables of the module P is necessary
for the assertion module Assert(q) to be compatible with P. In this strong form

Invariant Verification 59

the condition is not needed for the soundness of assume-guarantee reasoning, as
long as it is ensured that the system P || Assert(q) which represents the com-
ponent P together with the invariance assumption ¢ is nonblocking —that is,
as long as the assumed invariant ¢ does not prevent the module P from having
in every state at least one successor state. A symmetric comment holds for the
predicate p and the module . &

Theorem 2.6, in conjunction with the monotonicity of invariants, suggests the
following verification strategy, called assume-guarantee invariant verification:

Let P and () be two compatible modules, and let be an observation
predicate for the compound module P||Q. In order to show that r is
an invariant of P||Q, it suffices to find an external predicate p for @,
and an external predicate ¢ for P, such that (1) p is an invariant
of P|| Assert(q), (2) ¢ is an invariant of Assert(p) || @, and (3) the
implication p A ¢ — r is valid.

While condition (1) holds whenever p is an invariant of P, and condition (2)
holds whenever ¢ is an invariant of (), either converse may fail. Therefore,
provided one decomposes the desired invariant r of P||Q into two parts such
that the first part, p, contains no interface variables of @), and the second part,
g, contains no interface variables of P, assume-guarantee invariant verification
is more often successful than compositional invariant verification as presented
in Section 2.5.1. Furthermore, since the latch-reduced transition graphs of the
assertion modules Assert(p) and Assert(q) each contain only a single state, the
invariant-verification problem (1) depends on the state space of P, and the
invariant-verification problem (2) depends on the state space of @, but neither
involves the state space of the compound module P||Q. In fact, after latch
reduction, the reachable states of P || Assert(q) are a subset of the reachable
states of P, so that the performance of assume-guarantee invariant verification
can be no worse, only better, than the performance of compositional invariant
verification.

Exercise 2.24 {P2} [Conditional invariant verification] An instance (P,q,r) of
the conditional invariant-verification problem consists of a module P, an exter-
nal predicate g for P, and an observation predicate r for P. The answer to the
conditional invariant-verification question (P, ¢, r) is Yes iff r is an invariant of
P || Assert(q). Note that in the special case that the condition g is the boolean
constant true, we obtain the standard invariant-verification problem. (a) Define
the conditional reachability problem so that conditional invariant-verification
questions of the form (P, q,r) can be reduced to conditional reachability ques-
tions of the form (Gp, [¢]p, [-r]p), which do not involve the transition graph of
the compound module P || Assert(q). (b) Give a depth-first algorithm for condi-
tional reachability checking and analyze its time and space requirements. Your
algorithm should perform no worse, and in some cases better, than standard
reachability checking. W

Invariant Verification 60

Example 2.12 [| K

Exercise 2.25 {T3} [Compositional reasoning with transition invariants] Gener-
alize Proposition 2.5 and Theorem 2.6 to transition invariants (cf. Exercise 2.6).
|

Index

action of transition graph, 2

algorithm for depth-first reachabil-
ity checking, 27

algorithm for enumerative graph search,
25

algorithm for enumerative invariant
verification, 32

algorithm for module execution, 11

assertion module, 56

assume-guarantee invariant verifica-
tion, 58

assume-guarantee reasoning, 55

await-closed set of variables, 56

bit-enumerative graph representation,
30

bit-enumerative region representation,
29

bit-level model, 28

bit-state hashing, 39

breadth-first search, 25

compositional invariant verification,
49

compositional reasoning, 49

conditional invariant-verification prob-
lem, 59

conditional reachability problem, 59

counter, 45

counter invariant-verification prob-
lem, 45

counter machine, 46

counter module, 45

definable action (by transition pred-
icate), 20

61

definable language (by transition graph),
4

definable region (by state predicate),
14

depth-first search, 26

empty module, 5

EmptySet, 28

enumerative algorithm, 25

enumerative graph type, 26

enumerative region type, 26

equal-opportunity requirement, 22,
24

equational formulas with interpreted
constants, 35

equational invariant-verification prob-
lem with interpreted con-
stants, 35

equational module with interpreted
constants, 35

equational terms with interpreted con-
stants, 35

error trajectory for invariant-verification
problem, 14

external predicate for module, 14

false negative, 39

false positive, 39

finite equational invariant-verification
problem with interpreted con-
stants, 36

finite transition graph, 2

finitely branching transition graph,
2

finitely reaching transition graph, 10

Invariant Verification

62

first-in-first-out requirement, 24
frontier of graph search, 25

history-free variable, 40

initial region of transition graph, 2

initial state of module, 5

initial state of transition graph, 2

initialized trajectory of transition graph,
3

InitQueue, 26

Insert, 28

integer formula with addition, 38

integer invariant-verification problem
with addition, 38

integer module with addition, 38

integer term with addition, 38

interface predicate for module, 14

invariant of module, 14

invariant-verification problem, 14

IsMember, 28

latch-satisfaction at initial state, 41

latch-satisfaction at transition, 41

latched variable, 40

least constraining environment of mod-
ule, 9

length of trajectory, 3

monitor, 20

Npspace algorithm for invariant ver-
ification, 48

observable transition predicate for
module, 20

observation predicate for module, 14

on-the-fly graph representation, 37

on-the-fly region representation, 37

one-letter emptiness problem for fi-
nite automata, 12

parameter, 53
partial trajectory of module, 57
PostQueue, 26

predecessor of state, 24

predecessor region, 24

prime, 5

proposition, 33

propositional formula, 33

propositional invariant-verification prob-
lem, 35

propositional module, 33

Pspace algorithm for invariant veri-
fication, 46

reachability problem, 12

reachable region of transition graph,
10

reachable state of transition graph,
10

reachable subgraph of transition graph,
10

reachable transition of transition graph,
10

reduced transition graph, 40

reflexive transition graph, 2

region of transition graph, 2

satisfaction for transition predicate,
20

serial transition graph, 2

sink of trajectory, 3

sink region, 24

source of trajectory, 3

source region, 24

state exlosion, 42

state hashing, 39

state language of module, 7

state language of transition graph,
3

state of module, 4

state of system, 2

state of transition graph, 2

state predicate for module, 14

state space of transition graph, 2

state-enumerative graph representa-
tion, 29

Invariant Verification

state-enumerative region representa-
tion, 29

state-level model, 28

successor of state, 24

successor region, 24

target action of transition-reachability

problem, 20
target region of reachability prob-
lem, 12

train-safety requirement, 16

trajectory of module, 7

trajectory of transition graph, 3

transition action of transition graph,
2

transition graph, 2

transition graph of module, 7

transition invariant of module, 20

transition of module, 6

transition of system, 2

transition of transition graph, 2

transition predicate for module, 20

transition-invariant verification prob-
lem, 20

transition-reachability problem, 20

unprime, 10

witness for reachability problem, 12
witness for transition-reachability prob-
lem, 20

63

