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Chapter 1

Reactive Modules

This chapter introduces a modeling language, Rml (Reactive Module Language),
for describing the architecture and behavior of hardware and software systems.
Modeling languages are to be used by hardware designers, software engineers,
and CAD tools during the early stages of the design process for describing and,
more importantly, analyzing blueprints of a system. Thus, unlike an imple-
mentation language such as a hardware description language or a programming
language, a modeling language need not provide extensive mechanisms for struc-
turing control flow and manipulating data. Rather, a modeling language must
have the following four essential characteristics. First, it must facilitate high-
level, partial system descriptions by supporting nondeterminism. Second, it
must facilitate the description of interactions between systems and system com-
ponents by supporting concurrency. Third, it must facilitate the rapid proto-
typing and simulation of system descriptions by supporting an execution model.
Fourth, it must facilitate the formal analysis of system behaviors by supporting
a precise mathematical semantics. The first and fourth characteristics distin-
guish Rml from many common implementation languages; the second and third
characteristics distinguish Rml from many common requirements specification
languages.
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1.1 Definition of Reactive Modules

We model systems as reactive modules. Reactive modules resemble molecules,
in that they interact with each other to form composite objects. Reactive mod-
ules are built from atoms, and atoms are built from variables —the elementary
particles of systems. Our presentation proceeds bottom-up, from variables to
atoms, modules, and the composition of modules.

1.1.1 Variables

We consider systems that are discrete, deadlock-free, and nondeterministic. A
discrete system is a collection of variables that, over time, change their values
in a sequence of rounds. The first round is an initialization round, and all
subsequent rounds are update rounds. In the initialization round, the values of
all variables are initialized, and in every update round, the values of all variables
are updated. Deadlock-freedom means that in the initialization round, there is
at least one option for initializing each variable, and in every update round, there
is at least one option for updating each variable. Consequently, every update
round can be followed by another update round. Nondeterminism means that in
the initialization round, there may be several options for initializing a variable,
and in an update round, there may be several options for updating a variable.
Consequently, two exact copies of a system can, over time, exhibit very different
behaviors.

Initial commands and update commands

We define the behavior of a variable using two guarded commands —an initial
command and an update command. While unprimed symbols, such as z, refer
to the value of a variable at the beginning of a round, primed symbols, such
as ¢', refer to the value of the same variable at the end of a round. A value of x
at the end of the initialization round is called an initial value of z. The possible
initial values for a variable are defined by an initial command. For example, the
initial command
init
[ true —» ' :=0
[ true —» 2’ :=1

asserts that 0 and 1 are the possible initial values of z. A value of z at the
beginning of an update round is called a current value of x, and a value of = at
the end of an update round is called a next value of z. In every update round,
the possible next values for £ may depend on the current value of z, and on
the current values of other variables. The possible next values for a variable are
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defined by an update command. For example, the update command

update
ly=0-2":=z+1
ly#0—>a' =2 -1
| true — ' =z
asserts that in every update round, if the current value of y is 0, then the value
of x is either incremented or stays unchanged, and if the current value of y is
different from 0, then the value of z is either decremented or stays unchanged.

Example 1.1 [Scheduler] Consider a scheduler that, in every round, assigns a
processor to one of two tasks. The nonnegative-integer variable task; indicates
the amount of processor time, measured in rounds, which is necessary to com-
plete the first task. Similarly, the nonnegative-integer variable tasks indicates
the amount of processor time which is necessary to complete the second task.
The ternary variable proc has the value 0 if in the most recent round, the pro-
cessor has been idle; proc has the value 1 if the processor has been assigned to
the first task; and proc has the value 2 if the processor has been assigned to the
second task. The initial command
init
[ true — proc' :=0

asserts that initially the processor is idle. The update command

update
[ taski =0 A taska =0 — proc’ :=0
[ tasky >0 — proc’ :=1

[ tasky =0 A tasks > 0 — proc’ :=2
asserts that the scheduler always gives priority to the first task. Bl

Simultaneous updates

Within a round, some variables are initialized or updated simultaneously, and
some variables are initialized or updated sequentially. We insist that if two vari-
ables ¢ and y are initialized or updated simultaneously in some round, then z
and y are initialized and updated simultaneously in every round. A set of vari-
ables that are initialized simultaneously in the initialization round, and updated
simultaneously in every update round, are said to form an atom. It is often con-
venient to name atoms, in which case the constituent variables of an atom are
referred to as the variables that are controlled by the atom. The behaviors of
all variables that are controlled by one atom are defined using a single initial
command and a single update command. For example, for the atom controlling
the two variables = and y, the initial command
init
[ true —» ' :=0; y' :=1
[ true = 2’ :=1; ¢’ :=0
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asserts that the possible initial values of x and y are 0 and 1, and that the initial
values of x and y are different. For the same atom, the update command

update
lz<y—o2':=z+1, ¢y :=y—1
lz>y -2 =z-1;,y :=y+1

asserts that in every update round, depending on the current values of z and y,
either x is incremented and y is decremented, or vice versa.

Example 1.2 [Scheduler] Consider a scheduler similar to Example 1.1, except
that the scheduler alternates priorities between both tasks. If in a given round
the processor is assigned to the first task, then in the next round the second task
is given priority over the first task, and vice versa. The binary variable prior
indicates which of the two tasks will be given priority in the upcoming round.
The variables proc and prior form an atom; that is, the processor assignment and
the priority information are updated simultaneously. Assuming that initially
either task may be given priority, we have the initial command
init
[ true — proc’ := 0; prior’ :=1
[ true — proc' := 0; prior’ :=2.

Assuming that a task retains priority until it is given the processor, we have the
update command

update
[ tasky =0 A taska =0 — proc' :==0
prior = 1 A task; > — proc' := 1; prior' :=
) 1 task 0 ! 1 jor' 2
[ prior =1 A taski =0 A tasks >0 — proc’ ;=2
prior = 2 A tasks > — proc' := 2; prior’ :=
) 2 A task 0 ! 2 jor'! 1
| prior =2 A taska =0 A tasky >0 — proc’ := 1.

Note that in the first, third, and fifth guarded assignments, the value of the
variable prior stays unchanged; that is, prior’ := prior. R

Sequential updates

We insist that if a variable z is initialized or updated before a variable z in
some round, then z is initialized and updated before z in every round. If x is
initialized before z in the initialization round, and z is updated before z in every
update round, then the variable z is said to be awaited by the variable z. If z
awaits z, then the possible initial values for z may depend on the initial value
of z, and in every update round, the possible next values for z may depend on
the next value of x. For example, assuming that z awaits both x and y, the
initial command
init
[ true = 2" :=2' + 4/
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asserts that the initial value of z is equal to the sum of the initial values of z
and y, and the update command

update
lyy=0—2:=2x
ly #0—= 2 =2

asserts that in every update round, if the next value of y is 0, then the next
value of z is equal to the current value of z, and otherwise the next value of z
is equal to the next value of z.

Example 1.3 [Scheduler] In every update round of the scheduler example, the
indicators task: and tasks for pending work are updated after the processor is
assigned to one of the two tasks; that is, both indicators await the processor
assignment proc. The indicator task; is decremented in every round in which the
processor is assigned to the first task, and the indicator task- is decremented in
every round in which the processor is assigned to the second task. In addition,
new work for a task may arrive in any round, and it arrives in blocks of 5 units.
The nonnegative-integer variable new; indicates the amount of new work that
has arrived in the most recent round for the first task, and the nonnegative-
integer variable news, indicates the amount of new work that has arrived for
the second task. The initial command and the update command for new; are
identical, and we write

initupdate
[ true —» newi :=0
[ true —» newj :=5

to avoid duplication. The variable task;, awaits both new; and proc;, and its
behavior is defined by the commands
init
| true — task’ := new)
update
| proc’ =1 — task} := tasky + new) — 1
| proc’ #1 — task’ := task1 + new!,.

The behaviors of the variables news and tasks are defined by similar commands.
[ |

1.1.2 Atoms

The initialization round and every update round consist of several subrounds,
one for each atom. For an atom U, in the U-subround of the initialization
round, the controlled variables of U are initialized simultaneously, as defined by
the initial command of U. In the U-subround of an update round, the controlled
variables of U are updated simultaneously, as defined by the update command



Reactive Modules 6

of U. If the possible next values for some controlled variable of U depend on
the current value of a variable z, then z is said to be read by the atom U.
Read variables occur in the update command of U as unprimed symbols. If
the possible initial values for some controlled variable of U depend on the initial
value of z, or if the possible next values for some controlled variable of U depend
on the next value of x, then the variable x is awaited by the atom U. Awaited
variables occur in the initial and update commands of U as primed symbols. A
variable can be both read and awaited by an atom, or read and controlled, but
for obvious reasons, a variable cannot be awaited and controlled.

Atom

Let X be a finite set of typed variables. An X-atom U consists of an atom
declaration and an atom body. The declaration of U consists of a nonempty
set ctrXy C X of controlled variables, a set read Xy C X of read variables,
and a set awaitXy C X \ctrXy of awaited variables. The body of U consists
of an initial command inity and an update command update;;. The initial
command inity is a guarded command from awaitX;; to ctrX/;. The update
command update;; is a guarded command from read Xy UawaitX{, to ctrX(,.

Remark 1.1 [Atom variables] All variables of an X-atom are taken from the
underlying set X of variables. If X and Y are two sets of variables with X C Y,
then every X-atom is also a Y-atom. B

An important special case of atoms are the deterministic atoms. For a determin-
istic atom, the initial values of all controlled variables are uniquely determined
by the initial values of the awaited variables, and in every update round, the
next values of all controlled variables are uniquely determined by the current
values of the read variables and the next values of the awaited variables.

Deterministic atom

The atom U is deterministic if both the initial command inity and the
update command update;; are deterministic. Otherwise, U is a nondeter-
ministic atom.

The consistency of atoms

We insist on two consistency requirements for atoms, which ensure that a col-
lection of variables that are controlled by several atoms can be initialized and
updated unambiguously. First, we require that no variable be controlled by
more than one atom. This prevents the assignment of multiple, inconsistent
values to a variable. Second, we require that there be no circular await de-
pendencies between variables. The await dependencies between the controlled
variables and the awaited variables of an atom constrain the possible temporal
orderings of the subrounds within a round. We allow only await dependencies
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that permit, within every round, at least one possible ordering of the subrounds.
Consider two variables, z and y, which are controlled, respectively, by the two
atoms U, and Uy. If z is an awaited variable of Uy, then the initial value of y
may depend on the initial value of z, and the next value of y may depend on
the next value of x. Therefore x must be initialized and updated before y; that
is, the U,-subround must go before the U,-subround in the initialization round
and in every update round. It follows that y must not be an awaited variable
of U,. More generally, the atom U; precedes the atom U, if there is a chain
Us,...,U,_1 of atoms such that for all 2 < i < n, some controlled variable of
U;_1 is an awaited variable of U;. If U precedes V, then the U-subround must
go before the V-subround in every round. Therefore it must not happen that
U precedes V and V precedes U.

Atom consistency

Let X be a finite set of typed variables, let &/ be a set of X-atoms, and
let x and y be two variables in X. The variable y awaits the variable z,
written x < y, if some atom in U controls y and awaits z. The set U is
consistent if (1) no variable is controlled by more than one atom in ¢/, and
(2) the transitive closure <;; of the await relation on the variables in X
is asymmetric. Given two atoms U and V in U, the atom U precedes the
atom V, written U <y V, if there is a variable x controlled by U and a
variable y controlled by V such that x -<2,' Y.

Proposition 1.1 [Partial order of atoms] If I is a consistent set of atoms, then
the precedence relation <, is a strict partial order on U.

Exercise 1.1 {T2} [Proof of Proposition 1.1] (a) Prove Proposition 1.1. (b) Show
that the definition of consistency cannot be relaxed; that is, prove that if the
precedence relation <y of a set U of atoms is asymmetric, then condition (2)
for the consistency of U is satisfied. B

The execution of atoms

For a consistent set I of atoms, the linearizations of the partial order <«;; deter-
mine the possible sequences of subrounds within a round. These linearizations
are called the execution orders for Y. Every consistent set of atoms has at least
one execution order, and possibly several.

Execution order

Let X be a finite set of typed variables, and let U be a consistent set of
X-atoms. An execution order for U is a sequence Uy, ..., U, of the atoms
in ¢ which does not violate the precedence relation <j;; that is, for all
1<4,5 <n,if U; <y Uj, then i < j.
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A system is closed if it controls the behavior of all its variables. We model a
closed system with the set X of variables as a consistent set & of X-atoms so
that each variable in X is controlled by some atom in ¢/. Such a set U of atoms
is executed by carrying out, in the initialization round, all initial commands
of U in some execution order, and by carrying out, in every update round, all
update commands of U/ in some execution order. The outcome of the execution
is called an initialized trajectory of U: it gives, for each variable in X, a sequence
of values, one for every round. If i/ contains some nondeterministic atoms, then
for any given number of rounds, there can be many initialized trajectories. By
contrast, the fact that / may have several execution orders does by itself not give
rise to multiple trajectories. In particular, if all atoms in ¢/ are deterministic,
then for any given number of rounds, there is a unique initialized trajectory.

Exercise 1.2 {T2} [Execution of atoms] Let X be a finite set of typed variables,
and let U be a consistent set of X-atoms so that each variable in X is controlled
by some atom in /. Show that the possible outcomes of executing ¢/ do not
depend on the execution orders that are chosen during the execution of I/; that
is, prove that every initialized trajectory of & can be obtained by choosing an
arbitrary execution order for &/ and maintaining the chosen execution order in
every round. i

Example 1.4 [Scheduler] The scheduler from Example 1.3 is a closed system
with six variables, new;, news, taski, tasks, proc, and prior, which are arranged
in the five atoms A1-A5 shown in Figure 1.1. In Rml, each atom is written as
an atom name followed by an atom declaration and an atom body. In atom
declarations, the keywords reads or awaits are omitted if the sets of read
or awaited variables are empty. The atoms A3 and A4 are deterministic; the
atoms Al, A2, and A5 are nondeterministic. The set {A41,..., A5} of atoms is
consistent, because new; < taski, proc < taski, news < tasks, and proc < tasks
are the only await dependencies. There are many execution orders, including
Al A2, A5, A3, A4 and A5, A2, A4, A1, A3. Figure 1.2 shows two, arbitrarily
chosen, initialized trajectories with 15 update rounds each. The first of these two
trajectories is depicted graphically, in the form of a so-called timing diagram, in
Figure 1.3. The vertical dotted lines of the timing diagram represent boundaries
between rounds. Note, for instance, that the variable task; changes its initial
value, in the first update round, only after both new; and proc have changed
their initial values. W

Combinational and sequential atoms

In the initialization round, the possible initial values for the controlled variables
of an atom depend, in some way, on the initial values of the awaited variables.
If in every update round, the possible next values for the controlled variables
depend in the same way on the next values of the awaited variables, then the
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atom Al controls new;
initupdate

[ true — new} :=0

[ true — new :=5

atom A2 controls news
initupdate

[ true — new :=0

[ true — new) :=5

atom A3 controls task, reads task; awaits new;, proc
init
true — task’ := new
[ 1 1
update
| proc' =1 — task’ := taski + new — 1
proc’ #1 — task’ := task; + new’
1 1

atom A4 controls tasks reads task, awaits news, proc
init
rue — tasky := new!
I tasks 5
update
[ proc' =2 — task:, := tasks + new’, — 1
| proc' # 2 — tasky := tasks + new!,

atom A5 controls proc, prior reads tasky, tasks, prior
init
[ true — proc' := 0; prior' :=1
[ true — proc' := 0; prior' :=2

update
[ tasky =0 A taska =0 — proc’ :==0
[ prior =1 A task; >0 — proc' :=1; prior' := 2
[ prior =1 A tasky =0 A taske >0 — proc' :=2
[ prior =2 A tasky >0 — proc' :=2; prior’ :=1
[ prior =2 A taska =0 A tasky >0 — proc’ :=1

Figure 1.1: The five scheduler atoms
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Figure 1.3: The timing diagram for the first trajectory from above



Reactive Modules 11

atom is called combinational. Thus, a combinational atom is a (generally non-
deterministic) function that, given the values of the awaited variables at the
end of an initialization or update round, computes the possible values for the
controlled variables at the end of the round. In particular, for combinational
atoms, the possible next values of some controlled variable x cannot depend on
the current value of any variable, including z itself. By contrast, atoms that
distinguish between initial and update rounds are called sequential.

Combinational vs. sequential atom

An atom U is combinational if (1) the set read Xy of read variables is empty,
and (2) the initial command inity and update command update;; are iden-
tical. Otherwise, U is a sequential atom.

Example 1.5 [Zero-delay vs. unit-delay copying] Given two variables y and = of
the same type, we want y to duplicate the behavior of x. The combinational
atom

atom CombCopy controls y awaits z
initupdate

[ true — y' := 2’

copies the value of z into y without delay. In the initial round, the atom waits
for x being initialized, and assigns the initial value of z to y. In every update
round, the atom waits for z being updated, and assigns the next value of x to y.
Consequently, both y and x have the same value at the end of every round. The
sequential atom

atom SeqCopy controls y reads z
update
[ true —» y' :=x

copies the value of z into y with a delay of one round (the initial command is
irrelevant for the purposes of this example). In every update round, the atom
assigns the current value of z to y. Consequently, the value of y at the end of
every update round is the same as the value of z at the beginning of the round.
In Rml, combinational atoms can be recognized by the keyword initupdate.
For example, the atoms A1 and A2 from Example 1.4 are combinational. H

Lazy and eager atoms

An atom sleeps in an update round if the values of all controlled variables stay
unchanged. An atom that may sleep in every update round is called lazy. The
progress of a lazy atom cannot be enforced, because the atom may put off the
next modification of the controlled variables for any number of rounds. By
contrast, if certain current values of read variables or next values of awaited
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variables force an immediate change in value for a controlled variable, then the
atom is called eager.

Lazy vs. eager atom

Given a finite set X of typed variables, the sleep assignment for X is the
guarded assignment v from X to X' with the guard p, = true and the
assignment e‘fyl = z for each variable ' € X'. An atom U is lazy if the
update command update;; contains the sleep assignment for the set ctrXy
of controlled variables. Otherwise, U is an eager atom.

Example 1.6 [Continuous vs. occasional copying] Both atoms CombCopy and
SeqCopy from Example 1.5 are eager. In the first case, all modifications of
y follow immediately, within the same round, the corresponding modifications
of z; in the second case, the modifications of y are delayed by exactly one round.
By contrast, the lazy atom

atom LazyCopy controls y reads y awaits z
update

[ true —» y' ;===

[ true —» y' :==y

!

copies the value of z into y at arbitrary times (the initial command is irrelevant
for the purposes of this example). In every update round, either the value of y
stays unchanged, or it is updated to the next value of z. Consequently, some
values of £ may not be copied into y. In Rml, the atom prefix lazy can be
used instead of the sleep assignment for the update command. For example,
the atom LazyCopy can alternatively be specified as

lazy atom LazyCopy controls y reads y awaits =
update
[ true — y' :=2'.

Note that the variable y is read, even though, because the keyword lazy is used,
y does not literally occur in the update command as an unprimed symbol. B

Remark 1.2 [Lazy implies sequential and, mostly, nondeterministic] Every lazy
atom U reads its controlled variables; that is, ctrXy C readXy. It follows
that all lazy atoms are sequential. Furthermore, with the exception of (trivial)
atoms whose update commands contain only the sleep assignment, lazy atoms
are nondeterministic. Bl

Passive and active atoms

During an update round, an atom can notice changes in the values of awaited
variables. If the awaited variable is also read, then the atom can directly com-
pare the current value with the next value. If the awaited variable is not read,



Reactive Modules 13

then the atom can remember the next value from the previous round, by storing
it in a controlled variable, and compare it with the next value from the present
round. Therefore, every change in the value of an awaited variable is an ob-
servable event. An atom is called passive if it may sleep in every update round
in which no observable event occurs; that is, the atom may sleep whenever the
values of all awaited variables stay unchanged. By contrast, if the value of a
controlled variable is changed in certain update rounds independent of observ-
able events, then the atom is called active. The active atoms are round-driven
and the passive atoms are event-driven: while the progress of an active atom
can be enforced by the expiration of rounds, the progress of a passive atom can
be enforced only by other atoms that modify awaited variables.

Passive vs. active atom

Given two finite sets X and Y of typed variables, the conditional sleep
assignment for X with respect to Y is the guarded assignment v from X U
YUY’ to X' with the guard p, = (Y’ =Y) and the assignment e,zy' =z for
each variable ' € X'. An atom U is passive if U is either combinational,
or lazy, or the update command update;; contains the conditional sleep
assignment for the set ctrXy of controlled variables with respect to the set
awaitXy of awaited variables. Otherwise, U is an active atom.

Remark 1.3 [Passive includes combinational and lazy] By definition, all combi-
national and lazy atoms are passive. This reflects the fact that conditional sleep
assignments are redundant for combinational and lazy atoms: if the conditional
sleep assignment is added to the update command of a combinational or lazy
atom, then the behavior of the atom remains the same. For a lazy atom, this
is trivially so. For a combinational atom, this is because if the values of the
awaited variables do not change in an update round, then the atom may com-
pute the same next values for the controlled variables as in the previous round.
[ |

Example 1.7 [Round vs. event counting] If the behavior of the nonnegative-
integer variable n is defined by the active atom

atom ActiveCount controls n reads n
init
[ true = n' :=0
update
[ true = n' :==n+1

then the value of n at the end of the i-th update round is i. Thus, active atoms
can count the number of rounds that expire. For example, an active atom
may count the number of rounds that expire between two consecutive changes
in the value of a variable x that is controlled by another atom. By contrast,
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passive atoms do not have the ability to count rounds; they can count only the
number of observable events, such as the number of changes in the value of z.
Specifically, if the behavior of n is defined by the passive atom

atom PassiveCount controls n reads n,z awaits z
init
[ true - n':=0
update
[2/#z—>n":=n+1
[z'=2—>n":=n

then the value of n at the end of the i-th update round is j < i, where j is
the number of times that the value of x has changed during the first i update
rounds. In Rml, the atom prefix passive can be used instead of the condi-
tional sleep assignment for the update command. The atom PassiveCount is
not a good example for illustrating the use of the keyword passive, however,
because the conditional sleep assignment z' = x — n' := n coincides with
the default assignment of the update command (if all guards are false, then
the controlled variables stay unchanged), and therefore can be omitted with or
without prefixing the atom description. A better example for the use of the
keyword passive will follow in the next section. Now, for the record: the atoms
ActiveCount (trivially) and PassiveCount are both sequential and eager. The
combinational and lazy copiers CombCopy and LazyCopy from Examples 1.5
and 1.6 are passive (trivially), and the sequential, eager copier SeqCopy is ac-
tive. This is because SeqCopy needs to be sensitive to the expiration of rounds
in order to delay copying by exactly one round. B

Remark 1.4 [Classification of atoms] The atoms can be partitioned into four
pairwise disjoint classes: the combinational atoms, the lazy atoms, the active
atoms, and the atoms that are sequential, eager, and passive. Bl

1.1.3 Modules

A reactive module is a system, or system component, that interacts with other
systems, or other components, which, collectively, make up the environment of
the module. The behavior of some variables is controlled by the the module,
and the behavior of other variables is controlled by the environment. We refer
to the former as the controlled variables of the module, and to the latter as the
environment variables. The controlled variables are partitioned into atoms, and
so are the environment variables. In the initialization round and in every update
round, the module and the environment take turns in the form of subrounds. In
each subround of the initialization round, either the module initializes an atom
of controlled variables, or the environment initializes an atom of environment
variables. In each subround of an update round, either the module updates an
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atom of controlled variables, or the environment updates an atom of environ-
ment variables. Deadlock-freedom requires that, in the initialization round, the
module is prepared to initialize its variables for all possible initial values of the
environment variables, and in every update round, the module is prepared to
update its variables for all possible current and next values of the environment
variables.

In addition to being partitioned into atoms, the controlled variables are classified
as to whether or not their values can be observed by the environment, and the
environment variables are classified as to whether or not their values can be
observed by the module. If a controlled variable is visible to the environment,
then the updating of the environment variables may depend on the values of the
controlled variable. Symmetrically, if an environment variable is visible to the
module, then the updating of the controlled variables may depend on the values
of the environment variable. Thus, a module description refers to three classes
of variables —private, interface, and external. Each private variable can be read
and modified by the module, and neither read nor modified by the environment.
Each interface variable can be read by both the module and the environment,
and modified by the module only. Each external variable can be read by both the
module and the environment, and modified by the environment only. In other
words: the module controls the private variables and the interface variables; the
environment observes the interface variables and the external variables. The
fourth class of variables —environment variables that are not visible to the
module— is, naturally, not part of the module description.

Module

A (reactive) module P consists of a variable declaration and a set atomsp
of atoms. The variable declaration of P consists of three pairwise dis-
joint, finite sets of typed variables —the set privXp of private variables,
the set intf Xp of interface variables, and the set ext|Xp of external vari-
ables. We refer to ctrXp = privXp U intfXp as the controlled variables
of P, to obsXp = intfXp U extlXp as the observable variables, and to
Xp =ctrXp UobsXp as the module variables. The set atomsp is a consis-
tent set of X p-atoms so that each variable x € Xp is controlled by some
atom in atomsp iff z is a controlled variable of P.

Terminology. For the controlled variables of a module P, by definition, ctrXp =
(U U € atomsp | ctrXy). Similarly, we refer to readXp = (U U € atomsp |
readXy) as the read variables of the module P, to awaitXp = (U U € atomsp |
awaitXy;) as the awaited variables of P, and to <p = <atoms, as the await

relation of P. The execution orders for atomsp are called execution orders of P.
[ |

Important special cases of modules are the finite, the closed, and the determin-
istic modules. A module is finite if all module variables can assume only finitely
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many values. A module is closed if the behavior of the controlled variables is not
influenced by the behavior of any environment variables (although the behavior
of some environment variables may be influenced by the behavior of the con-
trolled variables). A module is deterministic if the behavior of the environment
variables uniquely determines the behavior of the controlled variables.

Finite, closed, and deterministic modules

The module P is finite if all module variables in Xp have finite types;
otherwise, P is an infinite module. The module P is closed if the set extl X p
of external variables is empty; otherwise, P is an open module. The module
P is deterministic if all atoms in atomsp are deterministic; otherwise, P is
a nondeterministic module.

The execution of modules

A module P is executed by dividing every round into two phases. In the first
phase of a round, the external variables of P are initialized or updated nondeter-
ministically: each external variable obtains an arbitrary value of the appropriate
type. In the second phase of the round, the controlled variables are initialized
or updated by carrying out the initial or update commands of P in some exe-
cution order. The first phase ensures that all initial and next values of external
variables are available should they be needed in the second phase. The atom
consistency of P ensures, by Proposition 1.1, the existence of an execution order
for the second phase. The outcome of the execution is an initialized trajectory
of P, which gives a sequence of values for each variable in Xp. By Exercise 1.2,
the choice of execution order does not influence the outcome of the execution.
However, since the external variables are initialized and updated nondetermin-
istically, and since the initial and update commands may be nondeterministic,
a module can have many initialized trajectories. Only modules that are both
closed and deterministic have, for any given number of rounds, a unique initial-
ized trajectory.

The observable part of an initialized trajectory of the module P, which gives a
sequence of values for each variable in obsX p, is called a trace of P. Thus, every
trace of P shows a possible observable behavior of P over time. Since different
initialized trajectories (outcomes of executions) may give rise to the same trace
(observable behavior), even modules that are both closed and deterministic can
have many traces of a given length. Formal definitions of trajectories and traces
will be given in Chapters 2 and 5.

Example 1.8 [Scheduler] The scheduler from Example 1.4 can be built from the
three modules whose Rml descriptions are given in Figure 1.4 without atom
bodies. The modules Taskl and Task2 are closed; the module Scheduler is
open. For illustration, we execute the module Scheduler in isolation. There are
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module Taskl! is
interface new;: N
atom Al controls new;

module Task?2 is
interface new,: N
atom A2 controls news

module Scheduler is
private prior: {1,2}
interface task;, taskz: N; proc: {0,1,2}
external newi, news: N
atom A3 controls task; reads task, awaits new;, proc
atom A4 controls tasks reads task, awaits news, proc
atom A5 controls proc, prior reads task:, tasks, prior

Figure 1.4: The three scheduler modules

two execution orders, A5, A3, A4 and A5, A4, A3. In the first phase of the initial
round, the external variables new; and new- are assigned arbitrary nonnegative
integers, and in the second phase, the initial commands of the three atoms
are executed in one of the two execution orders. In the first phase of every
update round, the external variables mew; and new, are assigned arbitrary
new nonnegative integers, and in the second phase, the update commands of
the three atoms are executed in some execution order. Since all initial and
update commands are deterministic except for the initial value of the variable
prior, for any two sequences of values for the external variables new, and news,
and any initial value of prior, the module Scheduler has a unique initialized
trajectory. The two trajectories of Figure 1.2 are initialized trajectories of the
module Scheduler, and a third initialized trajectory is shown in Figure 1.5. In
the third trajectory, the values of the external variables new; and new, are
updated arbitrarily, in a manner that is not compliant with the modules Task?
and Task2. If the values of the private variable prior are omitted from an
initialized trajectory, we obtain a trace of the module Scheduler. B

Block diagrams

We depict the structure of modules graphically using block diagrams. The
block diagram for a module consists of delay elements and gates which are
connected by wires, and of a module boundary. Each controlled variable is
represented by a delay element whose output wire carries, in every update round,
the current value of the variable. Fach atom is represented by a gate whose
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newy 1120|0103 [2|0(0|0]|0|5]|0|0
newy [0(2(0|0]0|0|5[0|0(0|0]|0|5]|0|0
task1 ||1(2(2|1(2|1(4|5|5(4|4|3|8|7|7
task2 ||0]2(1|11]0|0(4(4(3|3|2]|2|6|6]|5
proc |[0(1(2|1(2]1|21(2|1|2|1|2|1]|2
prior ||112(1 2121|2121 |2|1|2]1
newy |[112(0(0[1/0]|3[2]0{0]0({0[5[0|0
news | 012(0(0[0|10|5{0]0{0]0(0[5[0|0
task1 || 12|21 |2|1|4|5|5|4(|4|3|8|7]|7
task2 || 0121100 |4|4]3|3]2|2|6|6]|5
proc ||[0|112]|1|2]|1|2|1|2|1(2|1|2]|1]|2

Figure 1.5: An initialized trajectory of the module Scheduler and the corre-
sponding trace

output wires carry the next values of the variables that are controlled by the
atom. The output wires of a gate are connected with the corresponding delay
elements, where the updated values of the variables are stored for the next round.
Thus there are two wires for each variable —one that carries the current value
(delay output) and one that carries the next value (delay input) of the variable.
The wires from delay elements to gates represent read dependencies between
variables, and the wires from gates to gates represent await dependencies. Since
the precedence relation on the atoms (gates) is asymmetric (Proposition 1.1),
every wire cycle contains at least one delay element.

The delay elements and the gates of a module are circumscribed by a dotted line
that denotes the module boundary. Each interface variable x is represented by
two output wires, labeled z and z’, that penetrate the module boundary from
the inside to the outside. In every update round, the unprimed output wire
carries the current value of the variable z, and the primed output wire carries
the next value of z. Each external variable y is represented by one or two input
wires, labeled y and 3’, that penetrate the module boundary from the outside
to the inside. Since the module may use only the current value of y, or only
the next value of y, the primed input wire or the unprimed input wire can be
absent.

Example 1.9 [Scheduler] The block diagrams for the modules Task!, Task2,
and Scheduler from Example 1.8 are shown in Figure 1.6. B

Remark 1.5 [Block diagrams as types] The block diagram for a module contains
the same information as the variable declarations and the atom declarations of
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Al newi ; newi

" Scheduler

A3 task1 : task1

task’,

proc : proc

— proc’
—l— prior T

task?
A4 tasks ; taskz
new?,
new
Task2
A2 news - news

Figure 1.6: Block diagrams for the scheduler modules
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the module. We call this information the type of the module. The type of a
module does not include the initial and the update commands of the module.
In particular, from the type of a module, it can be concluded if the module is
finite, or closed, but not if the module is deterministic. H

Asynchronous and synchronous modules

A module stutters in an update round if the values of all interface variables
stay unchanged. A module that may stutter in every update round is called
asynchronous. The environment cannot enforce observable progress of an asyn-
chronous module. While an asynchronous module can privately record all up-
dates of external variables, all updates of interface variables proceed at a speed
that is independent of the environment speed. By contrast, a module that in-
teracts with the environment synchronously may agree to modify an interface
variable dependent on, and within the same round as, the modification of an
external variable.

Asynchronous vs. synchronous module

The module P is asynchronous if all interface variables in intf Xp are con-
trolled by lazy atoms. Otherwise, P is a synchronous module.

Example 1.10 [Zero-delay vs. unit-delay vs. buffered squaring] The module

module SyncSquare is
interface out: N
external in: N
atom controls out awaits in
initupdate
| true — out' := (in')?

waits, in every round, for the next value of the external nonnegative-integer
variable in, computes the square, and displays the result in the interface vari-
able out, all within the same round. This is done by a single, combinational
atom. Thus, SyncSquare is an operator that transforms an input stream of non-
negative integers into an output stream of corresponding squares. The operator
is synchronous, because every output value is produced in the very round in
which the corresponding input value arrives. The module

module DelayedSyncSquare is
interface out: N|
external in: N
atom controls out awaits in
init
[ true = out' := L
update
[ true = out' := in
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requires exactly one round to produce the square of an input value (initially,
the output value is the undefined value L). Since a new output value cannot be
delayed arbitrarily, the module DelayedSyncSquare is again synchronous.

By contrast, the asynchronous module AsyncSquare from Figure 1.7 implements
an operator that requires an arbitrary number of rounds (possibly 0) for pro-
ducing the square of an input value. From one update round to the next, the
unprocessed input values are stored in the private queue buffer. If consecutive
unprocessed input values are equal, only one representative is stored in buffer,
and the square is computed only once. The queue buffer is updated in every
round in which a new unprocessed input value arrives, so that no input values are
lost. New output values, on the other hand, are produced after arbitrary delays.
The module AsyncSquare therefore has two atoms. The atom ComputeQut,
which controls out, is lazy: in every update round, it either computes a square
and displays the result in the interface variable out, or it sleeps. If the queue
buffer is empty, the square is computed for the external variable in; otherwise,
the square is computed for the first element of the queue. The atom Storeln,
which controls buffer, is eager: in every update round, it waits both for the next
input value and for the action taken by the atom ComputeOut, and reacts as
follows. Whenever the input value changes and the queue buffer is nonempty
—i.e., there are already some unprocessed input values— the new input value is
added to the queue. The same happens if the input value changes and the queue
is empty, but the output value does not change —i.e., the atom ComputeOut has
decided to sleep. Whenever the output value changes (ComputeOut has decided
to compute a square) and buffer is nonempty (the square is computed for the
first element of the queue), the first element is removed from the queue. Note
that, because the keyword passive is used, the update command of Storeln
contains both the conditional sleep assignment

[ in' =in A out' = out — buffer’ := buffer
and the default assignment
[ out’ # out A IsEmpty(buffer) — buffer’ := buffer.

Figure 1.8 shows one, arbitrarily chosen, initialized trajectory for each of the
three modules SyncSquare, DelayedSyncSquare, and AsyncSquare. For the mod-
ules SyncSquare and DelayedSyncSquare, which have no private variables, the
traces coincide with the initialized trajectories. For the module AsyncSquare,
we obtain the traces by omitting the values of the private queue buffer from the
initialized trajectories. Every trace of the synchronous modules SyncSquare and
DelayedSyncSquare is also a trace of the asynchronous module AsyncSquare, but
the converse is not true. While SyncSquare and DelayedSyncSquare each have
exactly one trace for any given sequence of input values, AsyncSquare may have
infinitely many. B
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module AsyncSquare is
private buffer: queue of N
interface out: N |
external in: N

lazy atom ComputeOut
controls out
reads out, buffer
awaits in
init
| true — out' := (in')?
[ true = out' := L
update
| IsEmpty(buffer) — out' := (in')?
| ~IsEmpty(buffer) — out' := Front(buffer)?

passive atom Storeln
controls buffer
reads in, out, buffer
awalits in, out
init
[ out' # L — buffer’ := EmptyQueue
| out' = L — buffer’ :== Enqueue(in', EmptyQueue)
update
(A in' # in
[ [A out’ # out — buffer’ :== Enqueue(in, Dequeue(buffer))
| A ~IsEmpty(buffer)
(A in' =in
[ [A out’ # out — buffer' :== Dequeue(buffer)
A —IsEmpty(buffer)
A in' # in

A out’ = out — buffer' :== Enqueue(in, buffer)

Figure 1.7: Asynchronous squaring
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n 1] 2 [2[3[3[3[4]4[4]4][5[6] 7 8 9
out || L| L [1]4]9]|9|9]|9|9|16|25]|25] 25| 25 | 36
buffer || 1 | 1,223 144 6 6,76,7,87,8,9

Figure 1.8: Three initialized trajectories of the modules SyncSquare (top),
DelayedSyncSquare (middle), and AsyncSquare (bottom)

Exercise 1.3 {P3} [Squaring inputs] Following Example 1.10, you are asked to
implement two more operators that transform an input stream of nonnegative
integers into an output stream of corresponding squares. (a) Define a module
AsyncSquare2 which, like AsyncSquare, requires an arbitrary number (possi-
bly 0) of rounds to produce a square but, unlike AsyncSquare, computes the
square of each individual input value, even if it is identical to the previous input
value. Give an initialized trajectory of AsyncSquare such that the corresponding
trace is not a trace of AsyncSquare2. (b) Define a module SyncSquare2 which
requires at least 2 and at most 5 rounds to produce a square. (c) Draw the
block diagrams for the four modules SyncSquare, SyncSquare2, AsyncSquare,
and AsyncSquare2. B

Passive and active modules

A module sleeps in an update round if the values of all controlled variables stay
unchanged. The environment stutters in an update round if the values of all
external variables stay unchanged. A module that may sleep in every update
round in which the environment stutters is called passive. The environment can
enforce the progress of a passive module only by modifying external variables.

Passive vs. active module

The module P is passive if all atoms in atomsp are passive. Otherwise, P
is an active module.

Remark 1.6 [Progress of passive modules] As long as the environment stutters,
a passive module may sleep: for a passive module we obtain an initialized tra-
jectory of any given length by simply repeating initial values for all variables.
In particular, a closed, passive module may sleep in every update round. The
following exercise presents a generalization of this remark. B
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Exercise 1.4 {T2} [Stutter closure for passive modules] Consider a module P,
and for each variable in Xp, consider a sequence of k¥ > 1 values. Construct
sequences of k+1 values by repeating the last value of each sequence of length k.
(a) Prove that if P is passive and the sequences of length k form an initialized
trajectory of P, then also the sequences of length k + 1 form an initialized
trajectory of P. (b) In part (a), can you replace “passive” by “asynchronous”
and “initialized trajectory” by “trace”? B

Exercise 1.5 {P1} [Classification of modules] A module may be asynchronous
and passive, synchronous and passive, asynchronous and active, or synchronous
and active. Give examples for all four classes of modules. H

Private determinism

For a deterministic module, the behavior of the controlled variables, both private
and interface, is uniquely determined by the behavior of the external variables.
Thus, for a nondeterministic module, nondeterminism may manifest itself in
the initialization and updating of private variables, or of interface variables,
or both. If all nondeterminism is limited to interface variables, we call it pri-
vate determinism: a module exhibits private determinism if the behavior of
the private variables is uniquely determined by the behavior of the observable
variables, both interface and external. It follows that for every privately de-
terministic module, there is a one-to-one correspondence between the initialized
trajectories (i.e., the outcomes of executions) and the traces (i.e., the observable
behaviors).

Private determinism

The module P has private determinism if all private variables in privXp are
controlled by deterministic atoms. Otherwise, P has private nondetermin-
ism.

Example 1.11 [Determinism vs. private determinism vs. nondeterminism] The
modules SyncSquare and DelayedSyncSquare of Example 1.10 are deterministic.
The module AsyncSquare is nondeterministic, because it requires an arbitrary
number of rounds for processing an input value. However, AsyncSquare has
private determinism, because the initial value of the private queue buffer is
uniquely determined by the initial values of the observable variables in and out,
and in every update round, the next value of buffer is uniquely determined by
the current value of buffer and the current and next values of in and out. In
this way, given a trace of AsyncSquare, we can construct a unique corresponding
initialized trajectory. By contrast, the module LossyAsyncSquare of Figure 1.9,
which implements asynchronous squaring using a lossy queue, does not have pri-
vate determinism. The module LossyAsyncSquare shares the atom ComputeQOut
with the module AsyncSquare, but differs in the atom that controls the private
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module LossyAsyncSquare is
private buffer: queue of N
interface out: N|
external in: N

lazy atom ComputeQut
controls out
reads out, buffer
awaits in

passive atom LossyStoreln
controls buffer
reads in, out, buffer
awalits in, out
init
[ true — buffer’ := EmptyQueue
| out' = L — buffer' := Enqueue(in', EmptyQueue)
update
(A in' # in
[ [A out’ # out — buffer' :== Enqueue(in, Dequeue(buffer))
A —IsEmpty(buffer)
‘A out' # out
l] (A ~IsEmpty(buffer)
‘A in' # in
A out’ = out

— buffer' := Dequeue(buffer)

— buffer' ;== Enqueue(in, buffer)

Figure 1.9: Lossy asynchronous squaring
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m 112121333 4 5 6 7
out Lj1f1j1(1)1] 1 9 9 9
buffer || 1 313|13|3,4/4,5|4,5(4,5
m 112(2(3(3(3] 4 5 6 7
out {11111 1 9 9 9
buffer || 1 313(3| 3 6 |6,7

Figure 1.10: Two observably equivalent initialized trajectories of the module
LossyAsyncSquare

queue buffer: whenever the input value changes, it may or may not be added
to buffer, and thus, some input values can be lost. Furthermore, in any given
update round, whether the next input value is lost or not is independent of the
current value of buffer and independent of the current and next values of in
and out. Figure 1.10 shows two distinct initialized trajectories of the module
LossyAsyncSquare which give rise to the same trace. B

1.2  Operations on Reactive Modules

We build complex modules from simple modules using three operations —
parallel composition, variable renaming, and variable hiding.

1.2.1 Parallel Composition

The composition operation combines two modules into a single module whose
behavior captures the interaction between the two component modules. Two
modules can be composed only if their variable declarations are mutually con-
sistent, and if the combined await dependencies of the two modules are not
circular.

Module compatibility

The two modules P and ) are compatible if (1a) privXp and X¢ are disjoint,
(1b) Xp and privXq are disjoint, (1c) intf Xp and intfX¢ are disjoint, and
(2) the transitive closure (<p U <g)™T is asymmetric.

Remark 1.7 [Independent modules] If the module variables of two modules are
disjoint, then the two modules are compatible. l

The composition operation is defined for compatible modules.
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Module composition

If P and ) are two compatible modules, then the (parallel) composition
P||@ is the module such that

e cach private variable of a component module is a private variable of
the compound module: privXp)q = privXp U privXg;

e each interface variable of a component module is an interface variable
of the compound module: intf Xp g = intf Xp U intf X¢;

e each external variable of a component module is an external variable
of the compound module, provided it is not an interface variable of
the other component: extlXpjo = (extlXp UextlXg)\intf Xpq;

e each atom of a component module is an atom of the compound mod-
ule: atomsp)p = atomsp U atomsg,.

Remark 1.8 [Composing several modules] The composition operation on mod-
ules is commutative and associative. In Rml, we therefore omit parentheses
when writing module expressions such as P||Q||R. B

Example 1.12 [Scheduler] By composing the three modules from Example 1.8
we obtain the module

module SchedulerSystem is Taskl || Task2 || Scheduler.
The type of the compound module is

module SchedulerSystem is
private prior: {1,2}
interface new, news: N; taski, tasks: N; proc: {0,1,2}
atom Al controls new;
atom A2 controls news
atom A3 controls task, reads task; awaits new;, proc
atom A4 controls task, reads task, awaits news, proc
atom A5 controls proc, prior reads task,, tasks, prior

and the corresponding block diagram is shown in Figure 1.11. In the pictorial
representation of parallel composition, each primed output wire of one com-
ponent module is connected with all primed input wires of other component
modules that represent the same variable, and (not occurring in the scheduler
example) each unprimed output wire is connected with the corresponding un-
primed input wires. The module SchedulerSystem is infinite, closed, nondeter-
ministic, synchronous (all atoms are eager), and active. While every initialized
trajectory of the compound module SchedulerSystem is also an initialized tra-
jectory of the component module Scheduler, the converse is not true. This is
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Al newi ; - newi

!
new,

" Scheduler

A3 task1 : - taski

task’

proc : . proc

— proc’
—l— prior T

task,
A4 tasko - ' tasks
newl
Task2
A2 news — new>

Figure 1.11: Block diagram for the scheduler system
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because the component modules Task! and Task2 constrain the behavior of
the variables new; and mews, which are external to Scheduler. For example,
the two trajectories of Figure 1.2 are initialized trajectories of SchedulerSystem;
the trajectory of Figure 1.5 is not. In Chapter 2 we will formally construct
the trajectories of a compound module from the trajectories of the component
modules. B

Remark 1.9 [Module properties under parallel composition] The composition of
two modules is finite iff both component modules are finite. The composition of
two open modules may be closed. The composition of two modules is determin-
istic (or has private determinism) iff both component modules are deterministic
(or have private determinism). The composition of two modules is asynchronous
(or passive) iff both component modules are asynchronous (or passive). B

Abstract block diagrams

In block diagrams, we may choose to hide the internal structure of a module
and view it as a black box with input and output wires. If the atom structure of
a module is suppressed, we draw the module boundary as a solid line instead of
a dotted line. In order to compose such abstract block diagrams, every module
needs to be annotated with information about the await dependencies between
variables. The amount of compatibility information that is both necessary and
sufficient is captured by the following definition. Given a module P, a derived
await dependency x <% y of P consists of an external variable z and an interface
variable y such that x -<JIS y. The derived await dependency z <% y indicates
that the initial value of the interface variable y may depend on the initial value
of the external variable z, and in every update round, the next value of y may
depend on the next value of . Therefore, P cannot be composed with a module
@ with external variable y, interface variable z, and y <dQ z.

Exercise 1.6 {T2} [Derived await dependencies] Consider two modules P and @
whose variables satisfy conditions (1a)—(1c) for module compatibility. (a) Show
that the derived await dependencies of the two modules contain exactly the
information that is necessary and sufficient for determining compatibility; that
is, prove that P and @ are compatible iff the transitive closure (<% U <22)+
is asymmetric. (b) Assuming P and @Q are compatible, construct the derived
await dependencies of the compound module P||Q from the derived await de-
pendencies of the component modules. B

A block diagram for a module P must show either its internal structure or its
derived await dependencies. Since it is immaterial if a derived await dependency
is an actual await dependency (contained in <p) or only “derived” from other
await dependencies (contained in <}), we often omit the superscript d from the
symbol <.
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newi new’)
SchedulerSystem
X task1
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Scheduler . tasky

= tasks

= task’,

newy < tasky

news < tasky = PToC
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Figure 1.12: Abstract block diagram for the scheduler system
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Figure 1.13: Very abstract block diagram for the scheduler system

Example 1.13 [Scheduler] The block diagram of Figure 1.12 does not show
the atom structure of the component modules for the scheduler system from
Example 1.12. The module Scheduler has two derived await dependencies,
new; < tasky; and newy < tasko; for example, it cannot be composed with a
module that awaits task; and controls new;. The block diagram of Figure 1.13
further abstracts the internal structure of the compound module and views the
entire scheduler system as a black box. The module SchedulerSystem is closed,
and therefore has no derived await dependencies. B

1.2.2  Variable Renaming

Before composing two modules, it may be necessary to rename private variables
in order to make the two modules compatible. Variable renaming is also useful
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for identifying an interface variable of one module with an external variable of
another module, and for creating multiple copies of a module.

Variable renaming

Let X be a finite set of typed variables, and let p be a renaming for X. By
p' we denote the renaming for X U X' such that for all variables z € X,
z[p'] = z[p] and z'[p'] = z[p]’. Given an X-atom U, the renamed atom
Ulp] is the X[p]-atom with the set ctrXy[p] of controlled variables, the
set readXy[p] of read variables, the set awaitXy[p] of awaited variables,
the initial command inity[p], and the update command update, [p]. Given a
module P, and a renaming p for the set X p of module variables, the renamed
module P[p] is the module with the set privXp[p] of private variables, the
set intf X p[p] of interface variables, the set ext|Xp[p] of external variables,
and the set {U[p] | U € atomsp} of atoms.

Example 1.14 [Scheduler] From the generic task module

module Task is
interface new: N
atom controls new
init update
[ true — new' :=0
[ true — new' :=5

we can construct the two task modules of the scheduler system from Exam-
ple 1.12 by renaming. In Rml, we write

module Task! is Task[new := new|
module Task2 is Task[new := news].

The interface variable new is renamed to create two distinct copies of the module
Task. 1

Remark 1.10 [Module properties under variable renaming] Variable renaming
preserves the cardinality (finite vs. infinite), closure (closed vs. open), determin-
ism (deterministic vs. privately deterministic vs. nondeterministic), synchronic-
ity (asynchronous vs. synchronous), and round-sensitivity (passive vs. active)
properties of modules. l

Implicit renaming of private variables

Two modules P and @ can be composed only if (1a) the private variables of P
are disjoint from the module variables of @), and (1b) the private variables of @
are disjoint from the module variables of P. If, however, we are not interested
in the internal structures of P and (), then we may not know the names of
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their private variables. To allow the parallel composition of modules in such
circumstances, we treat the private variables of a module as “dummies,” like the
bound variables of a quantified formula (these variables can be renamed freely,
and must be renamed suitably for safe substitution, before a free variable is
replaced by an expression). In particular, in Rml we do not distinguish between
modules that differ only in the names of private variables. Whenever we write
P||Q, we do not insist on conditions (1a) and (1b) for module compatibility, but
rather assume that, implicitly, the private variables of P and @) are renamed
suitably before the two modules are composed. (We still do insist, of course,
on condition (1c) that the interface variables of P and @ are disjoint, and on
condition (2) that the derived await dependencies of P and ) can be combined
without introducing dependency cycles.)

1.2.3 Variable Hiding

The hiding of interface variables allows us to construct module abstractions of
varying degrees of detail. For instance, after composing two modules, it may
be appropriate to convert some interface variables to private variables, so that
they are used only for the interaction of the component modules, and are no
longer visible to the environment of the compound module.

Variable hiding

Given a module P, and an interface variable z in intfXp, by hiding =
in P we obtain the module hide z in P with the set privXp U {z} of
private variables, the set intf Xp\{z} of interface variables, the set ext|Xp
of external variables, and the set atomsp of atoms.

Remark 1.11 [Hiding several variables] In Rml, we write hide 1,z in P as an
abbreviation for the module hide z; in (hide z; in P), which is identical to
the module hide z5 in (hide z; in P). B

Example 1.15 [Scheduler] If we hide the interface variables task; and tasks in
the scheduler system from Example 1.14, we obtain the module

module SchedulerSystem2 is hide taski, tasks in SchedulerSystem

whose block diagram is shown in Figure 1.14. Our conventions for the pictorial
representation of variable renaming and variable hiding are evident from the fig-
ure. Hiding preserves the initialized trajectories of a module, but not the traces.
A trace for the module SchedulerSystem2 gives values only to the observable
(interface) variables new, news, and proc. B

Remark 1.12 [Module properties under variable hiding] Variable hiding pre-
serves the cardinality, closure, and round-sensitivity properties of modules. Hid-
ing preserves determinism, but may not preserve private determinism. By hiding
a variable in a synchronous module we may obtain an asynchronous module. B
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" SchedulerSystem?2
Task
new : - newi
'
new)
L - taski -
L - Scheduler — task} .
L' - proc
Task - /
, new; < taski . proc
new news < tasks — tasklz :
.
new = tasky
news new

Figure 1.14: Block diagram for the scheduler system with renaming and hiding

Remark 1.13 [Abstract block diagrams as abstract types] Every block diagram
for a module P, no matter how abstract, contains four pieces of information: the
read external variables, the awaited external variables, the interface variables,
and the derived await dependencies of P. We call this information the abstract
type of the module. Since the names of private variables are immaterial, the
abstract types of two modules suffice for determining if the two modules are
compatible. Given a complex module that is built from simple modules using the
three operations of composing, renaming, and hiding, and given the (abstract)
types of all simple modules, we can infer the (abstract) type of the complex
module. It is for this reason that the operations of composing, renaming, and
hiding can be performed also on block diagrams. B

1.3 Examples of Reactive Modules

We draw on examples from several application domains —synchronous and asyn-
chronous hardware, concurrent programs with read-shared variables, and dis-
tributed programs with synchronous and asynchronous message passing.
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1.3.1 Synchronous Circuits

Synchronous circuits are built from logic gates and memory cells that are driven
by a sequence of clock ticks. Fach logic gate computes a boolean value once per
clock cycle, and each memory cell stores a boolean value from one clock cycle to
the next. We model each logic gate and each memory cell as a reactive module
so that every update round represents a clock cycle. The wires that connect
the logic gates and the memory cells are modeled as boolean variables. As is
customary in circuit design, we denote the values of wires by 0 and 1 instead of
false and true, respectively. We construct synchronous circuits from three basic
building blocks: as basic logic gates we use the Not gate and the And gate,
and as basic memory cell we use the latch (set-reset flip-flop). These building
blocks are then combined to circuits by applying the three module operations
of parallel composition, variable renaming, and variable hiding.

Combinational circuits

Figure 1.15 defines three deterministic, synchronous, passive modules for model-
ing Not, And, and Or gates. The module SyncNot models a zero-delay Not gate,
which takes a boolean input and produces a boolean output. The input is mod-
eled as an external variable, in, because it is modified by the environment and
visible to the gate. The output is modeled as an interface variable, out, because
it is modified by the gate and visible to the environment. In the initial round,
the Not gate waits for the input value to be initialized before computing the
initial output value, by negating the initial input value. In every update round,
the Not gate waits for the input value to be updated before computing the next
output value, by negating the updated input value. The module SyncNot is pas-
sive, because the output changes only if the input changes, and synchronous,
because the output changes in the very round (clock cycle) in which the input
changes (zero delay). The module SyncAnd models a zero-delay And gate in
similar fashion. The And gate takes two boolean inputs, represented by the
external variables in; and ins, and produces a boolean output, represented by
the interface variable out. In the initial round, both input values must be ini-
tialized before the gate issues the initial output value. In every update round,
both input values must be updated before the gate issues the next output value
with zero delay.

From Not and And gates we can build all combinational circuits. For example,
by de Morgan’s law, a zero-delay Or gate can be defined by composing a zero-
delay And gate with three zero-delay Not gates that negate both inputs and the
output of the And gate. The resulting module SyncOr has the same abstract
type as the module SyncAnd —two awaited boolean inputs represented by the
external variables in; and iny, and a boolean output represented by the interface
variable out which depends on both inputs (the long dashes in Figure 1.15
indicate Rml commentary). The private variables 21, 23, and z3 of SyncOr
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module SyncNot is
interface out: B
external in: B
atom controls out awaits in
initupdate
[in'=0— out' :==1
[in'=1— out' :=0

module SyncAnd is
interface out: B
external inq,ino: B
atom controls out awaits inq, ino

initupdate
[ in; =0 — out' :=0
| iny =0 — out' :==0

[inf =1Ainy=1— out' :=1

module SyncOr is

—interface out

—external ing, ing

hide 21, 29, 23 in
| SyncAnd[in,, ing, out := 21, 22, 23]
| SyncNot[in, out := iny, z1]
|| SyncNot[in, out := ing, 22]
|| SyncNot[in, out := z3, out]

Figure 1.15: Synchronous Not, And, and Or gates



Reactive Modules 36

out
" SyncNot
out
SyncNot
in' . out’ in’ out’
‘ in < out
in’ - ‘ - out’
out
" SyncAnd
out . .
in) —> SyncAnd ing
. : ) . ini,ing < out out’ . out’
in) : . inl, — 1,02 inl,
7
., out
in,
SyncOr
Z’
., 1
in}
24 ‘ : , in) —> SyncOr , ing ,
out . . — out out
‘ . m’2 _ =1 n1,ins < out m’2
-
in, ,
22

Figure 1.16: Block diagrams for the synchronous Not, And, and Or gates



Reactive Modules 37

represent internal wires that connect the four component gates. The values
of these internal wires can be neither read nor modified by the environment.
Since out waits for z3, which waits for both z; and z,, which wait for in; and
ing, respectively, we obtain the two derived await dependencies in; < out and
ine < out; that is, every update of the output must be preceded by updates of
both inputs. The module SyncOr is again passive (all atoms are combinational)
and synchronous (an eager atom controls the output).

Figure 1.16 shows, in the left column, detailed block diagrams for the zero-
delay Not, And, and Or gates, and in the center column, corresponding abstract
block diagrams. We omit the unprimed output wires from the abstract block
diagrams of logic gates, because they are not used for building circuits (to
save the value of a wire from one clock cycle of a synchronous circuit to the
subsequent clock cycle, the value must be latched). We abbreviate the abstract
block diagrams of the logic gates using module boundaries of different shapes
which resemble the standard gate symbols. This allows us to suppress the
derived await dependencies. The abbreviations are shown in the right column
of Figure 1.16.

Sequential circuits

Figure 1.17 defines a nondeterministic, synchronous, active module for modeling
a unit-delay latch. The latch takes two boolean inputs, represented by the
external variables set and reset, and produces a boolean output, represented by
the interface variable out. Unlike the logic gates, the latch has a boolean state,
which is represented by the private variable state. The latch behaves like a
Moore machine. In every update round, the latch first issues its state as output
and then waits for the updated input values to compute its next state. If the
updated value of set is 1 and the updated value of reset is 0, then the latch
changes its state to 1. If the updated value of set is 0 and the updated value
of reset is 1, then the latch changes its state to 0. If both updated input values
are 0, then the state of the latch (which is equal to the already updated output
out') does not change. If both updated input values are 1, then the next state
of the latch is arbitrary —it may be either 0 or 1 (in this case, two of the guards
apply, and the value of state is updated nondeterministically). What remains
to be specified are the initial values of out and state. The initial output of the
latch is arbitrary (this is a second source of nondeterminism). The initial state
of the latch is computed combinationally from the initial values of out, set, and
reset as during update rounds (in particular, if both set and reset are initially 0,
then the initial value of state is determined by the initial value of out).

The resulting module SyncLatch is active, because in every round a new output
is issued independently of any input change, and synchronous, because after
an input change the output changes in the very next round (unit delay). Fig-
ure 1.18 shows the detailed block diagram for the latch and, below, an abstract
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module SyncLatch is
private state : B
interface out: B
external set, reset: B

atom ComputeQOutput controls out reads state
init
| true — out’ :=B
update
| true — out' := state

atom ComputeNeztState controls state awaits out, set, reset

initupdate
| set' =1 — state' :=1
[ reset’' =1 — state’ :==0

[ set’ =0 A reset’ =0 — state' := out’
Figure 1.17: Synchronous latch

block diagram. As with logic gates, we omit the unprimed output wire from
the abstract block diagram of the latch, because it is not used for building cir-
cuits. Note that while zero-delay logic gates have (derived) await dependencies
between inputs and outputs, the unit-delay latch does not. For this it was nec-
essary to model the latch with two atoms, each controlling one variable, rather
than with a single atom controlling both variables: in the module SyncLatch,
the state variable state waits for the input variables set and reset; the output
variable out does not. This decoupling of the output computation, which re-
quires no inputs, from the next-state computation, which requires both inputs,
into separate subrounds is essential for composing latches with logic gates which,
in every round (clock cycle), provide the latch inputs dependent on the latch
outputs.

Example 1.16 [Binary counter] As an example of a sequential circuit, we design
a three-bit binary counter. The counter takes two boolean inputs, represented by
the external variables start and inc, for starting and incrementing the counter.
The counter value ranges from 0 to 7, and is represented by three bits. We do
not make any assumption about the initial counter value. A start command
resets the counter value to 0 and overrides any increment command that is
issued in the same round. An increment command increases the counter value
by 1. If the counter value is 7, the increment command changes the counter
value to 0. In every round, the counter issues its value as output —the low bit
on the interface variable outg, the middle bit on the interface variable out;, and
the high bit on the interface variable outs. (While combinational circuits are
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" SyncLatch
ComputeOutput
out ; out
state J
ComputeNextState
out’ set’ reset’
set! —=
SyncLatch —= out’
reset’ —=]

Figure 1.18: Block diagrams for the synchronous latch

passive, sequential circuits are active.)

Figure 1.19 shows a possible design of the three-bit counter from three one-
bit counters (for clarity, in Rml we can annotate the component modules of
a compound module with the names of the observable variables even if the
variables are not renamed). Note that carry, waits for both start and inc, then
carry; waits for carry,y, and carry, waits for carry,. It follows that all three
bits of the counter are updated in a single round (clock cycle). Figure 1.20
shows block diagrams for the one-bit counter SynclBitCounter and the three-bit
counter Sync3BitCounter. The module Sync3BitCounter has no derived await
dependencies; it is finite, open, nondeterministic (because the initial counter
value is arbitrary), privately deterministic, synchronous, and active. Figure 1.21
shows an initial trajectory of Sync3BitCounter and, for some of the variables,
the corresponding timing diagram. (The private variables of the three one-bit
counters have been renamed implicitly; for instance, z has been renamed to zo,
21, and z5.) B

Exercise 1.7 {P3} [Synchronous circuits] (a) Define a passive module SyncNor
that models a zero-delay Nor gate. Use the variable names in; and ins for
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module Sync1BitCounter is

—interface out, carry

—external start, inc

hide set, reset, z in
|| SyncLatch|set, reset, out]
|| SyncAnd[iny, inz, out := out, inc, carry]
|| SyncOr[iny, inz, out := carry, start, reset]
|| SyncNot[in, out := reset, 2]
|| SyncAnd[in,, iny, out := inc, z, set]

module Sync3BitCounter is
—interface outg, outy, outsy
—external start, inc
hide carry,, carry,, carry, in
|| Sync1BitCounter|start, inc, out, carry := start, inc, outg, carry,)
|| Sync1BitCounter|start, inc, out, carry := start, carry,, outy, carry,|
|| Sync1BitCounter|start, inc, out, carry := start, carry,, outs, carrys,)

Figure 1.19: One-bit and three-bit binary counters

input, and use out for output. (b) Why is

hide z in
|| SyncNor[ing, ing, out := set, z, out]
|| SyncNor[ing, ing, out := reset, out, 2]

not a legal definition of a module? (¢) Consider the module

module SyncDelay is
private state : B
interface out: B
external in: B
atom ComputeQutput controls out reads state
atom ComputeNeztState controls state awaits in
initupdate

| true — state' := in'

which shares the atom ComputeOutput with the module SyncLatch from Fig-
ure 1.17. Give a few initialized trajectories of the module SyncDelay. Then
characterize, in precise words, the set of all initialized trajectories of SyncDelay.
Is the module SyncDelay finite? Closed? Deterministic? Privately determinis-
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" SynciBitCounter
set’
z
SyncLatch
reset’
carry’
" Sync3BitCounter
ind ————————= Syncl1BitCounter , . ,
start! . start, inc < carry out ) outy
carry’
carryg
inc’ Synci1BitCounter , . ,
start, inc < carry out . outy
carry’
carry’
inc’ Sync1BitCounter , : ,
start, inc < carry out . outy
carry’
\L carry’,
— out
inc’ —=] )
Sync3BitCounter = out]
start! —=
— out!,

Figure 1.20: Block diagrams for the one-bit and three-bit binary counters

out’
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Figure 1.21: An initialized trajectory of the module Sync3BitCounter
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tic? Asynchronous? Passive? (d) Draw block diagrams for the module

module SyncLatch?2 is

—interface out

—external set, reset

hide 21, 22,23 in
|| SyncNor[iny,ing, out := set, 23, 21]
|| SyncNor[iny, ina, out := reset, out, z2]
|| SyncDelay[in, out := z1, out]
|| SyncDelay[in, out := z3, 23]

at three different levels of abstraction. Compare the abstract type of the module
SyncLatch2 with the abstract type of the module SyncLatch. Give an initialized
trajectory of SyncLatch2 and draw its timing diagram. How do the traces of
SyncLatch2 differ from the traces of SyncLatch? Can the traces of SyncLatch
be matched by removing one of the component modules from the compound
module SyncLatch2? B

1.3.2 Shared-variables Protocols

We refer to concurrent programs that communicate through read-shared vari-
ables as processes. We model each process as a reactive module with a single
atom. The sequential control of a process is often encoded by a controlled vari-
able called pc, which stands for “program counter.” The interface variables of
a process can be read by other processes. All inter-process communication oc-
curs in this way, by processes reading (rather than awaiting) external variables,
which are controlled by other processes. Hence, there are no awaited vari-
ables: in every update round, each process determines the next values of the
controlled variables based solely on the current values of variables. Processes
are combined by applying the three module operations of parallel composition,
variable renaming, and variable hiding. In the synchronous case, all processes
proceed in lock-step —one step per update round. In the asynchronous case,
each process may or may not proceed in any given update round.

The mutual-exclusion problem

A paradigmatic problem in concurrent programming is the mutual-exclusion
problem, which asks for a programming solution to ensure that no two pro-
cesses simultaneously access a common resource, such as an I/O device or a
write-shared variable. We illustrate the use of reactive modules for modeling
concurrent programs by modeling two protocols —one synchronous, the other
asynchronous— which solve the mutual-exclusion problem. We restrict our at-
tention to the two-process case. Without loss of generality, we assume that
each process has a so-called “critical section,” which contains all accesses to the
common resource. The interface variable pc; of the first process indicates if the
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process control is outside the critical section (pc; = outC), requesting to enter
the critical section (pc; = reqC'), or inside the critical section (pc; = inC). The
interface variable pc, of the second process indicates the status of the second
process in the same manner. Each process starts outside its critical section: the
initial command for pe, is

init
[ true = pc! := outC

and similarly for pc,. Each process may remain outside its critical section for
an arbitrary number of rounds, and it may remain inside the critical section
for an arbitrary number of rounds. In other words, each process may request
to enter the critical section at any time, and it may leave the critical section
at any time. We model these assumptions using nondeterminism: the update
command for pc; contains the guarded assignments

update
[ pe; = outC —
[ pe; = outC — pcj := reqC
| pc;, =inC —
| pc; = inC — pcj = outC

and similarly for pc,. Since the program counters pc; and pc, are interface
variables, in every update round, each process “knows” about the current status
of the other process. Our task is to add guarded assignments that permit each
process to enter its critical section, by updating pc; or pc, from reqC to inC,
in a controlled fashion. We say that the i-th process has the opportunity to
enter the critical section if the guard is true for some guarded command that
sets pe; to inC. (If a process has the opportunity to enter the critical section,
the process does not necessarily need to enter, because it may have additional
nondeterministic choices.)

In a correct solution to the mutual-exclusion problem, the parallel composition
of both processes has to meet several requirements. First and foremost is the
requirement of mutual exclusion: it must not happen, ever, that both processes
are inside their critical sections simultaneously. The mutual-exclusion require-
ment can be enforced easily, say, by never permitting the second process to enter
the critical section. This, however, is not a satisfactory solution and is ruled out
by the following, second requirement, which is called accessibility if either of
the processes requests to enter the critical section, then in the current or some
future round, the process will have the opportunity to enter; furthermore, this
opportunity will present itself no matter how the other process behaves —i.e.,
how it resolves its nondeterministic choices— as long as the other process does
not stay inside the critical section forever.
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Synchronous mutual exclusion

The protocol SyncMutex of Figure 1.22 provides a synchronous solution to the
mutual-exclusion problem. The first process, ()1, proceeds into its critical sec-
tion when the second process is not in its critical section (but may be requesting
to enter), and the second process, @2, proceeds into its critical section when the
first process is outside its critical section (and not requesting to enter). In par-
ticular, if both processes are trying to enter their critical sections in the same
round, only the first process will succeed. In that case, the second process will
enter its critical section as soon as the first process leaves its critical section.
This guarantees accessibility. Both processes proceed synchronously, because if
a process tries to enter its critical section, then it will proceed into the critical
section in the first round in which it is permitted to do so.

Exercise 1.8 {P2} [Synchronous mutual exclusion] The module SyncMutez is
active, because if a process is permitted to enter its critical section in the first
round in which it tries to enter, then the process proceeds into the critical section
in the same round, without waiting for a change in the value of the external
variable. Modify the protocol SyncMutexr to obtain a synchronous, passive
solution to the mutual-exclusion problem. (Do not use additional variables.) B

Asynchronous mutual exclusion

In the asynchronous model of concurrent programming, all processes proceed at
independent, and possibly varying, speeds. The assumption of speed indepen-
dence abstracts details about the execution of a concurrent program: it captures
parallel implementations on multiple processors of unknown speeds, as well as
time-sharing implementations on a single processor with an unknown scheduling
policy. In reactive modules, each speed-independent process is specified by a
lazy atom. Then, in every update round, each speed-independent process may
either proceed (i.e., the values of some controlled variables change) or sleep (i.e.,
the values of all controlled variables stay unchanged). For concurrent programs
with read-shared variables, the assumption of speed independence is captured
formally by the following definition.

Speed-independent process set

A speed-independent process is a lazy atom without awaited variables. A
speed-independent process set is a module all of whose atoms are speed-
independent processes.

Remark 1.14 [Properties of speed-independent process sets] Every speed-inde-
pendent process set is both asynchronous and passive. The speed-independent
process sets are closed under parallel composition, variable renaming, and vari-
able hiding; that is, if these operations are applied to speed-independent process
sets, then the results are again speed-independent process sets. B
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module @, is
interface pc, : {outC, reqC,inC}
external pc,: {outC, reqC,inC}
atom controls pc; reads pcy, pc,

init
[ true — pc} := outC
update
[ pe; = outC —
pe; = outC — pct = reqC
1 1
pc; = reqC A pc inC — pcy := inC
| pey 2 1
[ pc; = inC -
[ pc; = inC — pc = outC
module @, is
interface pc,: {outC, reqC,inC}
external pc, : {outC, reqC,inC}
atom controls pc, reads pc,, pcy
init
[ true — pch := outC
update
[ pey, = outC -
pey = outC — peh = reqC
2 2
¢, = reqgC A pc; = outC — pch := inC
[ pcy = regC A pey peh
[ pc, = inC —
[ pey = inC — pch = outC

module SyncMutez is Q1 || Q2

Figure 1.22: Synchronous mutual exclusion
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module P is
interface pc, : {outC,reqC,inC}; z1: B
external pc,: {outC, regC,inC}; x2: B
lazy atom controls pc,,z; reads pc,, pcy, T1, T2

init
[ true = pc! := outC; =} :=B
update
[ pe; = outC — pci = reqC; ) == 22
[ pe; = reqC A (pey, = outC V x1 # x2) — pcf := inC
[ pe; = inC = pcy = outC

module P, is
interface pc,: {outC,reqC,inC}; z2: B
external pc, : {outC, regC,inC}; xz1: B
lazy atom controls pc,,zs reads pcq, pcy, 1,22

init
[ true — pch := outC; zb =B
update
[ pey = outC — pch = reqC; zh = —xq
[ pey = reqC A (pey; = outC V 1 = x2) — pch == inC
[ pey = inC — pch = outC

module Pete is hide z1,25 in P, || P

Figure 1.23: Asynchronous mutual exclusion
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[ B [PuB] | [ B [ B [PB] P [ B
pey || outC | outC | reqC | reqC | reqC | 1eqC | reqC | inC | outC | outC
pey || outC | regC | inC | inC | inC | outC | reqC | reqC | reqC | inC
1 true | true | false | false | false | false | false | false | false | false
To false | false | false | false | false | false | true | true | true | true

Figure 1.24: An initialized trajectory of the module Pete

The previous, synchronous solution to the mutual-exclusion problem violates
speed independence. An asynchronous solution, which must take the form of
a speed-independent process set, is more difficult to devise and understand.
The protocol Pete of Figure 1.23 provides the asynchronous solution due to
Peterson, in which each process employs an additional boolean interface variable
(z1 and z2, respectively). If both processes are trying to enter their critical
sections in the same round, then the first process can succeed if £1 # 2, and the
second process can succeed if ;1 = z5. This guarantees the mutual-exclusion
requirement. However, in contrast to the simple protocol SyncMutex, it is
not obvious that Pete meets the accessibibility requirement; indeed, much of
this book will be devoted towards developing algorithms for checking if a finite
module like Pete meets a requirement like accessibility. Figure 1.24 shows a
sample initialized trajectory of Pete. Since the two atoms of Pete are speed-
independent processes, in any given update round, either none, one, the other,
or both atoms may sleep. The first line of Figure 1.24 indicates for every update
round which processes proceed.

Exercise 1.9 {T3} [Accessibility for Peterson’s protocol] Prove that the module
Pete meets the accessibilty requirement. (As with the proofs required by other
exercises, your aim need not be a derivation in some formal calculus, but an
argument that is sufficiently rigorous and detailed as to convince the reader
and, more importantly, yourself.) W

Exercise 1.10 {P3} [Three-process mutual exclusion] You are asked to generalize
Peterson’s protocol to the case of three processes: first specify the three-process
mutual-exclusion problem; then present your solution in the form of a finite
module which is a speed-independent, three-process set. Give an initialized tra-
jectory of your protocol along which each process enters the critical section at
least once (annotate the trajectory, as in Figure 1.24, with the processes that
proceed during the update rounds). H

Exercise 1.11 {P3} [Interleaving model] Peterson’s protocol was originally de-
signed under the interleaving assumption that in every update round at least
one of the two processes sleeps. The interleaving assumption is stronger (more
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restrictive) than the assumption of speed independence, which permits update
rounds in which both processes proceed. (a) Implement Peterson’s original pro-
tocol using three synchronous, passive modules, two of which represent the two
processes. The third module represents a scheduler which, in every update
round, nondeterministically determines which of the two processes sleeps. The
decision of the scheduler is communicated to the processes through an auxiliary
variable that is controlled by the scheduler and awaited by the processes. After
parallel composition, hide the auxiliary variable to obtain an asynchronous pro-
tocol which has the same abstract type as Pete and strictly fewer traces. Give a
trace of Pete which is not a trace of your new protocol. (b) Every asynchronous
protocol that meets the mutual-exclusion requirement under the assumption
of speed independence also meets the mutual-exclusion requirement under the
interleaving assumption. Can you find an asynchronous protocol, in the form
of a speed-independent two-process set, which violates the mutual-exclusion re-
quirement, but does so only along initialized trajectories that contain at least
one update round in which both processes proceed? W

1.3.3 Message-passing Protocols

We refer to distributed programs that communicate through messages as agents.
The transmission of messages is governed by message-passing protocols, which
ensure that all messages that are sent are also received. We illustrate the use of
reactive modules for modeling distributed programs by modeling several proto-
cols for passing messages between agents.

Event variables

We refer to every change in the value of a variable z as an x event. Thus,
in every update round, an x event either happens or does not happen; the z
events may happen as rarely as never, or as often as once per update round.
In this spirit, in reactive modules we model the happening of a pure event —
a happening without value, such as an individual clock tick or the fact that
a message is being transmitted from a sender to a receiver— by toggling a
boolean variable. Suppose, for example, that the boolean variable tick is used
for modeling clock ticks. Then, the pure event “clock tick” happens whenever
the value of tick changes either from true to false, or from false to true. In those
update rounds in which the next value of tick is equal to the current value, no
clock tick happens. In other words, the clock ticks are represented by the tick
events.

If a boolean variable z is used to model pure events, then we are interested in
all changes to the value of z, but the actual value of z at the beginning or end of
any given round is irrelevant. Hence, Rml provides a special type, denoted E, for
the modeling of pure events. The variables of type E are called event variables.
Each event variable ranges over the set B of boolean values, but compared to
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boolean variables, the initialization and updating of event variables is strongly
restricted. The initialization of event variables is implicit: each event variable
is initialized nondeterministically to either true or false. In update commands,
an event variable z can occur only in the following two ways. First, the Rml
expression z! stands for the assignment z’ := -z, which issues an z event. (If
x! is absent from a guarded assignment, then z' := x by default, and no z event
is issued.) It follows that the atom that controls  must read z. Second, the
Rml expression z? stands for the boolean expression ' # x, which checks if an
z event is happening. It follows that an atom that does not control z, reads x
if and only if it awaits . Given a module P, we write eventXp for the set of
event variables of P.

Synchronous communication

We are given two agents —a sender and a receiver. The sender produces a
message, then sends the message to the receiver and produces another message,
etc. The receiver, concurrently, waits to receive a message, then consumes the
message and waits to receive another message, etc. We model each agent as
a module that cannot observe the control variables of the other agent. The
private variable pc of the sender indicates if the agent is producing a message
(pc = produce) or attempting to send a message (pc = send). The sender starts
by producing a message:

init
[ true — pc' := produce

Messages are produced by the lazy atom Producer, which requires an unknown
number of rounds to produce a message. Once a message is produced, the pro-
ducer issues a donep event (which is private to the sender) and the produced
message is shown as msgp (which initially is undefined). We assume that mes-
sages have the finite type M, and that any stream of messages from the finite
set M may be produced. We model these assumptions using nondeterminism:

lazy atom Producer controls donep, msgp reads pc, donep
init
[ true = msgls :== L
update
| pc = produce — donep!; msg’p := M

Once a message has been produced, the sender is ready to send the message:

update
| pc = produce A donep? — pc' := send

The private variable pc of the receiver indicates if the agent is waiting to receive
a message (pc = receive) or consuming a message (pc = consume). The receiver
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starts by waiting to receive a message:

init
[ true — pc' := receive

The received message is stored in the private variable msgp. Messages are
consumed by the lazy atom Consumer, which requires an unknown number of
rounds to consume a message. Once a message is consumed, the consumer issues
a donec event (which is private to the receiver) and the consumed message is
shown as msgo (which initially is undefined):

lazy atom Consumer controls donec, msg. reads pc, donec, msgp
init
|
[ true = msgy, == L
update
| pc = consume — donec!; msgy, := msgp

Once a message has been consumed, the receiver waits to receive another mes-
sage:

update
[ pc = consume A donec? — pc' := receive

Our task is to add guarded assignments that permit the sender to send a mes-
sage, by updating pc from send to produce, and guarded assignments that permit
the receiver to receive a message, by updating pc from receive to consume, in a
controlled fashion. Roughly speaking, when composing both agents, the stream
of consumed messages msg. should contain the same message values, in the
same order, as the stream of produced messages msgp. Formal requirements
for message-passing protocols will be stated in Chapter ?77?.

The protocol SyncMsg of Figure 1.25 has the sender and the receiver synchro-
nize to transmit a message; that is, when ready to send a message, the sender is
blocked until the receiver becomes ready to receive, and when ready to receive
a message, the receiver is blocked until the sender transmits a message. The
synchronization of both agents is achieved by two-way handshaking in three
subrounds (or “stages”) within a single update round. The first subround be-
longs to the atom Stagel of the receiver. If the receiver is ready to receive a
message, it asynchronously issues an interface ready event to signal its readiness
to the sender. The second subround belongs to the atom Stage2 of the sender.
If the sender sees an external ready event and is ready to send a message, it
synchronously issues an interface transmit event to signal a transmission, and it
offers the message which is to be transmitted in the interface variable msgg. The
third subround belongs to the atom Staged of the receiver. If the receiver sees an
external transmit event, it copies the message from the external variable msgg
to the private variable msgg. The three-stage, two-way handshaking structure
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module SyncSender is
private pc: {produce, send}; donep: E
interface transmit: E; msgg: M; msgp: M
external ready: E

passive atom Stage2
controls pc, transmit, msgg
reads pc, done p, ready, transmit, msg p
awaits donep, ready

init
| true — pc' := produce; msg'y := M
update
| pc = produce A donep? — pc' := send
[ pc = send A ready? — transmit!; msg's := msgp; pc' := produce

lazy atom Producer controls donep, msgp reads pc, donep

module Receiver is
private pc: {receive, consume}; msgp: M; donec:E
interface ready: E; msg.: M
external transmit: E; msgg: M

passive atom Stage3

controls pc, msgp

reads pc, transmit, donec

awaits transmit, msgg, donec

init
[ true = pc' := receive; msgy := M

update
[ pc = receive A transmit? — msg’p 1= msgly; pc' := consume
| pc = consume A donec? — pc' := receive

lazy atom Stage! controls ready reads pc, ready
update
[ pc = receive — ready!

lazy atom Consumer controls donec, msg, reads pc, donec, msgp

module SyncMsg is
—interface msgp, msg.
hide ready, transmit, msgg in
| SyncSender
| Receiver

Figure 1.25: Synchronous message passing
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Figure 1.26: Block diagram for synchronous message passing
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Figure 1.27: Abstract block diagram for synchronous message passing

of the protocol SyncMsg can be seen in the block diagram of Figure 1.26 and
in the abstract block diagram of Figure 1.27.

Both agents SyncSender and Receiver are passive, because the sender may sleep
in any given update round except when the receiver signals ready, and the
receiver may sleep in any given update round except when the sender signals
transmit. The sender is synchronous, because it signals transmit in the very
round in which the receiver signals ready; the receiver is asynchronous. The
entire protocol SyncMsg, after hiding the variables transmit and msgg, is both
asynchronous and passive. Figure 1.28 shows a sample initialized trajectory of
the module SyncMsg, assuming that the possible values of messages are M =
{a,b,c}. (The two program counters have been renamed implicitly, and their
values are abbreviated. Instead of giving the values of event variables, the figure
indicates when the corresponding events happen.) The corresponding trace of
SyncMsg consists of a stream of produced messages msgp and a stream of
consumed messages msgc .

Exercise 1.12 {P2} [Synchronous message passing] (a) Give a few additional
initialized trajectories of the module SyncMsg and the corresponding traces.
Then characterize, in precise words, the set of all traces of SyncMsg. (b) Define
a module that has the same abstract type and the same traces as the module
SyncMsg, but as few private variables as possible. il

Exercise 1.13 {P3} [Dining philosophers] Suppose that there are two rooms and
n philosophers. In one room, the philosophers think; in the other room, they eat
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Figure 1.28: An initialized trajectory of the module SyncMsg and the corre-
sponding trace

while seated at a round table. Every philosopher owns one of the n chairs at the
table. There is one chopstick between each of the n plates, and every philosopher
uses both the left and the right chopstick for eating (it follows that at most
|n/2| philosophers can be eating at the same time). Every philosopher begins
by thinking and, when hungry, enters the dining room. There, the philosopher
sits down at the table at the designated chair, picks up the chopstick to the left
(or waits until it becomes available), and then the chopstick to the right (or
waits). Once in control of both chopsticks, the philosopher eats, then releases
both chopsticks, leaves the dining room, thinks, and returns when hungry again.

The passive module Stick of Figure 1.29 implements a chopstick. The private
variable pc indicates if the chopstick is available (pc = free), picked up by the
philosopher to the left (pc = left), or picked up by the philosopher to the right
(pc = right). An external req; event indicates that the philosopher to the left
requests the chopstick, an interface grant; event indicates that the philosopher
to the left picks up the chopstick, and an external releases, event indicates that
the philosopher to the left releases the chopstick. The event variables regp,
granty, and releaser refer to the philosopher to the right. (a) Define a pas-
sive module Phil which implements a philosopher and, using multiple, renamed
copies of Phil and Stick, define a compound module Dine4 which implements
the dining-philosophers scenario for n = 4. Illustrate the communication struc-
ture of the module Dinej by drawing block diagrams for Phil, Stick, and Dine4
at suitable levels of abstraction. (b) Give an initialized trajectory of your mod-
ule Dine4 which ends up in a situation where all 4 philosophers sit at the table,
have picked up one chopstick, and wait for the other chopstick to become avail-
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module Stick is

private pc: {free, left, right}

interface grant;, grantp: E

external req;, releaser,, reqp, releaser: E

passive atom
controls pc, grant;, grantp
reads pc, req;,, grant;, releaser,, req g, grant g, releaser
awaits req; , releaser,, reqp, releaser

init
[ true — pc' = free
update
[ pc = free A reqp? — grantp!; pc' = left

| pc = free A reqg? — grantgl; pc' := right
[ pc = left A releaser,? — pc' := free
[ pc = right A releaser? — pc' := free

Figure 1.29: A chopstick for the dining philosophers

able. There are several ways to prevent this deadlock situation. (b1l) Have each
philosopher pick up both chopsticks simultaneously (or wait until both chop-
sticks become available). (b2) Add to the entrance of the dining room a guard
that admits at most n — 1 = 3 philosophers into the dining room at any given
time. Define a passive module Guard and draw the abstract block diagram
for the dining-philosophers scenario with a guard. (Hide all communication be-
tween the philosophers and the guard so that the resulting module has the same
abstract type as the module Dinej.) B

Exercise 1.14 {P3} [Write-shared variables] Consider a concurrent program with
two processes, Ry and Rz, both of which have read and write access to a boolean
variable . When R; wishes to read the value of z, it issues an interface read;
event and expects, depending on the current value of z, either an external
return_true event or an external return_false event within the same round. Sim-
ilarly, when Rs wishes to read z, it issues an interface reads event and expects
an external return_true or return_false event within the same round. When R;
wishes to assign the value ¢ to z, for i € {true, false}, it issues an interface
write; i event. Similarly, when Ry wishes to assign the value i to z, it issues an
interface writes_i event. If both Ry and R, issue conflicting write requests, then
z is updated nondeterministically to one of the written values. (a) Define a pas-
sive module R, for modeling the shared variable z. Your module should have
the private boolean variable z, the two interface event variables return_true
and return_false, and the external event variables ready, reads, write,_true,
write _false, writes_true, and writes_false. (b) Give an alternative implemen-
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tation Pete2 of Peterson’s mutual-exclusion protocol (Figure 1.23) which uses
instead of the two read-shared boolean variables z; and x5 the single write-
shared boolean variable z. Define two modules R; and Rs for modeling the
two processes of the protocol, encoding z1 = x5 by x = true and z; # z2 by
z = false. The resulting module

module Pete2 is hide ... in Ry || Rz || R

should have the same abstract type and the same traces as the module Pete.
(¢) How would you change the definition of R, in part (a) if x is a nonnegative-
integer variable rather than a boolean variable? B

Asynchronous communication

While the synchronous message-passing protocol SyncMsg of Figure 1.26 per-
forms a two-way handshake within a single round, the asynchronous protocol
AsyncMsg of Figure 1.30 uses many rounds for a single handshake. The two
protocols have identical receiver agents. Every send-receive cycle of AsyncMsg
consists of four phases —a message production phase, an agent coordination
phase, a message transmission phase, and a message consumption phase— each
consisting of any number of update rounds. During the message production
phase, the sender (pc = produce) takes an unknown number of rounds to pro-
duce a message. During the agent coordination phase, the sender (pc = wait)
waits for an external ready event, which signals the readiness of the receiver
to receive a message. The receiver (pc = receive) takes an unknown number
of rounds to issue an interface ready event. During the message transmission
phase, pc = send for the sender and pc = receive for the receiver. The sender
takes an unknown number of rounds to transmit the message, asynchronously
issuing an interface transmit event and simultaneously offering the message in
the interface variable msgg. The receiver, ready to receive, sees the external
transmit event and copies the message from the external variable msgg to the
private variable msgp. During the message consumption phase, the receiver
(pc = consume) takes an unknown number of rounds to consume the message.
The message consumption phase overlaps with the ensuing message production
phase, which initiates a new send-receive cycle.

Exercise 1.15 {P2} [Asynchronous message passing] (a) Draw block diagrams
for the module AsyncMsg at several levels of abstraction. (b) Give a few initial-
ized trajectories of the module AsyncMsg and the corresponding traces. Then
characterize, in precise words, the set of all traces of AsyncMsg. (c) How do the
traces of the module AsyncMsg differ from the traces of the module SyncMsg
from Exercise 1.127 B

Exercise 1.16 {P4} [Faulty communication] Suppose that the delivery of mes-
sages may be delayed in a communication medium, and that messages may be
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module AsyncSender is
private pc: {produce, send, wait}; donep: E
interface transmit: E; msgg: M; msgp: M
external ready: E

passive atom ProgramCounter
controls pc
reads pc, donep, ready, transmit
awaits donep, ready, transmit

init
| true — pc' := produce

update
[ pc = produce A donep? — pc' := wait
| pc = wait A ready? — pc' := send

| pc = send A transmit? — pc' := produce

lazy atom Transmitter
controls transmit, msgg
reads pc, transmit, msgp
init
| true — msg'y :== M
update
| pc = send — transmit!; msg's :== msgp

lazy atom Producer controls donep, msgp reads pc, donep

module AsyncMsg is
—interface msgp, msgc
hide ready, transmit, msgg in
|| AsyncSender
|| Receiver

Figure 1.30: Asynchronous message passing

o8
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Figure 1.31: Message passing through channels
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reordered, lost, and corrupted in the medium. We model the communication
medium by two agents that are interjected between the sender and the re-
ceiver of the synchronous message-passing protocol SyncMsg. The signal chan-
nel SyncChannel, with the external variable ready and the interface variable
ready ,,, delivers signals from the receiver to the sender. The message channel
AsyncChannel, with the external variables transmit and msgg and the inter-
face variables transmitys and msg,,, delivers messages from the sender to the

receiver. The new message-passing protocol is implemented by the module

module BufferedMsg is
—interface msgp, msgo
hide ready, ready,,, transmit, transmityr, msgg, msg s in
|| SyncSender[ready := ready ;]

|| SyncChannel
|| AsyncChannel

|| Receiver[transmit, msgg := transmit pr, msg ]

whose abstract block diagram is shown in Figure 1.31. We wish to model both
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reliable and unreliable communication media with various latencies and capaci-
ties. For each of the following parts of the exercise, give at least one initialized
trajectory of the module BufferedMsg. (a) Define a synchronous, passive mod-
ule SyncChannel which delivers signals without delay (every signal is delivered
in the round in which it is is sent). Then define an asynchronous, passive
module AsyncChannel which delays messages arbitrarily (by an unknown num-
ber of rounds), and delivers the messages in the order in which they are sent.
(b) Modify the module AsyncChannel so that the messages are not necessarily
delivered in the order in which they are sent. (bl) Assume that a message can
be overtaken by at most 3 newer messages. (b2) Assume that a message can be
overtaken by an arbitrary number of newer messages. (c¢) Modify the module
AsyncChannel so that messages may be lost. (cl) Assume that any message
may be lost. (c¢2) Assume that the message channel has a capacity of 5 mes-
sages; that is, in any given round, the channel can store at most 5 undelivered
messages. If 5 messages are stored and a new message is received from the
sender, then the new message is lost. (d) Modify the module AsyncChannel so
that messages may be reordered, lost, and corrupted (a message is corrupted if
its contents is changed arbitrarily). B

Timed communication

Instead of waiting for the receiver to be ready to receive a message, the sender
may choose to retransmit a message repeatedly until the receiver acknowledges
the receipt of the message. The decision to retransmit can be based upon timing;:
a message is retransmitted if no acknowledgment is obtained within a certain
amount of time. For measuring time, we let protocols refer to an external digital
clock. We model the clock as an asynchronous, passive module:

module AsyncClock is
interface tick: E
lazy atom controls tick reads tick
update
[ true — tick!

The clock module AsyncClock issues tick events at undetermined times. The
tick events represent clock ticks and can be observed by other modules.

Consider the receiver module TimedReceiver of Figure 1.32. Instead of signal-
ing when it is ready to receive a message, the module TimedReceiver confirms
the receipt of a message by issuing an interface ack event for acknowledgment.
If for the duration of 4 clock ticks after receiving a message, the message has
not been acknowledged, then a time-out occurs. If a time-out occurs, then an
acknowledgment is issued right away, in the round that immediately follows the
4th clock tick after message reception. Consequently, the receipt of every mes-
sage is confirmed within at most 4 time units, as measured by the clock module
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module TimedReceiver is
private pc: {receive, confirm, consume}; msgg: M;
donec, timeout : E; timer: [0..3]
interface ack: E; msgo: M
external transmit, tick: E; msgq: M

passive atom ReceiverProgramCounter

controls pc, msgg, ack

reads pc, transmit, timeout, ack, donec

awaits transmit, msgg, timeout, donec

init
[ true — pc' := receive; msgly :=M

update
[ pc = receive A transmit? — msg’y := msgly; pc' = confirm
| pc = confirm A —timeout? —
| pc = confirm — ack!; pc' := consume
[ pc = consume A donec? — pc' = receive

passive atom Receiver Timer
controls timer, timeout
reads pc, transmit, tick, timer, timeout
awaits transmit, tick

init
[ true — timer := [0..3]
update
[ pc = receive A transmit? — timer' := 0

[ pc = confirm A tick? A timer <3 — timer' := timer + 1
[ pc = confirm A tick? A timer = 3 — timeout!

lazy atom Consumer controls donec, msgy reads pc, donec, msggp

Figure 1.32: Timed message passing: receiver
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module TimedSender is
private pc: {produce, send, wait}; donep,timeout: E; timer: [0..4]
interface transmit: E; msgg: M; msgp: M
external ack, tick: E

passive atom SenderProgramCounter

controls pc

reads pc, donep, transmit, ack, timeout

awaits donep, transmit, ack, timeout

init
[ true — pc' := produce

update
| pc = produce A donep? — pc' := send
[ pc = send A transmit? — pc' := wait
| pc = wait A ack? — pc' := produce
| pc = wait A timeout? — pc' := send

passive atom SenderTimer
controls timer, timeout
reads pc, transmit, tick, timer, timeout
awaits transmit, tick

init
[ true — timer := [0..4]
update
| pc = send A transmit? — timer' :=0

[ pc = wait A tick? A timer < 4 — timer' := timer + 1
[ pc = wait A tick? A timer =4 — timeout!

lazy atom Transmitter
controls transmit, msgg

reads pc, transmit, msg p

lazy atom Producer controls donep, msgp reads pc, donep

Figure 1.33: Timed message passing: sender
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AsyncClock. The corresponding sender does not know when the receiver is
ready to receive a message. If a message is transmitted when the receiver is not
ready to receive it, then the message is lost. Therefore the sender must retrans-
mit every message that is not acknowledged. The sender module TimedSender
of Figure 1.33 uses the atom Transmitter from Figure 1.30 for transmitting a
message, and then waits for an acknowledgment for exactly 5 clock ticks. The
waiting period of 5 clock ticks suffices, because the receiver acknowledges the
receipt of every message within at most 4 clock ticks. If the sender does not
obtain an acknowledgment for the duration of 5 clock ticks, then it decides to
retransmit the message. The resulting timed message-passing protocol

module TimedMsg is
—interface msgp, msgo
hide transmit, msgg, ack, tick in
[| TimedSender
|| TimedReceiver
|| AsyncClock

has the same abstract type as the protocols SyncMsg and AsyncMsg.

Exercise 1.17 {P2} [Timed message passing] (a) Draw block diagrams for the
module TimedMsg at several levels of abstraction. (b) Give a few initialized
trajectories of the module TimedMsg and the corresponding traces. Then char-
acterize, in precise words, the set of all traces of TimedMsg. (c¢) How do the
traces of the module TimedMsg differ from the traces of the module AsyncMsg
from Exercise 1.157 B

Exercise 1.18 {P2} [More timed message passing] If the worst-case durations of
message transmission and message consumption are known to the sender, then
there is no need for the receiver to signal its readiness to receive a message,
nor to acknowledge the receipt of a message. Design a timed message-passing
protocol that consists of a sender, a message channel, a receiver, and the clock
module AsyncClock, and reflects the following three timing assumptions: (1) the
production of a message requires at least 3 clock ticks, and after transmitting
a message, the sender waits for 4 clock ticks before producing another message;
(2) the channel takes at least 2 and at most 5 clock ticks to deliver a message;
(3) every message is consumed within a single clock tick. Since 5+ 1 < 3 + 4,
the receiver can be ready to receive every message that is transmitted by the
sender. The resulting message-passing protocol should have the same abstract
type and the same traces as the module AsyncMsg. B

1.3.4 Asynchronous Circuits*

In an asynchronous circuit, unlike synchronous circuits, there is no single global
clock, and a change in the value of an output due to changes in the values



Reactive Modules 64

of the inputs may be delayed. We model each asynchronous logic gate by a
nondeterministic passive module for which a change in the values of its inputs
causes a corresponding change in the value of the output after an arbitrary
number of update rounds. An asynchronous logic gate is stable when its output
is the desired function of the inputs, and unstable otherwise. For example, an
asynchronous And gate is stable when its output is the conjunction of both
inputs. The condition

And(ing, ing, out) = (out = ing - ing)

is called the stability condition of an And gate with inputs in; and ins and
output out. The output of an asynchronous gate can change only if the gate
is unstable; when this happens the gate becomes stable. The gate takes an
unknown number of rounds to become stable. If the gate is stable, and any
of the inputs change in a way that violates the stability condition, then the
gate turns unstable. If the gate is unstable, and any of the inputs change
without rendering the stability condition true, the gate remains unstable. If,
however, any of the inputs of an unstable gate change in a way that renders the
stability condition true, a hazard is encountered, and the gate fails. If a gate
has failed, its output may change arbitrarily. These modeling assumptions for
an asynchronous And gate are specified by the asynchronous, passive module
AsyncAnd of Figure 1.34. The private variable pc indicates the status of the gate
(stable, unstable, or hazard) at the end of each round. The interface and external
variables of AsyncAnd are identical to the interface and external variables of
the synchronous module SyncAnd from Figure 1.15. However, unlike SyncAnd,
the asynchronous module AsyncAnd has no (derived) await dependencies.

Exercise 1.19 {P3} [Asynchronous circuits] (a) Define an asynchronous, passive
module AsyncNot which specifies an asynchronous Not gate (use the variable
name 4n for input, and use out for output). Give a few initialized trajectories of
the module AsyncNot. Then characterize, in precise words, the set of all traces
of AsyncNot. (b) Give a few initialized trajectories of the module

module AsyncNor is
hide 21,25 in
|| AsyncAnd[ing, ing, out := 21, 22, out]
|| AsyncNot[in, out := inq, 1]
|| AsyncNot[in, out := ina, 23]

and characterize its traces. Given our modeling assumptions, is the module
AsyncNor a correct implementation of an asynchronous Nor gate? (How do the
traces of AsyncNor compare with the traces of the module that results from
replacing each And condition in the module AsyncAnd by a Nor condition?)
(¢) An asynchronous latch has the two external variables set and reset and
the interface variable out. The state of the asynchronous latch is stable when
set = 1 implies that the state is 1, and reset = 1 implies that the state is 0. The
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module AsyncAnd is
private pc: {stable, unstable, hazard}
interface out: B
external iny, iny: B

lazy atom Output controls out reads pc, out
init
| true — out' :=B
update
[ pc = unstable — out' := —out
[ pc = hazard — out' := —out

passive atom Status controls pc reads pc, out awaits inq, insg, out
init
| And(in},in}, out’) — pc' := stable
| =And(in!, ink, out') — pc' := unstable
update
| pc = stable A —And(in}, inh, out') — pc' := unstable
| pc = unstable A And(in}, iny, out') A out’ # out — pc' := stable
| pc = unstable A And(in!, in}, out') A out' = out — pc' := hazard

Figure 1.34: Asynchronous And gate
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output of the asynchronous latch is stable when out is equal to the state of the
latch. The state and the output stabilize independently, each taking an unknown
number of rounds to switch from unstable to stable. A hazard is encountered
if either the state is unstable and a change of the inputs renders it stable,
or the output is unstable and a change of the state renders it stable. Define
an asynchronous, passive module AsyncLatch which specifies an asynchronous
latch under these modeling assumptions. Give a few initialized trajectories of
the module AsyncLatch and characterize its traces. (d) Give a few initialized
trajectories of the module

module AsyncLatch?2 is
hide z in
|| AsyncNor[ing, ins, out := set, z, out]
|| AsyncNor[ing, ins, out := reset, out, 2|

and characterize its traces. Given our modeling assumptions, is the module
AsyncLatch2 a correct implementation of an asynchronous latch? (How do the
traces of AsyncLatch2 compare with the traces of AsyncLatch?) B

Exercise 1.20 {P3} [Explicitly clocked circuits] (a) Modify the modules AsyncAnd
and AsyncNot (from Exercise 1.19) so that each gate, when unstable, stabilizes
within at most 3 rounds, provided no hazard is encountered in the meantime.
Are the resulting modules ClockedAnd and ClockedNot synchronous or asyn-
chronous? Active or passive? (b) Modify the module AsyncLatch (from Exer-
cise 1.19) so that the state of the latch, when unstable, stabilizes within at most
3 rounds, provided no hazard is encountered in the meantime. Furthermore, the
output of the latch, when unstable, stabilizes whenever an external tick event
occurs. The resulting module ClockedLatch should be synchronous and passive.
Unlike the synchronous, active latch SyncLatch of Figure 1.17, which is implic-
itly clocked (every update round corresponds to a clock cycle), the synchronous,
passive latch ClockedLatch is explicitly clocked (every external tick event cor-
responds to a clock cycle). (c) Let Clocked3BitCounter be the module that
results from replacing every component of the module Sync8BitCounter from
Example 1.20 as follows: replace each occurrence of SyncAnd by ClockedAnd,
each occurrence of SyncNot by ClockedNot, and each occurrence of SyncLatch
by ClockedLatch. Define a module Clock, which issues interface tick events, so
that the compound module

hide tick in Clocked3BitCounter || Clock

implements an asynchronous three-bit counter whose only hazards can be caused
by primary inputs (start and inc) changing too frequently. (You need to deter-
mine the minimal frequency of clock ticks which cannot cause hazards.) W
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1.4 Bibliographic Remarks

Reactive modules were introduced by [AlurHenzinger99]. Rml is at its core
a synchronous modeling language based on read-shared variables, and thus
is closely related to synchronous programming languages such as Esterel by
[BerryGonthier88]. In Rml, asynchrony is modeled by nondeterministic progress,
and communication events are modeled by changes in the values of variables.
Paradigmatic modeling languages that are based on these alternative primitives
include the asynchronous shared-variables language Unity by [ChandyMisra88],
the asynchronous event-communication language I/O Automata by [Lynch96],
and the synchronous event-communication languages Csp and Ccs by [Hoare85,
Milner89].
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