
Contents
10 Temporal Liveness Requirements 110.1 Fair Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110.1.1 !-Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110.1.2 Fair traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 210.2 The Temporal Logic Ctl . . . . . . . . . . . . . . . . . . . . . . 310.2.1 Syntax and Semantics of Ctl . . . . . . . . . . . . . . . . 410.2.2 Ctl Model Checking . . . . . . . . . . . . . . . . . . . . . 610.2.3 Compositionality and Ctl . . . . . . . . . . . . . . . . . . 810.3 The �-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810.3.1 Syntax and semantics . . . . . . . . . . . . . . . . . . . . 910.3.2 Expressive Power . . . . . . . . . . . . . . . . . . . . . . . 1110.3.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . . 22

0



Computer-Aided Veri�cationc Rajeev Alur and Thomas A. Henzinger November 30, 1999
Chapter 10Temporal LivenessRequirementsNot all liveness requirements of a reactive module can be formulated as a re-sponse veri�cation problem. In Chapter 5, we studied temporal logics overobservation structures to specify logical safety requirements of a module. Alongthe same lines, we now consider temporal logics over observation structures withfairness constraints to specify logical liveness requirements of a fair module.10.1 Fair Structures10.1.1 !-TracesA trace of an observation structure is obtained by executing the underlying tran-sition graph for �nitely many steps, and mapping each state to its observation.Similarly, an !-trace of an observation structure is obtained by considering an!-trajectory of the underlying transition graph, and mapping each state to itsobservation.!-tracesLet K = (G;A; hh�ii) be an observation structure. An !-trace of K is an !-word a over the alphabet A of observations such that there is an !-trajectorys of G with a = hhsii. The !-word a is an initialized w-trace of K if there isan initialized !-trajectory s of G with a = hhsii. The !-language LK of theobservation structure K is the set of initialized !-traces of K.Remark 10.1 [Fusion-closure] The !-language LK of an observation structureK is not necessarily fusion-closed. 1



Temporal Liveness Requirements 2We know that the !-language of a transition graph is safe. What about the !-language of an observation structure? Clearly, if a is an !-trace of an observationstructure K, then every pre�x of a is a trace of K. However, to establish thatthe set LK contains every limit of LK , we use the fact that the structure is�nitely-branching over observations: for every observation a, there are only�nitely many initial states with observation a, and every state has only �nitelymany successors with observation a.Proposition 10.1 [Limit closure of !-traces] Let K be an observation struc-ture. Then, LK = safe(LK).Proof. Let K = (�; �I ;!; A; hh�ii) be an observation structure. If a is an!-trace then, by de�nition, for all i � 0, the pre�x a0:::i is a trace of K. Thisestablishes LK � safe(LK).We wish to prove that every limit of LK is an !-trace of K. Consider an !-word a over the set of observations of K, and suppose for all i � 0, a0:::i is aninitialized trace of K. Let us de�ne a transition graph H . The states of H arepairs of the form (s; i), for a state s of K and a natural number i, such thathhsii = ai. The state (s; i) is an initial state of H if s is an initial state of Kand i = 0. The transition graph H has a transition from the state (s; i) to thestate (t; j) if there is a transition from s to t in K and j = i + 1. The graphH has �nitely many initial states, and each state has �nitely many successors.For every i � 0, a0:::i is a trace of K, and hence, there exists a trajectorys0:::i of K with hhsjii = aj for 0 � j � i. Hence, for every i � 0, there is atrajectory of H of length i. From K�onig's lemma, the graph H has an in�nitepath: (s0; 0)(s1; 1)(s2; 2) � � � The corresponding !-word s is an !-trajectory ofK, and hhsii = a is an !-trace of K.Since a safe language is completely characterized by the set of its pre�xes, thenext theorem follows.Theorem 10.1 [Language inclusion] For two observation structuresK1 and K2,LK1 � LK2 i� LK1 � LK2 . For two reactive modules P1 and P2, LP1 � LP2 i�LP1 � LP2 .10.1.2 Fair tracesA fairness constraint and a fairness assumption for an observation structure isa fairness constraint and a fairness assumption for the underlying transitiongraph. Fair structures are obtained from observation structures by adding fair-ness assumptions.Fair structureA fair structure K = (K;F ) consists of an observation structure K and afairness assumption F for K.



Temporal Liveness Requirements 3If all the fairness constraints in F are weak, then (K;F ) is a weakly-fair struc-ture.Fair traces of a fair structure are obtained from fair trajectories by projectingstates to observations.Fair traceLet K be a fair structure with observations A and observation function hh�ii.An !-word a is a fair trace of K if there exists a fair trajectory s of K suchthat a = hhsii. An !-word a is an initialized fair trace of K if there existsan initialized fair trajectory s of K such that a = hhsii. The fair languageLK of K the set of initialized fair traces of K.Exercise 10.1 fT3g [Fair traces] Show that the set of fair initialized traces ofa fair structure is not necessarily the intersection of the set of fair traces andthe set of initialized !-traces.In Chapter 11, we will study fair structures as a speci�cation formalism for fairlanguages.The fair structure of a fair moduleEvery reactive module P de�nes the observation structure KP . The fair struc-ture of a fair module (P;WeakF P ;StrongFP ) is obtained from the observationstructure KP by adding all the fairness constraints corresponding to the decla-ration of weak and strong fair update choices.Fair structure of a fair moduleThe fair module P de�nes the fair structure KP = (KP ; FP).Observe that if P has only weak-fairness constraints, then the correspondingfair structure KP is also weakly fair.10.2 The Temporal Logic CtlWe specify requirements of fair modules using fair state logics. The formulas offair state logics are interpreted over the states of fair structures, and may referto the in�nite behavior of fair structures. The satisfaction relation of a fair statelogic de�nes, for each formula � and each fair �-structure K, the characteristicregion [[�]]K. We start by extending Stl to a fair state logic called Ctl.Remark 10.2 [State logics vs. Fair state logics] Every state logic is a fair statelogic. For every formula � of a state logic and a fair structure K = (K;F ), thecharacteristic regions [[�]]K and [[�]]K coincide. Every fair state logic is also astate logic: for a formula � of a fair state logic, an observation structure K, anda state s of K, s j=K � i� s j=(K;;) �.



Temporal Liveness Requirements 410.2.1 Syntax and Semantics of CtlThe fair state logic Ctl is obtained from the state logic Stl by adding theunary temporal connective possibly-always, written 92. Consider a state s of afair structure K, and let p be an observation predicate of K. The state s satis�esthe formula 92p if there is a source-s fair trajectory all of whose states satisfy p.In other words, the formula 92p asserts that it is possible to execute in�nitelymany rounds in a fair fashion so that p is satis�ed at every step.Computation tree logicThe formulas of Ctl are de�ned inductively by the grammar� ::= p j � _ � j :� j 9 � j 92� j �9U�for atomic formulas p. For a Ctl formula �, if K = (K;F ) is a fair �-structure, and s is a state of K, thens j=K 92� i� there is an source-s fair trajectory s of Ksuch that for all i � 0, si j=K �.The interpretation of the temporal connectives 9 and 9U is the same as in Stl:a state s satis�es the possibly-next formula 9 p if some successor of s satis�esp; a state s satis�es the possibly-until formula p 9U q if there exists a source-strajectory s0:::m such that sm satis�es q and si satis�es p for all 0 � i < m. Thetemporal connectives 8, 93, 82, and 8W are de�ned from 9 and 9U as inStl. In addition, we de�ne the following temporal connectives in Ctl:Inevitably 83� for :92:�;Inevitably-until  8U� for  8W� ^ 83�;Possibly-waiting-for  9W� for  9U� _ 92 .The modality 83 is the dual of 92: a state s of the fair structure K satis�esthe Ctl formula 83 p if every source-s fair !-trajectory contains a p-state.Exercise 10.2 fT2g [Inevitably-until connective] Let � and  be two Ctl for-mulas, let K be a (�;  )-structure, and let s be a state of K. Show thats j=K �8U  i� for all source-s fair !-trajectories s of K, there exists a po-sition m � 0 such that (1) sm j=K  and (2) for all 0 � i < m, si j=K �.Remark 10.3 [Fair emptiness] The fair-emptiness problem is a special case ofCtl model checking: for a fair structure K, the answer to the fair emptinessproblem K is Yes i� s j=K 92true for some initial state s of K.Response veri�cation problem is also a special case of Ctl veri�cation:



Temporal Liveness Requirements 5Proposition 10.2 [Response veri�cation in Ctl] Let P be a fair module andlet p and q be two observation predicates of P. Then, p;P q i� P j= 82(p !83 q).Remark 10.4 [Recurrence veri�cation] Recurrence veri�cation is also a specialcase of Ctl veri�cation: The observation predicate p is a recurrent of a fairstructure K if K j= 8283 p.Example 10.1 [Mutual exclusion] For a mutual-exclusion protocol with weakfairness, the deadlock-freedom requirement asserts that if a process requests thecritical section, then some process is eventually in the critical section:�df : 82((pc1 = reqC _ pc2 = reqC ) ! 83(pc1 = inC _ pc2 = inC ))The starvation-freedom requirement asserts that if a process requests the criticalsection, then that process eventually enters the critical section:�sf : 82((pc1 = reqC ! 83pc1 = inC ) ^ (pc2 = reqC ! 83pc2 = inC )):The fair module FairPete satis�es both �df and �sf . It also satis�es the strongeruntil-requirement:820@ (pc1 = reqC ! (pc1 = reqC )8U(pc1 = inC ))^(pc2 = reqC ! (pc2 = reqC )8U(pc2 = inC )) 1A :Exercise 10.3 fT2g [Ctl connectives] The Ctl formula � implies the Ctlformula  if [[�]]G � [[ ]]G for all fair (�;  )-structures G (i.e., the Ctl formula�!  is valid). Let p be an atomic state formula. Group the 16 Ctl formulasof the form Q1T1Q2T2 p, where Q1; Q2 2 f8; 9g and T1; T2 2 f2;3g, into eightpairs (�;  ) (any such grouping is �ne). Prove or disprove that � implies  foreach of your pairs.Exercise 10.4 fT3g [Interde�nability of temporal connectives] Assuming thata fair state logic contains the temporal connective 9U , show that each of theconnectives 92, 83, 8U , and 9W can be used to de�ne the remaining three.Every Stl formula is also a Ctl formula. For a Stl formula � and a fair struc-ture K = (K;F ), [[�]]K = [[�]]K . This implies that to check Stl speci�cations offair structures we can ignore the fairness constraints.



Temporal Liveness Requirements 6Remark 10.5 [Fair semantics of Stl] Note that while interpreting Stl formu-las over states of fair structures, we have retained the original semantics of Stlover observation structures. To account for the fairness constraints, suppose werede�ne the semantics of Stl over fair structures the following way. The state sof a fair structure K satis�es the possibly-until formula � 9U  if there exists asource-s fair trajectory s of K such that for some m � 0, sm j=K  and si j=K �for 0 � i < m. For machine-closed fair structures K, since every �nite trajectoryis a pre�x of some fair !-trajectory, this new de�nition of 9U coincides with theold de�nition.10.2.2 Ctl Model CheckingIn the model-checking problem for Ctl, we are given a Ctl formula � anda fair �-structure K. To compute the characteristic region [[�]]K , we proceedinductively on the structure of the formula �, by �rst �nding the characteristicregions for the subformulas of �. For this purpose, we �rst compute the the setSub(�) of subformulas of �. The function Sub is extended to include the newconnective 92:Sub(92 ) = f92 g [ Sub( ):The function OrderedSub is also rede�ned so that it accepts a Ctl formula � asinput, and returns a queue with the formulas in Sub(�) such that if  2 Sub(�)and � 2 Sub(�), then  precedes � in OrderedSub(�). As in case of Stl, theCtl formula � has at most j�j subformulas.For the enumerative algorithm, assume that the atomic formulas of � are propo-sitions, and the fair structure K is �nite. The algorithm computes, for each states of K, the set �(s) � Sub(�) of subformulas of � that are satis�ed by the state s.Initially, �(s) is empty for each state s. The algorithm considers each subfor-mula  , in the order given by OrderedSub(�), and decides, for every state s,whether s satis�es  , and updates �(s) accordingly (see Algorithm 5.1 for enu-merative Stl model checking). The structure of  leads to various cases. Thecases corresponding to propositions, logical connectives, and the temporal con-nectives 9 and 9U are handled as in the case of Stl. The case when  = 92�is reduced to the fair-region problem.The fair-region problemThe fair-region problem is to determine which states belong to the fair !-trajectories of a fair graph. Let G be a transition graph, and let F be a fairnessassumption for G. The F -fair region �F of G consists of precisely the states ssuch that there is a source-s F -fair !-trajectory of G.An instance of the fair-region problem is a fair graph (G;F ). The answerto the fair-region problem (G;F ) is the F -fair region �F of G.



Temporal Liveness Requirements 7Remark 10.6 [Fair-region problem vs. fair-emptiness problem] For a fair graphG, the answer to the fair-emptiness problem G is Yes i� �I \ �F is nonempty.For Ctl model checking, we need to construct the characteristic region [[92�]]Kfrom the characteristic region [[�]]K for the fair structureK = (�; �I ;!; A; hh�ii; F ).Let G� be the transition graph with the state space [[�]]K and the transition re-lation ! restricted to [[�]]K. The region [[92�]]K is precisely the answer to thefair-region problem (G�; F ).To solve the fair-region problem (G;F ), observe that a state s belongs to thefair region �F i� there exists a F -fair strongly connected component � of Gsuch that post�(s) \ � is nonempty. Thus,�F = [f� j � is a F -fair component of Gg: pre�(�):Hence, �F can be by �rst computing the F -fair strongly connected componentsof G using Algorithm 9.2, and then computing the region �F by a depth-�rstsearch. IfG has n states andm transitions, and F contains ` fairness constraints,then the overall time-complexity is O((n +m) � `2).Exercise 10.5 fP3g [Fair-region problem] Write an enumerative algorithm tosolve the fair-region problem G using an on-the-y representation of the fairgraph.Theorem 10.2 [Model checking of Ctl] Let K = (K;F ) be a fair structure,and let � be an Ctl formula. Suppose K has n states and m transitions, andF has ` fairness constraints. The model-checking problem (K; �) can be solvedin O((n+m) � `2 � j�j) time.The algorithms of Section 9.3 that employ nested depth-�rst search can be usedto solve the fair-region problem when the fairness assumption is of a restrictedform. When the fairness assumption F contains only weak constraints, theCtl model-checking problem ((K;F ); �) can be solved in in time linear in thenumber of fairness constraints.Theorem 10.3 [Model checking of Ctl for weak-fair structures] Let K =(K;F ) be a weak-fair structure, and let � be an Ctl formula. Suppose Khas n states and m transitions, and F has ` weak-fairness constraints. Themodel-checking problem (K; �) can be solved in O((n+m) � ` � j�j) time.In particular, the Ctl model-checking problem (K;�) can be solved in O((n+m) � j�j) time. Thus, the additional complexity of Ctl model checking over Stlmodel checking is not due to the introduction of 92 connective in the logic, butdue to the introduction of fairness constraints in the model.



Temporal Liveness Requirements 8To solve the Ctl-veri�cation problem (P ; �), for a �nite fair module P anda Ctl speci�cation �, we can �rst construct the fair structure KP , and thenemploy the model checking algorithm. As usual, since the structure KP may beexponentially larger than the module description, this results in an exponentialalgorithm. As in case of Stl, the Ctl veri�cation problem of determiningwhether a fair module satis�es a Ctl-formula is Pspace-complete.10.2.3 Compositionality and CtlAs in Stl, satisfaction of existential Ctl-formulas is not preserved under par-allel composition.Exercise 10.6 fT3g [Non-compositionality of Ctl] Give an example of a fairmodule P kQ and an observation predicate p such that the answer to the veri-�cation problem (P ; 92p) is Yes, while the answer to (P kQ; 92p) is No.As in case on Stl, if we restrict ourselves only to the universal formulas, then thecompositionality principle holds. Let 8Ctl be the fragment of Ctl generatedby the grammar� ::= p j :p j � ^ � j � _ � j 8 � j �8U� j 82�The logic 8Ctl is not closed under negation. The parallel composition operationon fair modules ensures that the projection of a fair trajectory of a compoundmodule onto the variables of a component is a fair trajectory of that component.This implies that the compositionality principle holds for 8Ctl.Proposition 10.3 [Compositionality for 8Ctl] If the fair module P satis�esthe 8Ctl-formula �, then for every fair module Q that is compatible with P,the compound fair module P kQ satis�es �.Exercise 10.7 fT3g [Compositionality of 8Ctl] Prove Proposition 10.3.10.3 The �-CalculusWe now introduce a state logic, called �-calculus , that is more expressive thanCtl. Before we present syntax and semantics of �-calculus, two points mustbe noted. First, comprehending �-calculus formulas requires considerable ex-pertise, and hence, it is not a convenient speci�cation language for writing re-quirements. On the other hand, its semantics immediately suggests a symbolicprocedure for model checking. The role of of �-calculus, then, is as an inter-mediate language which can be analyzed by symbolic algorithms. Second, thesyntax of �-calculus is expressive enough to specify fairness constraints. Conse-quently, we consider �-calculus as a state logic, and interpret its formulas overstates of observation structures.



Temporal Liveness Requirements 910.3.1 Syntax and semanticsIn �-calculus, properties are expressed as �xpoints of functions that map regionsto regions. As an example, consider the Stl-formula 93p. The characteristicregion [[93p]]K consists of all states of the observation structure K from whicha state satisfying p is reachable. Consider the function F93p that maps regionsof K to regions of K:F93p(�) = [[p]]K [ preK(�):Then, the region [[93 p]]K is the least �xpoint of the function F93p: it is thesmallest region � that contains [[p]]K as well as preK(�). The �-calculus formulacorresponding to 93p is �x: (p _ 9x). Here, the variable x ranges over regions,�x: is called the least �xpoint operator, and given a region �, 9 � denotes theregion containing states that have at least one successor in �.The dual of the least �xpoint operator is the greatest �xpoint operator �x: As anexample, the characteristic region [[82p]]K is the greatest �xpoint of the functionF82p that maps regions of K to regions of K:F82p(�) = [[p]]K \ fs j postK(s) � �g:The �-calculus formula corresponding to 82p is �x: (p ^ 8 x).�-calculus syntaxLet Var be a set of region variables. The formulas of the �-calculus (Ct�)are de�ned inductively by the grammar� ::= p j :p j �1 ^ �2 j �1 _ �2 j 9 � j 8 � j �x: � j �x: � j x;where p is an atomic formula and x 2 Var is a region variable.A Ct� formula of the form �x: � is called a �-formula, and a Ct� formula ofthe form �x: � is called a �-formula. A �-formula or a �-formula is also calleda �xpoint-formula. The �xpoint operator is like a quanti�er in �rst-order logic.Every occurrence of a region variable x in a formula is either free or bound, andif bound, has a unique �xpoint operator that binds it. The Ct� formula � isclosed if for all region variables x 2 Var, each occurrence of x in � is bound bya �xpoint operator. The Ct� formula � is open if it contains a free occurrenceof a region variable.The logic Ct� is a state logic, and its formulas are interpreted over states ofobservation structures. As in state logics, for a formula � of Ct�, a �-structureis an observation structure whose observations give interpretation to the atomicformulas appearing in �.



Temporal Liveness Requirements 10�-calculus semanticsLet K = (�; �I ;!; A; hh�ii) be an observation structure. A region environ-ment E assigns to each region variable x 2 Var a region � � �. Given astate s 2 � and a region environment E,s j=K;E p i� hhsii j= p;s j=K;E :p i� hhsii j= :p;s j=K;E �1 ^ �2 i� s j=K;E �1 and s j=K;E �2;s j=K;E �1 _ �2 i� s j=K;E �1 or s j=K;E �2;s j=K;E 9 � i� for some state t 2 postK(s), t j=K;E �;s j=K;E 8 � i� for all states t 2 postK(s), t j=K;E �;s j=K;E �x: � i� for all �xpoints � of Fx;�K;E, s 2 �s j=K;E �x: � i� for some �xpoint � of Fx;�K;E, s 2 �s j=K;E x i� s 2 E(x).The function Fx;�K;E maps regions to regions: for all regions � � � and allstates s 2 �,s 2 Fx;�K;E(�) i� s j=K;E[x:=�] �:From the following proposition it follows by the Knaster-Tarski �xpoint theoremthat the function Fx;�K;E has a least �xpoint as well as a greatest �xpoint.Proposition 10.4 [Monotonicity in �-calculus] Let � be a Ct� formula andlet E be a region environment. The function Fx;�K;E is monotonic; that is, � � �implies Fx;�K;E(�) � Fx;�K;E(�).Exercise 10.8 fT3g [Monotonicity in �-calculus] Prove Proposition 10.4.Remark 10.7 [Region environments in �-calculus] Let � be a Ct� formula. Iftwo region environments E and E0 agree on the values of the region variablesthat are free in �, then s j=K;E � i� s j=K;E0 �. In particular, for a closedformula �, in the de�nition of the satisfaction relation j=K;E, the value of E isnot important.A state s 2 � satis�es the closed Ct� formula �, written s j=K �, if s j=K;E �for all region environments E. For notational convenience, we admit regions asformulas of state logics: for all regions � � � and all states s 2 �, s j=K �i� s 2 �. Given a region environment E, a Ct� formula of the form �x: �, then,de�nes the least �xpoint of the function F�K;E : 2� ! 2� that maps each region� � � to the region [[�[x := �]]]K;E; that is,[[�x: �]]K;E = [�2O(F�K;E)�(;):



Temporal Liveness Requirements 11Exercise 10.9 fT4g [Continuity in �-calculus] A transition relation! is �nitelybranching i� every state has �nitely many successors. Let K be an observationstructure. (1) Prove that the function preK that maps regions ofK to regions ofK is T-continuous i� the transition relation ofK is �nitely branching. (2) Provethat the function Fx;�K;E is both S-continuous and T-continuous if the functionpreK is T-continuous. It follows that �nite branching of the transition relationis both a su�cient and necessary condition for continuity of the functions Fx;�K;E.If the transition relation of K is �nitely branching, then the function F�K;E isS-continuous (Exercise 10.9) and, by the Kleene �xpoint theorem,[[�x: �]]K;E = [i2N(F�K;E)i(;);that is, the characteristic region [[�x: �]]K;E is the limit of the in�nite approxi-mation sequence ;, F�K;E(;), F�K;E(F�K;E(;)), etc. We will use this observationto compute the characteristic regions of Ct� formulas. For example,[[�x: (p _ 9 x)]] = [[false ]] [ [[p]] [ [[9 p]] [ [[9 9 p]] [ � � �Similarly, a Ct� formula of the form �x: �, then, de�nes the greatest �xpointof the function F�K;E:[[�x: �]]K;E = \�2O(F�K;E)�(�):If the transition relation of K is �nitely branching, then the function F�K;E is T-continuous (Exercise 10.9) and the characteristic region [[�x: �]]K;E is the limitof the in�nite approximation sequence �, F�K;E(�), F�K;E(F�K;E(�)), etc. Forexample,[[�x: (p ^ 8 x)]] = [[true]] \ [[p]] \ [[8 p]] \ [[8 8 p]] \ � � �10.3.2 Expressive PowerAlternation depthFor a Ct� formula �, its nesting depth is the the length of the longest chainof �xpoint-subformulas of � that are nested in one another. The alternationdepth, on the other hand, is computed by counting the number of alternationsbetween �-formulas and �-formulas along chains of nested �xpoint-subformulas.The alternation depth is a better measure of the complexity of Ct� formulas.



Temporal Liveness Requirements 12Alternation depthThe alternation depth ad(�) of a Ct� formula � is de�ned inductively: If� is not a �xpoint-formula then,ad(�) = maxfad( ) j  is a �xpoint-subformula of �g;else if � = �x:  thenad(�) = maxf1; ad( ); 1 +maxfad(�) j � is open �-subformula of  gg;else if � = �x:  thenad(�) = maxf1; ad( ); 1 +maxfad(�) j � is open �-subformula of  gg:For every integer k � 0, the logic Ct�k consists of all Ct� formulas � withad(�) � k. The Ct� formula � is said to be alternation-free if ad(�) � 1,and the logic Ct�1 is called alternation-free �-calculus.Remark 10.8 [Alternation depth] Alternation depth of a Ct� formula � isthe maximum integer k � 0 such that there exists a sequence �1�2 : : : �k of�xpoint-formulas such that (1) �1 is a subformula of �, (2) for each 1 � j < k,the formula �j+1 is a subformula of �j , (3) for 2 � j � k, the �xpoint-formula�j is open, and (4) for each 1 � j < k, the types of �j and �j+1 are di�erent:�j is a �-formula i� �j+1 is a �-formula.Example 10.2 [Alternation depth] The de�nition of the alternation-depth isillustrated by the following examplesad(�x: p _ 9 x) = 1ad(�x: ((�y: p ^ 8 y) _ 9 x)) = 1ad(�x: (p ^ 9 �y: (q ^ 8 y _ 9 x)) = 1ad(�x: �y: ((p ^ x) _ 9 y)) = 2Note that the nesting depth of the �rst formula is 1, but for all the rest, thenesting depth is 2.Closure under negationWhile the syntax of the logic Ct� does not admit negation, it is e�ectivelyclosed under negation because every operator has its dual within the logic.Exercise 10.10 fT3g [Duality of least and greatest �xpoint operators] Let Bbe a boolean algebra and let F : B ! B be a monotonic function. We write �Ffor the least �xpoint of F and F:: for the function that maps each x 2 B to:F(:x). Prove that :�F:: is the greatest �xpoint of F .



Temporal Liveness Requirements 13Proposition 10.5 [Closure under negation] Let K be an observation structure,and let � be a closed Ct� formula. Then, there exists a Ct� formula  suchthat for every state s of K, s j= � i� s 6j=  . Furthermore, ad(�) = ad( ).Proof. The proof uses the fact that the logical connectives ^ and _ are dualsof each other, the temporal connectives 9 and 8 are duals of each other, andthe �xpoint operators � and � are duals of each other. Speci�cally, de�ne thefunction f that maps every Ct� formula to another Ct� formula. The functionf is de�ned inductively:f(p) = :p; f(:p) = p;f(�1 ^ �2) = f(�1) _ f(�2); f(�1 _ �2) = f(�1) ^ f(�2);f(9 �) = 8 f(�); f(8 �) = 9 f(�);f(�x: �) = �x: f(�); f(�x: �) = �x: f(�); f(x) = x.We prove that for every state s of an observation structure K, and a regionenvironment E, s j=K;E � i� s 6j=K;E f(�). This is proved by induction on thestructure of �.Remark 10.9 [Alternative de�nition of Ct� syntax] The syntax of Ct� canalternatively be de�ned by the following clauses: (1) every atomic formula isa Ct� formula, (2) every region variable is a Ct� formula, (3) if � is a Ct�formula, then so are :� and 9�, (4) if �1 and �2 are Ct� formulas then so is�1 _ �2, and (5) if � is a Ct� formula, and x is a region variable that is withinthe scope of an even number of negations in �, then �x: � is a Ct� formula.Alternation-free �-calculus is as expressive as CtlWe establish that every Ctl formula is equivalent to an alternation-free Ct�formula over observation structures.Proposition 10.6 [Fixpoint characterization of 93] Let K be an observationstructure, and let p be an observation predicate of K. Then, the characteristicregions [[93p]]K and [[�x: (p _ 9 x)]]K are identical.Proof. Consider the function F93p that maps regions of K to regions of K:F93p(�) = [[p]]K [ preK(�):Observe that the operator 9 of Ct� is same as the function pre , and hence,[[�x: (p _ 9 x)]]K is the least �xpoint of the function F93p. First, we showthat the characteristic region [[93p]]K is a �xpoint of the function F93p:[[93p]] , [[p]] [ pre([[93p]]):This is established from the de�nition of the Ctl operator 93. Second, weshow that the region [[93�]] is contained in all �xpoints of F93p: for all regions� � � and all states s 2 �,



Temporal Liveness Requirements 14if � = [[p]] [ pre(�) and s j= 93p, then s 2 �.So assume that � = [[p]] [ pre(�) and that there is a source-s trajectory s0::n ofK such that sn j= p. Then sn 2 �, and by backward induction on s0::n, si 2 �for all 0 � i � n.Exercise 10.11 fT2g [�-calculus vs. Ctl] Which Ctl formula is equivalentto the Ct� formula �x: 9 (x _ p)?Remark 10.10 [Fixpoint characterization of 93] Let � be a Ct� formula and be a Ctl formula. If � and  are equivalent, then so are the formulas�x: (� _ 9 x) and 93 .To obtain �xpoint characterization of the possibly-until connective 9U , observethe following equivalence:(� 9U  ) $  _ (� ^ (� 9U  ):A state satis�es (� 9U  ) if either it satis�es  , or it satis�es � and has asuccessor that is already known to satisfy (� 9U  ). This suggests that 9U canbe de�ned as a �-formula:Proposition 10.7 [Fixpoint characterization of 9U ] Let �1 and �2 be a Ct�formulas, and let  1 and  2 be Ctl formulas. If the formulas �1 and  1 areequivalent, and the formulas �2 and  2 are equivalent, then so are the formulas�x: (�2 _ (�1 ^ 9 x)) and  19U 2.Finally, let us consider the possibly-always connective 92. A state all of whosesuccessors do not satisfy p cannot satisfy 92p. A state all of whose successors areknown not to satisfy 92p cannot satisfy 92p. This suggests a characterizationof 92p as a greatest �xpoint: [[92p]] is the maximal region each of whose statessatis�es p and has at least one successor satisfying p.Proposition 10.8 [Fixpoint characterization of 92] Let � be a Ct� formulaand  be a Ctl formula. If � and  are equivalent, then so are the formulas�x: (� ^ 9 x) and 92 .Theorem 10.4 [From Ctl to Ct�] Every Ctl formula � is equivalent to analternation-free Ct� formula of length O(j�j).Exercise 10.12 fT4g [Correctness of translation fromCtl toCt�] Prove Propo-sitions 10.7 and 10.8, and then, prove Theorem 10.4 using Propositions 10.5,10.7 and 10.8.We can de�ne temporal operators in Ct�:



Temporal Liveness Requirements 1593� for �x: (� _ 9 x);�19U�2 for �x: (�2 _ (�1 ^ 9 x));92� for �x: (� ^ 9 x);83� for �x: (� _ 8 x);82� for �x: (� ^ 8 x);�18U�2 for �x: (�2 _ (�1 ^ 8 x)).Notice that the Ct� formula (�x: � _ 9x) is equivalent to true, and the Ct�formula (�x: � ^ 9 x) is equivalent to false .Distinguishing power of Ct�In Section 5.4 we established that bisimilarity is a fully abstract semantics forStl; that is, two bisimilar states satisfy the same set of Stl formulas, andif two states are not bisimilar then some Stl formula distinguishes betweenthem. Since (alternation-free) �-calculus is as expressive as Stl, it follows thatit can distinguish between states that are not bisimilar. Furthermore, �-calculuscannot distinguish between bisimilar states.Proposition 10.9 [Ct� abstraction] Bisimilarity is an abstract semantics forCt�.Exercise 10.13 fT4g [Ct� abstraction] Prove Proposition 10.9.Thus, the distinguishing powers of a variety of state logics, such as Stl, Stl,Ctl, Ct�, Ct�1, coincide, and all these logics are more distinguishing than thestructure logic Sal.Alternation-free Ct� is more expressive than CtlThe alternation-free �-calculus is more expressive than Ctl. There are at leasttwo types of properties that can be speci�ed in Ct�1, but not in Ctl. The�rst type concerns the inability of Ctl to count, while the second one concernsinability of Ctl to specify game-like properties.Proposition 10.10 [Ctl vs. Ct�1] Let p be a proposition. No Ctl formulais equivalent to the Ct�1 formula �x: (p ^ 8 8 x).Proof. The formula �x: (p ^ 88x) is satis�ed by a state s of an observationstructure K i� for every source-s !-trajectory s, si j= p for all even numbers i.Thus, the formula �x: (p ^ 8 8 x) is equivalent to the Sal formula �even(see proof of Theorem 6.2). We already know that no Stl formula is equivalentto �even . The same proof can be extended to establish that no Ctl formula isequivalent to �even .



Temporal Liveness Requirements 16Consider an observation structure K with three observations a, b, and c. Con-sider the following two-player game between a protagonist and an adversary.The positions of the game is described by a state of K. If the current position shas observation c, then the protagonist wins the game. Otherwise, the positionof the game is updated to some successor of s. If the observation of s is a, thenthe protagonist chooses the successor position, and if the observation of s is b,then the adversary chooses the successor position. Given an initial position, theprotagonist wins if it has a strategy to force the game to a state with observa-tion c. Thus, the described game is a standard and-or game, where states withobservations c are winning positions, states with observation a are or-positionsand states with observation b are and-positions. Let � be the set of winninginitial positions for the protagonist. To get a �xpoint characterization of �,observe that (1) all states with observation c belong to �, (2) for a state s withobservation a, if some successor of s is already known to be winning, then theprotagonist can win from s also, and (3) for a state s with observation b, if allsuccessors of s are already known to be winning, then the protagonist can winfrom s also. Thus, � is the smallest region that contains [[c]], [[a ^ 9 �]], and[[b ^ 8 �]]. Thus, the set of winning positions is described by the alternation-free formula �x: (c_(a^9x)_(b^8x)). It turns out that the set of winningpositions cannot be characterized using a Ctl formula.Proposition 10.11 [Ctl vs. Ct�1] Let p and q be propositions. No Ctlformula is equivalent to the Ct�1 formula �x: (q _ (p ^ 9x) _ (:p ^ 8x)).Fair region for a single B�uchiWe turn our attention to characterization of fair regions using �-calculus. Let(K;F ) be a fair structure. The fair region �F of K consists of states fromwhich there exists a F -fair !-trajectory. For now, let us assume that F containsa single B�uchi constraint speci�ed by the state predicate p. Thus, a state s ofK belongs to �F i� there exits a source-s !-trajectory that contains in�nitelymany states that satisfy p. We use the operator 23 to denote in�nite repetition:s j=K 923p i� there exists a source-s !-trajectory s of K such thatsi j=K p for in�nitely many positions i.The formula 923p can be expressed in Ct� using nested �xpoints: it is equiv-alent to the formula �x: �y: 9 ((x ^ p) _ y), which can also be written as�x: 93+(x ^ p). That is, [[923p]] is the maximal region � such that from everystate in �, some state in � \ [[p]] is reachable in one or more steps. The i-thapproximation in the computation of �x: 93+(x ^ p) contains all states fromwhich there exists a trajectory containing i states satisfying p:[[�x: 93+(x ^ p)]] = [[true]] \ [[93+p]] \ [[93+(p ^ 93+p)]] \ � � �



Temporal Liveness Requirements 17Proposition 10.12 [Fixpoint characterization of 923] The Ct� formula �x: �y: 9((x ^ p) _ y) is equivalent to 923p.Proof. Let K be an observation structure. Consider the function F923p thatmaps regions of K to regions of K:F923p(�) = pre+(� \ [[p]]):It su�ces to show that the region [[923p]] is the maximal �xpoint of the functionF923p. First, we show that [[923p]] is a �xpoint of F923p:[[923p]] , pre+([[923p]] \ [[p]]):To establish this, for all states s, there is a source-s p-fair trajectory i� thereexists a state t such that (i) t is reachable from s in one or more steps (i.e. s 2pre+(t)), (ii) t satis�es p, and (iii) there is a source-t p-fair trajectory. Second,we need to establish that every �xpoint of F923p is contained in [[923p]]: forall regions � and all states s,if � = pre+(� \ [[p]]) and s 2 � then s j= 923p.So assume that � = pre+(� \ [[p]]) and s 2 �. We construct an in�nite sequenceof states s0s1 : : : as follows. Let s0 = s. Given si 2 �, choose si+1 suchthat si+1 2 � and si+1 j= p and si+1 2 post+(si) (such a state exists since� = pre+(�\[[p]])). It follows that there exists a source-s !-trajectory containingin�nitely many states satisfying p.Exercise 10.14 fT2g [923 in �-calculus] Is the formula �x: 93(p ^ x) equiv-alent to 923p? Is the formula �x: 93(p ^ 9 x) equivalent to 923p?Exercise 10.15 fT2g [Fixpoint characterization of 92p in B�uchi structures]Let K = (K;F ) be a fair structure such that F contains a single B�uchi constraintspeci�ed by the predicate q. Write a Ct� formula � such that [[�]]K equals[[92p]]K. That is, s j=K � i� there is a source-s F -fair !-trajectory s withsi j= p for all i � 0.Exercise 10.16 fT3g [932 in �-calculus] Given a state s of an observationstructure K, and a state predicate p, de�ne s j=K 932p i� there exist a source-s !-trajectory s and an integer i � 0 such that sj j=K p for all j � i. WriteCt� formula that is equivalent to 932p.Now let us consider the case when the fairness assumption contains a singleweak-fairness constraint speci�ed by an action �. Suppose the action � is spec-i�ed by the action predicate p ^ q0; that is, s �!t i� s j= p and t j= q. We wishto characterize the fair region by a Ct� formula. A state s of K satis�es theCt� fromula �x: 93(p ^ 9 (q ^ x)) i� there is a source-s !-trajectory s such



Temporal Liveness Requirements 18that for in�nitely many positions i, si j= p and si+1 j= q, that is, i� there isa source-s �-fair trajectory. This leads to the characterization of fair regionswhen fairness contains a single weak constraint. In general, the action � will bespeci�ed using a disjunction _ 0 � i � k: pi ^ q0i: s �!t i� for some 0 � i � k,s j= pi and t j= qi.Proposition 10.13 [Single weak constraint in Ct�] Let K = (K;F ) be a fairstructure where F contains a single weak constraint �. Let p0; : : : pk and q0 : : : qkbe state predicates of K such that � = [[_ 0 � i � k: pi ^ q0i]]K . Then, the fairregion of K equals[[�x: 93 _ 0 � i � k: (pi ^ 9 (qi ^ x))]]K :Exercise 10.17 fT3g [Single weak constraint in �-calculus] Prove Proposition 10.13.Exercise 10.18 fT3g [Multiple B�uchi constraints] Consider a B�uchi structure(K;F ) where F contains k B�uchi constraints speci�ed by predicates p1; : : : pk.Show that the fair region is characterized by the Ct� formula�x: 93+(p1 ^ 93+(p2 ^ � � � ^ 93+(pk ^ x) � � �)):Consider a module P , and let a be an update choice of an atom U of P . Theavailability action availa of the choice a is be described by a predicate qavaila overreadXU [ awaitX 0U . The execution action execa of the choice a is described by apredicate qexeca over readXU [ awaitX 0U [ ctrX 0U . The weak-fairness constraintof � is, then, described by the predicate qexeca _ :qavaila . This predicate canbe rewritten to a form required by Proposition 10.13.Example 10.3 [Fairness constraints for mutual exclusion] Recall the fair mod-ule FairPete from Figure 8.5. The module has four weak-fairness constraintsspeci�ed by the choices �1, �1, �2, and �2. Let us just consider the choice �1The weak-fairness constraint corresponding to the update choice �1 is speci�edby the action exec�1 [ (! navail�1). The execution action exec�1 is speci�edby the predicate pc1 = inC ^ pc01 = outC , and the availability action avail�1is speci�ed by the predicate pc1 = inC . It follows that the fairness constraintcorresponding to the choice �1 is the disjunction(pc1 = inC ^ pc01 = outC ) _ (pc1 6= inC ):The corresponding fair region, then, is expressed by the Ct� formula�x: 93 [ (pc1 = inC ^ 9 (pc1 = outC ^ x)) _ (pc1 6= inC ^ 9 x) ]:



Temporal Liveness Requirements 19While the operator 923 is speci�able in Ct�2, it is not speci�able in Ctl.Proposition 10.14 [Ctl cannot express 923] There is no Ctl formula thatis equivalent to 923p.Proof. Suppose there is a Ctl formula � such that for every structure K,[[923p]]K equals [[�]]K . Suppose the length of � is k. Consider the observationstructure of Figure 10.1. States that satisfy the atomic formula p are labeledwith p. We �rst prove the following lemma.Lemma A. For every Ctl formula  , for all integers j j � 1 � i � j � k,si j=  i� sj j=  and ti j=  i� tj j=  .Proof of Lemma A. The proof is by induction on the structure of the formula . For 0 � i � k, all the states si satisfy the same atomic formulas, and sodo all the states ti. Hence, the lemma holds if  is an atomic formula. When = :�, or when  = �1 _ �2, the lemma follows from induction.Case  = 9 �. For 1 � i � k, si j=  i� ti�1 j= �, and ti j=  i� ti j= � orsi�1 j= �. For j j � 1 � i � j � k, i � 1 and j�j � i � 1 � j � 1 � k. Byinduction, ti�1 j= � i� tj�1 j= �; si�1 j= � i� sj�1 j= �; and ti j= � i� tj j= �.Case  = 92�. For 1 � i � k, ti j=  i� ti j= �, and si j=  i� si j= � andti�1 j= �. Now we can proceed as in the previous case.Case  = �19U�2. Left as an exercise.Corollary B. For every subformula  of �, sk j=  i� sk�1 j=  .The next lemma implies that sk j= � i� u j= �. This yields a contradiction,because sk 6j= 923p, but u j= 923p.Lemma C. For every subformula  of �, sk j=  i� u j=  , and tk j=  i�v j=  .Proof of Lemma C. The proof is by induction on the structure of the formula . When  is an atomic formula, the lemma is immediate as the states sk andu, and states tk and v have identical observations. When  = :�, or when = �1 _ �2, the lemma follows from induction.Case  = 8 �. sk j=  i� tk j= � i�, by induction, v j= � i� u j=  . tk j=  i� both tk and sk�1 satisfy � i�, by Corollary B, all of sk, tk, and sk�1 satisfy� i�, by induction, all of u, v, and sk�1 satisfy � i� v j=  .Case  = 92�. sk j=  i� both sk and tk satisfy � i�, by induction, both u andv satisfy � i� u j=  . tk j=  i� tk j= � i�, by induction, v j= � i� v j=  .Case  = �19U�2. Left as an exercise.
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Figure 10.1: 923 is not expressible in CtlExercise 10.19 fT4g [Alternation-free �-calculus cannot express 923] Provethat no formula of Ct�1 is equivalent to 923p.Remark 10.11 [Hierarchy of expressiveness] For every integer i � 0, the frag-ment Ct�i+1 is more expressive than the fragment Ct�i. Thus, the expressive-ness of Ct� strictly increases with increasing alternation depth.Specifying fair regionsNow we turn our attention to strong fairness constraints. Let F be a fairnessassumption for an observation structure K. Suppose each fairness constraintf 2 F is a Streett constraint de�ned by state predicates p and q: an !-trajectorys is f -fair i� if it is q-fair or not p-fair.Exercise 10.20 fT3g [Fixpoint characterization of single Streett constraint]Consider an observation structure K and two state predicates p and q of K.Show that a state s of K satis�es the Ct� formula 93(92:p _ 923q) i� thereexists a source-s (p; q)-fair trajectory of K.Exercise 10.20 suggests characterization of fair regions when the fairness as-sumption has a single fairness constraint. It can be generalized to multipleStreett constraints. Let F be a Streett assumption for an observation struc-ture K. Then, a state s belongs to the fair region of K i� there exists a statet 2 post�(s), a subset F 0 of F , and a source-t !-trajectory (1) that is q-fair forevery (p; q) 2 F 0, and (2) all of whose states satisfy :p for every (p; q) 2 FnF 0.This suggests a Ct� formula whose length is exponential in the number ofStreett constraints in F . However, a polynomial translation is possible.Proposition 10.15 [Emerson-Lei Fixpoint characterization of Streett assump-tion] Let K be an observation structure, and let F be a Streett assumption forK. Then, the fair region of (K;F ) is the characteristic region of the formula93 �x: ^(p; q) 2 F: [ 9 (x9U(q ^ x)) _ (:p ^ 9 x) ]:



Temporal Liveness Requirements 21Proof. Let K be an observation structure. Let F = f(:p1; q1); : : : (:pk ; qk)gbe a Streett assumption with k Streett constraints. An !-trajectory s is F -fairi� for 1 � i � k, either s is qi-fair or it has a su�x containing only pi-states.This requirement on the !-trajectory is expressed by the formula� = ^ 1 � i � k: (32pi _ 23qi):The fair region is characterized by the formula 9�. De�ne the formula�0 = ^ 1 � i � k: (2pi _ 23qi):An !-trajectory s satis�es �0 i� for 1 � i � k, either s is qi-fair or contains onlypi-states. A state s satis�es 9�0 i� there is source-s !-trajectory satisfying �0.The next two lemmas follow from the de�nitions of the formulas � and �0.Lemma A. [[939�0]] = [[9�]].Lemma B. [[939�]] = [[9�]].Now consider the function F that maps regions of K to regions of K:F(�) = ^ 1 � i � k: [ 9 (� 9U(qi ^ �)) _ (pi ^ 9 �) ]:Lemma C. If � is a �xpoint of F then � � [[9�]].Proof of Lemma C. Let � be a �xpoint of F . Consider s 2 �. We willconstruct a source-s !-trajectory that satis�es �. For every j � 0, we de�ne astate sj , and a �nite trajectory from sj to sj+1 containing only �-states. Lets0 = s 2 �. Consider sj in �. Let i be j mod k. Since � = F(�), sj satis�es9 (� 9U(qi ^ �)) or pi ^ 9 �. If sj satis�es 9 (� 9U(qi ^ �)), then thereexists a source-sj trajectory t0:::n with n > 0 containing only �-states such thattn j= qi. Choose sj+1 = tn. If sj does not satisfy 9 (� 9U(qi ^ �)), then itmust satisfy pi ^ 9 �, and choose sj+1 to be a successor of sj in �.Let t be the source-s !-trajectory obtained by concatenating the �nite trajec-tories from sj to sj+1 de�ned above. Every state in s belongs to �. We wishto establish that t satis�es �. Consider 1 � i � k. For every n � 0, if si+knsatis�es 9 (� 9U(qi ^ �)) then si+kn+1 satis�es qi. Suppose that there arein�nitely many n such that si+kn satis�es 9 (� 9U(qi ^ �)). Then, by con-struction, t is qi-fair. Otherwise, there exists n � 0 such that si+kn0 does notsatisfy 9 (� 9U(qi ^ �)) for n0 � n. Since every state in t satis�es �, it followsthat there exists n � 0 such that tn0 does not satisfy 9 (� 9U(qi ^ �)) forn0 � n. Since � is a �xpoint of F , it follows that tn0 satis�es pi ^ 9 �, andhence, t satis�es 32pi.Lemma D. [[9�0]] � F([[9�0]]).Proof of Lemma D. Consider a state s 2 [[9�0]]. There exists a source-s !-trajectory s such that for 1 � i � k, either s is qi-fair or contains only pi-states.



Temporal Liveness Requirements 22Every su�x of s satis�es �0, and hence, sj j= 9�0 for all j � 0. We wish toestablish that s satis�es F([[9�0]]). Consider 1 � i � k. We need to prove that ssatis�es either 9 ([[9�0]]9U(qi ^ [[9�0]])) or pi ^ 9 [[9�0]]. If s is qi-fair, then s1satis�es [[9�0]]9U(qi ^ [[9�0]]); otherwise s contains only pi-states, and s satis�espi ^ 9 [[9�0]].Now we proceed to show that 9� is equivalent to 93 �x:F(x). Suppose s j=93�x:F(x). By Lemma C, if a state satis�es �x:F(x) then it also satis�es 9�.Hence, s j= 939�. By Lemma A, s j= 9�. Conversely, suppose s j= 9�. ByLemma B, s j= 939�0. By Lemma D, [[9�0]] is contained in the maximla �xpointof F . Hence, s j= 93�x:F(x).Exercise 10.21 fT3g [Fixpoint characterization of fairness assumption] Con-sider a fair graph (K;F ). Every constraint is F is a pair of actions, and supposeevery action � is represented by state predicates p0; : : : pk and q0 : : : qk ofK suchthat � = [[_ 0 � i � k: pi ^ q0i]]K . Given this representation of actions, write aCt� formula that characterizes the faire region of (K;F ).Thus, the fair region of a fair graph can be characterized in �-calculus using for-mulas of alternation depth 2. To characterize the region [[92p]]K of fair structure,only a slight modi�cation is required. For instance, for a Streett assumption F ,the characteristic region [[92p]] equalsp 9U �x: p ^ ^(q; r) 2 F: [ 9 (x9U(r ^ x)) _ (:q ^ 9 x) ]:Theorem 10.5 [From Ctl over fair structures to Ct�] For every Ctl formula� and a fair structure K = (K;F ), there exists a formula  of Ct�2 such that[[�]]K = [[ ]]K and j j = O(j�j � jF j).Let a be an update choice of a module P . The strong-fairness constraint of ais the pair (availa; execa) of actions. After writing the two actions availa andexeca in the form stipulated by Exercise 10.21, we can write a Ct� formula thatcharacterizes the fair region of the fair module.10.3.3 Model checkingWe are given a closed Ct� formula � and �-structure K, we are required tocheck if all the initial states of K satisfy �. For this purpose, we compute thecharacteristic region [[�]]K . Assume that the fomula � has no name-conicts inthe use of region variables: every variable x is quanti�ed by a unique �xpointoperator.The characteristic region [[�]]K can be computed using a recursive function Eval .The table E stores, for every region variable x, a region E(x) ofK. The functionEval takes a formula  as an argument, and returns the set of states satisfying



Temporal Liveness Requirements 23 using the table E to evaluate free variables. If  is an atomic formula, thecomputation of Eval ( ) is immediate. If  is a conjunction of formulas, thenEval calls itself recursively on the conjuncts, and returns the intersection ofthe results. The case of disjunction is similar. When  equals 9 �, Evalcalls itself recursively on �, and returns the set of predecessors of the result.The evaluation of 8 � uses the fact that 9 and 8 are duals of each other:8 = :9 :.To evaluate a subformula �x: �, the minimal �xpoint is computed by evaluating� repeatedly. In the �rst iteration, E(x) is chosen to be the empty set, and ineach successive iteration, E(x) is chosen to be the value of Eval (�) from theprevious iteration. The �xpoint is reached when two consecutive iterations yieldthe same result. The number of iterations is bounded by the number of states inthe observation structure. The evaluation of �x: � is similar, but in this case, inthe �rst iteration, E(x) is chosen to be the set of all states. A naive implemen-tation of this recursive scheme would make the depth of recursion equal to thenesting depth of the formula, resulting in an algorithm with time complexityO(nk), where k is the nesting depth of the formula. Two improvements arepossible.First, every closed formula needs to be evaluated just once. For example, con-sider the formula �x:  , where � is a closed �xpoint subformula of  . The invo-cation Eval (�x:  ) results in repeated calls to Eval( ), and hence to Eval (�),each time with a di�erent value of E(x). However, � is a closed formula, andits value does not depend on E(x). Consequently, it needs to be evaluated onlyonce. For this purpose, we use a hash-table Done that stores the results ofevaluating closed formulas. Upon invocation, Eval checks if its input formulais closed, and if so, whether it has already been evaluated by consulting thehash-table.Second, consider the formula �x: �, where  = �y: � is a disjunct of �. Let �0be the empty set. The �rst iteration in Eval (�x: �) calls Eval (�) with E(x) =�0. This involves evaluation of the �xpoint formula  , which itself involves aniterative computation of � during which the region E(y) keeps growing. Let�0 = [[ ]] and �1 = [[�]] with E(x) = �0. If �0 is a strict subset of �1, thesecond iteration in Eval (�) calls Eval( ) with E(x) = �1. This would result inrepeated evaluation of � starting with E(y) to be the empty set until the valueof E(y) becomes stable. Let �1 = [[ ]] with E(x) = �1. However, due to themonotonicity property, �0 � �1. This implies that, instead of computing �1 asa �xpoint starting with E(y) as empty set, we can speed up the convergenceby choosing E(y) to be �0 in the �rst iteration. That is, there is no need toreinitialize E(y) from �0 to the empty set when E(x) is updated from �0 to �1.With this improved policy, Eval (�) is called only n times, rather than n2 times.The validity of this optimization is captured by the following proposition.



Temporal Liveness Requirements 24Proposition 10.16 [Optimization in Ct� model checking] Let K be an ob-servation structure with �nitely branching transition relation, and � be a Ct�formula. Let E and E0 be region environments such that for every region variabley that is free in �x: �, E(y) � E0(y). Then,[[�x: �]]E0 = [ i 2 N:(F�E0 )i([[�x: �]]E);and [[�x: �]]E = \ i 2 N:(F�E )i([[�x: �]]E0 ):Proof. We consider the case corresponding to the least �xpoints. Whenever afunction F is S-continuous, by Kleene �xpoint theorem, its least �xpoint canbe computed by repeatedly applying F to the minimal element{the empty set:�F = S i 2 N:F i (;). A slight generalization of the Kleene �xpoint theoremstates that the least �xpoint of F can be computed by repeatedly applying Fto any element that is smaller than the least �xpoint; that is, for any � � �F ,�F = S i 2 N:F i (�).If K has a �nitely branching transition relation, F�E0 is S-continuous. hence,[[�x: �]]E0 equals S i 2 N: (F�E0 )i(�) for any region � � [[�x: �]]E0 . It su�cesto show that [[�x: �]]E � [[�x: �]]E0 . This can be proved, by induction on thestructure of �, using the assumption that for every region variable y that is freein �x: �, E(y) � E0(y).The reinitialization is necessary only when there is a switch in the �xpoint quan-ti�ers. The resulting algorithm is shown in Figure 10.2. When Eval is invokedon a �xpoint subformula �x: �, the if the enclosing �xpoint subformula is a �-formula, then E(x), together with the variables corresponding to �-subformulasof � that have no enclosing �-subformula within �, are initialized to the emptyset. Otherwise, E(x) is left unchanged, and equals the value returned by theprevious invocation of Eval (�).The algorithm uses the following new operations:Closed? : form 7! B . Given a Ct� formula  , Closed?( ) returns true if  isclosed.Switch? : form� form 7! B . For Ct� formulas  and �, Switch?( ; �) returnstrue i� there exists a formula � di�erent from  such that (1)  is a �xpointsubformula of �, (2) � is a �xpoint subformula of �, (3) there is no formula�0 such that �0 is a �xpoint subformula of � and  is a subformula of �0,and (4) the �xpoint-types of  and � are di�erent.AtomEval . Given a atomic formula p and an observation structureK, AtomEval(p;K)returns the characteristic region [[p]]K .



Temporal Liveness Requirements 25Algorithm 10.1 [Symbolic Ct� model checking]Input: a closed Ct� formula �, and a �-structure K with a �nitely-branching transition relation.Output: the answer to the model-checking problem (K;�).local Done : table of form � region; E : table of var � region� := AtomEval (true;K);Done := EmptyTable ; E := EmptyTable ;if InitReg(K) � Eval (�) then return Yes else return No.function Evalinput  : formif Closed?( ) and Done[ ] 6=? then return Done[ ] �;case  = p for an atomic formula p: � := AtomEval(p;K)case  = :p for an atomic formula p: � := � nAtomEval(p;K)case  = �1 _ �2: � := Eval(�1) [ Eval (�2)case  = �1 ^ �2: � := Eval(�1) \ Eval (�2)case  = 9 �: � := PreReg(Eval(�);K)case  = 8 �: � := � n PreReg(� n Eval(�);K)case  = �x: �:if Switch?( ; �) or Closed?( ) then Initialize( ;mu) �;repeat � := E(x); E(x) := Eval (�) until � = E(x);case  = �x: �:if Switch?( ; �) or Closed?( ) then Initialize( ; nu) �;repeat � := E(x); E(x) := Eval (�) until � = E(x);case  = x: � := E(x);end caseif Closed?( ) then Done[ ] := �;return �end.function Initializeinput  : form; m : fmu; nugcase  = p for an atomic formula p:case  = :p for an atomic formula p:case  = �1 _ �2: Initialize(�1;m); Initialize(�2;m)case  = �1 ^ �2: Initialize(�1;m); Initialize(�2;m)case  = 9 �: Initialize(�;m)case  = 8 �: Initialize(�;m)case  = �x: �:if m = mu then E(x) := EmptySet ; Initialize(�;m) �case  = �x: �:if m = nu then E(x) := �; Initialize(�;m) �case  = x:end caseend. Figure 10.2: Symbolic Ct� model checking



Temporal Liveness Requirements 26Theorem 10.6 [Correctness of Ct� model checking] Given an observationstructureK with �nite bisimulation, and a closed Ct� formula �, Algorithm 10.1terminates with the correct answer to the model checking problem (K;�).Theorem 10.7 [Complexity of Ct� model checking] Let K be a �nite obser-vation structure with n states and m transitions, and let � be a closed Ct�formula with length ` and alternation-depth k. Algorithm 10.1 solves the modelchecking problem (K;�) in time O((` � (m+ n))k+1).If the input structure for Algorithm 10.1 is �nite, then all state predicates thatare computed by the algorithm can be viewed as propositional formulas. An im-plementation of symbolic Ct� model checking for �nite observation structures,then, may use BDDs. By Theorem 10.5, we can reduce the veri�cation problemfor Ctl over fair modules to the Ct� veri�cation problem. Consequently, wehave symbolic procedure for Ctl veri�cation.


