Complexity Theory Practice Problems

Problem 3.1. Show $A P S P A C E=E X P$.

Problem 3.2. Show that the language $\Sigma_{i} S A T$ definedin the book (5.2) is complete for Σ_{i}^{p} under polynomial-time reductions.

Problem 3.3. Define the class $D P$ as the set of languages L such that there are two languages $L_{1} \in N P, L_{2} \in \operatorname{coNP}$ such that $L=L_{1} \cap L_{2}$. Note that this is not $N P \cap \operatorname{coNP}$! Consider the problem

$$
S A T-U N S A T=\left\{\left\langle\phi_{1}, \phi_{2}\right\rangle \mid \phi_{1} \text { is satisfiable, } \phi_{2} \text { is unsatisfiable }\right\}
$$

Show that it is $D P$-complete under poly-time reductions. Show that EXACTINDSET is $D P$-complete under poly-time reductions.

Problem 3.4. By writing out the truth table, you can compute any function by a circuit of size at most $O\left(n 2^{n}\right)$. Here, we strengthen the result. First, show every function can be computed by a circuit of size $O\left(2^{n}\right)$ using Shannon's decomposition:

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \wedge f\left(1, x_{2}, \ldots, x_{n}\right) \vee \neg x_{1} \wedge f\left(0, x_{2}, \ldots, x_{n}\right)
$$

[Shannon] Every function $f:\{0,1\}^{n} \rightarrow 0,1$ can be computed by a circuit of size $O\left(2^{n} / n\right)$. [Hint: Apply the Shannon reduction k times (for a parameter k to be determined later) to get a representation
$f\left(x_{1}, \ldots, x_{n}\right)=g\left(h_{1}\left(x_{1}, \ldots, x_{n-k}\right), h_{2}\left(x_{1}, \ldots, x_{n-k}\right), \ldots, h_{2^{k}}\left(x_{1}, \ldots, x_{n-k}\right), x_{n-k+1}, \ldots, x_{n}\right)$
where $g\left(y_{1}, \ldots, y_{2^{k}}, x_{n-k+1}, \ldots, x_{n}\right)$ is a $\left(2^{k}+k\right)$-ary function that is computed by a circuit of size $O\left(2^{k}\right)$ and $h_{1}, \ldots, h_{2^{k}}$ are all $(n-k)$-ary Boolean functions. Suppose that there is a circuit H of size s and with 2^{k} outputs that computes all $h_{1}, \ldots, h_{2^{k}}$ simultaneously, then we can compute f by a circuit of size $s+O\left(2^{k}\right)$.
(1) Show that for each l, there is a circuit of size $O\left(2^{2^{l}}\right)$ with $2^{2^{l}}$ outputs which computes all l-ary Boolean functions simultaneously. (Use induction to assume such a circuit exists for $l-1$ and use Shannon's decomposition.)
(2) Pick k such that $2^{k}>2^{2^{n-k}}$. Show that this choice of k allows you to compute f with size $O\left(2^{n} / n\right)$.

Problem 3.5. We will prove that if $P=N P$ then there is a language in $E X P$ that requires circuits of size $2^{n} / n$.

First, show that $P=N P$ implies $E X P=E X P^{P H}$.
Second, use the ideas in Kannan's theorem to find a function of high complexity using $E X P^{\Sigma_{2}^{p}}$: the lexicographically first truth table of the function such that the function requires a circuit of size $2^{n} / n$.

Problem 3.6. Iterated addition takes as input $k n$-bit numbers and computes their sum. Show that iterated addition is in NC^{1}. Show that multiplication of two n-bit numbers is in NC^{1}.

Problem 3.7. Read the alternate proof of PARITY not being in AC^{0} using the switching lemma (Theorem 14.1 and its proof in the book.) (Nothing to submit for this problem!)

Problem 3.8. [Hard.] Describe a real number ρ such that given a random coin that comes up with "Heads" with probability ρ, a Turing machine can decide an undecidable language in polynomial time. [How will you recover the bits of ρ ?]

