Problem 1.1. Give an example of a function that is not time constructible. Define the analogous notion of space constructibility. Give an example of a function that is space constructible, and one that is not space constructible.

Problem 1.2. Consider an alternate notion of Turing machines which can delete the current symbol as well as insert a symbol in their tapes, in addition to only overwriting. Define carefully the transition function and the computation of such machines. Argue that for every $f:\{0,1\}^{*} \rightarrow 0,1^{*}$ and function $T: \mathbb{N} \rightarrow \mathbb{N}$, if f is computed by a delete- and insert-enabled TM in time $T(n)$, then it is computed by a "normal" TM in time at most $O\left(T(n)^{2}\right)$. (Assume for simplicity there is one working tape.)
Optional: Can you improve the running time of the "normal" TM by having a bigger alphabet? (Hint: Consider an extension of the alphabet by having an additional marked copy of each symbol in the original alphabet.)

Problem 1.3. Prove that the following languages are in P :

1. CONNECTED: The set of all connected graphs. That is, $G \in$ CONNECTED if there is a path between every two pair of vertices u and v.
2. TRIANGLE: The set of all graphs that contain a "triangle": vertices u, v, w with edges $(u, v),(v, w),(w, u)$.
3. Let
$\operatorname{MODEXP}=\left\{\langle a, b, c, p\rangle \mid a, b, c\right.$, and p are binary integers s.t. $\left.a^{b} \equiv c(\bmod p)\right\}$
(Note that the obvious algorithm does not run in polynomial time. Hint: Try it first where b is a power of 2.)

You can give a short description or pseudocode for the algorithm. Do not give a Turing machine!

Problem 1.4. Show that P and NP are closed under union and intersection: given L_{1} and L_{2} in P (respectively, NP), the languages $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also in P (respectively, NP).

Problem 1.5. Show that P and NP are closed under concatenation: given L_{1} and L_{2} in P (respectively, NP), the language $L_{1} \cdot L_{2}=\{w \mid \exists u, v$: $w=u \cdot v$ and $\left.u \in L_{1}, v \in L_{2}\right\}$ is also in P (respectively, NP).

Problem 1.6. Show the following languages are NP-complete:
1.

HALFCLIQUE $=\{G \mid G$ is an undirected graph having a clique of at least $n / 2$ nodes, where n is the number of nodes of G\}.
2. $\operatorname{LPATH}=\{\langle G, s, t, k\rangle \mid$ graph G contains a simple path from s to t of length at least $k\}$.

3 . Would your answer to (2) change if k is given in unary?
Remember to show two properties: the language belongs to NP and that it is NP-hard. You may take any language shown to be NP-hard in class or in Arora-Barak as a starting point for a reduction.

Problem 1.7. Let

$$
\begin{aligned}
C N F_{k}= & \{\varphi \mid \varphi \text { is a satisfiable cnf-formula } \\
& \quad \text { where each clause has at most } k \text { variables }\} .
\end{aligned}
$$

Show that $C N F_{2}$ is in P and CNF_{3} is NP-complete.
Problem 1.8. Show that if $\mathrm{P}=\mathrm{NP}$, then there is a polynomial time algorithm that takes a graph as input and finds a largest clique contained in that graph.

Problem 1.9. Look up an example of an NP-complete problem on the web that is not described in Arora-Barak's textbook in Chapter 2 (not even in the exercises). State the problem you have found.

