
Complexity Theory (Winter 2017/18) Problem Set #1 (Due 20.11.2017)

Problem 1.1. Give an example of a function that is not time con-
structible. Define the analogous notion of space constructibility. Give an
example of a function that is space constructible, and one that is not space
constructible.

Problem 1.2. Consider an alternate notion of Turing machines which
can delete the current symbol as well as insert a symbol in their tapes, in
addition to only overwriting. Define carefully the transition function and
the computation of such machines. Argue that for every f : {0, 1}∗ → 0, 1∗

and function T : N → N, if f is computed by a delete- and insert-enabled
TM in time T (n), then it is computed by a “normal” TM in time at most
O(T (n)2). (Assume for simplicity there is one working tape.)
Optional: Can you improve the running time of the “normal” TM by
having a bigger alphabet? (Hint: Consider an extension of the alphabet by
having an additional marked copy of each symbol in the original alphabet.)

Problem 1.3. Prove that the following languages are in P:

1. CONNECTED: The set of all connected graphs. That is, G ∈ CONNECTED
if there is a path between every two pair of vertices u and v.

2. TRIANGLE: The set of all graphs that contain a “triangle”: vertices
u, v, w with edges (u, v), (v, w), (w, u).

3. Let

MODEXP = {〈a, b, c, p〉 | a, b, c, and p are binary integers s.t. ab ≡ c(mod p)}

(Note that the obvious algorithm does not run in polynomial time.
Hint: Try it first where b is a power of 2.)

You can give a short description or pseudocode for the algorithm. Do
not give a Turing machine!

Problem 1.4. Show that P and NP are closed under union and intersec-
tion: given L1 and L2 in P (respectively, NP), the languages L1 ∪ L2 and
L1 ∩ L2 are also in P (respectively, NP).

Problem 1.5. Show that P and NP are closed under concatenation:
given L1 and L2 in P (respectively, NP), the language L1 · L2 = {w | ∃u, v :
w = u · v and u ∈ L1, v ∈ L2} is also in P (respectively, NP).

Problem 1.6. Show the following languages are NP-complete:

1.

HALFCLIQUE = {G |G is an undirected graph having a clique of at least n/2 nodes,

where n is the number of nodes of G}.

2. LPATH = {〈G, s, t, k〉 | graph G contains a simple path from s to t of length at least k}.

3. Would your answer to (2) change if k is given in unary?

Remember to show two properties: the language belongs to NP and that it
is NP-hard. You may take any language shown to be NP-hard in class or in
Arora-Barak as a starting point for a reduction.

Problem 1.7. Let

CNF k = {ϕ |ϕ is a satisfiable cnf-formula

where each clause has at most k variables}.

Show that CNF 2 is in P and CNF 3 is NP-complete.

Problem 1.8. Show that if P = NP, then there is a polynomial time
algorithm that takes a graph as input and finds a largest clique contained
in that graph.

Problem 1.9. Look up an example of an NP-complete problem on the
web that is not described in Arora-Barak’s textbook in Chapter 2 (not even
in the exercises). State the problem you have found.

