
Solution of Tutorial 3
Kaushik Mallik

Email: kmallik@mpi-sws.org

Answer 1. (a) APSPACE ⊆ EXP. This direction is trivial. Any alternating TM which uses polyno-

mial space can be simulated by a DTM running in exponential time.

(b) EXP ⊆ APSPACE. Let L ∈ EXP. Then there is a DTM M which runs in time O(2n
c

), for

some constant c, to decide L. Consider the configuration graph GM,x of M on input x. The machine

accepts x if there is a path from the initial configuration to the accepting configuration of length 2n
c

. Such

a path exists if and only if there exists configurations C1, . . . , C2nc−1 s.t. for all i ∈ [2n
c−1], Ci+1 takes

at most 2n
c−1 steps from Ci. This quantification alternation can be can be realized by an alternating

TM D. Since space can be reused, D just needs to keep track of the last configuration visited and to

keep a counter. Similar to Cook-Levin theorem, each configuration can be represented by encoding the

contents local to the tape head. Hence, D can be simulated to use only polynomial space.

Answer 2. First, it will be shown that any arbitrary language in Σp
i can be reduced in polynomial time

to ΣiSAT. Let L ∈ Σp
i be any arbitrary language. Then by definition, there is a polynomial time TM

M and a polynomial q s.t.

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|).∀u2 ∈ {0, 1}q(|x|) . . . Qiui ∈ {0, 1}q(|x|).M(x, u1, u2, . . . , ui) = 1.

Following similar construction as in the proof of Cook-Levin theorem, one can use the configuration

graph of the TM M , subjected to the input 〈x, u1, u2, . . . , ui〉, to create a formula ϕ s.t. M accepts

the input if and only if ϕ is satisfiable (i.e. ϕ ∈ SAT). It is known that this reduction can be done in

polynomial time.

Furthermore, from the definion of ΣiSAT, it is easy to see that ΣiSAT is itself in Σp
i . Hence ΣiSAT

is Σp
i -complete.

Answer 3. (a) First, it will be shown that any language in DP is reduced to SAT − UNSAT in

polynomial time. Let L ∈ DP. Then by definition, there exist two languages L1 ∈ NP and L2 ∈ coNP

s.t. the following holds:

x ∈ L⇔ x ∈ L1 ∧ x ∈ L2. (1)

Using Cook-Levin theorem, one can reduce L1 and L2, subjected to input x, to SAT and UNSAT (by

reducing L2 to SAT instance) instances in polynomial time; let φ1 and φ2 represent the corresponding

boolean formulae respectively. Then we can say that

x ∈ L⇔ φ1 ∈ SAT ∧ φ2 ∈ UNSAT,

which by definition is an instance of the language SAT−UNSAT.

Moreover, SAT−UNSAT is itself in DP by definition. Hence SAT−UNSAT is DP-complete under

ploynomial time reduction.

(b) To prove that EXACT − INDSET is DP-complete, we use the property that INDSET is

1

NP-complete. Following is the definition of INDSET and INDSET :

INDSET = {〈G, k〉 | Graph G has an independent set of size ≥ k}
INDSET = {〈G, k〉 | Graph G does not have an independent set of size ≥ k}

Then the language EXACT − INDSET can be defined as:

EXACT − INDSET = {〈G, k〉 | 〈G, k〉 ∈ INDSET ∧ 〈G, k + 1〉 ∈ INDSET}.

Now any language which is in DP has two associated languages in NP and coNP respectively (as in

Eqn. (1)). Since INDSET is NP-complete and consequently INDSET is coNP-complete, hence L1

and L2 reduces in polynomial time to INDSET and INDSET respectively. Hence EXACT−INDSET
is DP-hard.

Moreover, since INDSET and INDSET are themselves in NP and coNP, hence EXACT −
INDSET is in DP itself. Hence completeness is proven.

Answer 4. (a) First it will be shown that using Shannon’s decomposition, every n-ary function can be

computed using a circuit of size O(2n). Fig. 1 shows the circuit in the form of a tree. Note that the ∧
and ∨ gates are located at interleaving depths. We can simply count the number of gates by observing

the tree:

Figure 1: Circuit realizing a function f using Shannon’s decomposition

The total number of ∧ gates in the circuit =

21 + 22 + . . .+ 2n =
2× 2n+1 − 2

2− 1
= 2n+2 − 2.

Total number of ∨ gates =

20 + 21 + . . .+ 2n =
1× 2n+1 − 1

2− 1
= 2n+1 − 1.

Total number of ¬ gates = n. Hence, size of the circuit = 2n+2 + 2n+1 + n− 3 = O(2n).

(b) Now the second part will be proved, i.e. every n-ary function can be realized by a circuit of size

O(2n/n).

1. Claim 1. For each l, there is a circuit of size O(22
l

) with 22
l

outputs which computes all l-ary

Boolean functions simultaneously.

2

Proof. The claim will be proved by induction.

Base case: i = 1. There are four possible functions of the form {0, 1} → {0, 1}, as in the following:

f1(x1) = 0 f2(x1) = 1

f3(x1) = x1 f4(x1) = ¬x1

These functions can be simultaneously realized by a circuit with four outputs and just one ¬ gate.

Hence the Claim holds for i = 1. Inductive step: let, the Claim holds for i = l. It will be shown

that the Claim will hold for i = l + 1 as well.

Given an (l + 1)-ary function f(x1, . . . , xl+1), we can use Shannon’s decomposition:

f(x1, . . . , xl+1) = x1 ∧ f(1, x2, . . . , xl+1) ∨ ¬x1 ∧ f(0, x2, . . . , xl+1)

= x1 ∧ g(x2, . . . , xl+1) ∨ ¬x1 ∧ g(x2, . . . , xl+1).

g being an l-ary function, by induction hypothesis, there exists a O(22
l

) size circuit C which outputs

simultaneously the 22
l

possible forms of g. Using C as a building block, we can realize f by a circuit

of size
(
O
(

22
l
))2

+ 1 = O
(

22
l+1
)

+ 1 = O
(

22
l+1
)

.

2. Next, it will be shown that for a choice of k s.t. 2k > 22
n−k

, f can be computed using a circuit of size

s = O(2n/n). Set l = log2(k). Then by Claim 1, there is a circuit of size O(22
l

) = O(22
log2(k)

) =

O(2k) which computes all l-ary functions and produces 2k outputs simultaneously. This circuit

may be used to compute the functions h1, . . . , h2k simulataneously, provided the number of inputs

l is greater than n−k to accomodate all the (n−k) inputs of h1, . . . , h2k . But this condition holds

always because of the choice of k: 2k > 22
n−k ⇒ k > 2n−k ⇒ l > n− k.

We will find an optimum k for attaining minimum circuit complexity. Consider the following

derivation:

l > n− k
⇒ k > n− l
⇒ k > n− log2(k)

> n− log2(n) (2)

where the last inequality comes from k < n⇒ log2(k) < log2(n).

Now let us compute the total size of the resulting circuit. This is given by

s+O(2k) = O(2k) +O(2k) = O(2k).

Then by Inq (2), the minimum complexity for optimum choice of k is given by

O
(

2n−log2(n)
)

= O

(
2n

2log2(n)

)
= O

(
2n

n

)
.

Answer 5. P = NP implies PH = P. Since P ⊂ EXP, hence using P as oracle does not add any

extra power to the class EXP; the querries to the oracle P can be simulated by the TM (running in

exponential time) itself with no extra overhead. Hence, EXP = EXPP = EXPPH .

3

–Incomplete–

Answer 6. Claim: Iterated addition is in NC1.

Proof. Given k n-bit numbers a1, . . . , ak, one can successiely use the constant depth circuit for addition

to create a logarithmic depth (O(log(k × n))) circuit as follows:

k∑

i=1

ai = ((a1 + a2) + (a3 + a4)) . . . ((ak−3 + ak−2) + (ak−1 + ak))

Hence iterated addition is in NC1.

Claim: multiplication of two n-bit numbers is in NC1.

Proof. Given two n-bit numbers a, b, multiplication can be implemented with the help of iterated addition

as in the following:

a× b =

n∑

i=1

a× bi × 2i

Each term (a × bi × 2i) can be realized using constant depth circuit, and the sum can be implemented

using logarithmic depth circuit.

Answer 7. Consider the following undecidable language:

L := {1k | binary representation of k represents an encoding < M,x > s.t. the TM M halts on input x}.

Think of a real number ρ ∈ [0, 1] as an advice string for a PTM N, s.t. the k-th bit of the binary

representation of ρ is 1 iff 1k ∈ L. However the exact value of ρ is unknown to the PTM N, which only

has access to a biased coin coming up with head with probability ρ. The question is then given input

1k, how to recover the k-th bit of ρ by repeatedly tossing the coin.

The question appeared in previous year’s homework problem set, and the following solution was

presented by Oliver Bachtler:

L = {1k |Mk halts on input 1k} is undecidable. Let

ρ :=

∞∑

k=1

2−2k +

∞∑

k=1

bk2−2k+1 ∈ [0, 1].

Note that the last part is true, because the right hand side is less than or equal to
∑∞

i=0 2−i−1 = 2−1 = 1

and as such it is bounded from above and is monotone increasing, hence it converges.

4

Let M be a PTM that can flip a coin with a chance of ρ to land on heads. We
claim that M can decide L, but before we describe how M works we make one
observation.
Let Xn be the random variable that counts the number of times heads comes up
in n flips of the ρ-biased coin. Then E[Xn] = nρ and V ar[Xn] = nρ(1− ρ). By the
Chebyshev’s inequality (or however you want to spell it) we get

P

[∣∣∣∣
Xn

n
− ρ
∣∣∣∣ ≥ ε

]
= P [|Xn − nρ| ≥ nε] ≤

nρ(1− ρ)

n2ε2
=
ρ(1− ρ)

nε2
.

This gives us that

P

[∣∣∣∣
Xn

n
− ρ
∣∣∣∣ < ε

]
≥ 1− ρ(1− ρ)

nε2
. (1)

We make use of this as follows: On input 1k M flips n = ρ(1−ρ)
ε2 · 3 coins, where

ε = 2−2k. If, as before, Xn is the amount of times heads is flipped then M returns
the (2k − 1)-st bit of Xn

n (to be precise, the (2k − 1) − st bit after the comma).
Plugging our values for n and ε into (1), we get

P

[∣∣∣∣
Xn

n
− ρ
∣∣∣∣ < ε

]
≥ 1− 1

3
=

2

3
. (2)

Now let us make sure this does the trick.
Case 1 L(x) = 1: Let X be a number such that the (2k − 1) − st bit is 0. Let x′

correspond to ρ on the first 2k− 2 bits followed by only ones and ρ′ corresponds to
ρ on the first 2k bits, followed by only zeroes. This gives us that x ≤ x′ ≤ ρ′ ≤ ρ
and consequently we get

|x− ρ| ≥ |x′ − ρ′| = 2−2k+1 −
∞∑

i=1

2−(2k+i) = 2−2k. (3)

Using x = Xn

n in (3) together with the fact that the (2k − 1)-st bit of ρ is one we
get ∣∣∣∣

Xn

n
− ρ
∣∣∣∣ < 2−2k ⇒ (2k − 1)-st bit of

Xn

n
is one. (4)

After gathering together all the necessary parts, it is time to check the actually
required property:

Pr[M(x) = 1] = Pr

[
(2k − 1)-st bit of

Xn

n
is 1

]

(4)

≥ Pr

[∣∣∣∣
Xn

n
− ρ
∣∣∣∣ < 2−2k

]

(2)

≥ 2

3
.

Case 2 L(x) = 0: This case works analogously. In the same way as above we get
∣∣∣∣
Xn

n
− ρ
∣∣∣∣ < 2−2k ⇒ (2k − 1)-st bit of

Xn

n
is zero (5)

and again

Pr[M(x) = 0] = Pr

[
(2k − 1)-st bit of

Xn

n
is 0

]

(5)

≥ Pr

[∣∣∣∣
Xn

n
− ρ
∣∣∣∣ < 2−2k

]

(2)

≥ 2

3
.

4

This covers both cases and shows that M in fact computes L.

6

