Solution of Tutorial 3
 Kaushik Mallik
 Email: kmallik@mpi-sws.org

Answer 1. (a) APSPACE \subseteq EXP. This direction is trivial. Any alternating TM which uses polynomial space can be simulated by a DTM running in exponential time.
(b) EXP \subseteq APSPACE. Let $L \in \mathbf{E X P}$. Then there is a DTM M which runs in time $O\left(2^{n^{c}}\right)$, for some constant c, to decide L. Consider the configuration graph $G_{M, x}$ of M on input x. The machine accepts x if there is a path from the initial configuration to the accepting configuration of length $2^{n^{c}}$. Such a path exists if and only if there exists configurations $C_{1}, \ldots, C_{2^{n^{c}-1}}$ s.t. for all $i \in\left[2^{n^{c}-1}\right], C_{i+1}$ takes at most $2^{n^{c}-1}$ steps from C_{i}. This quantification alternation can be can be realized by an alternating TM D. Since space can be reused, D just needs to keep track of the last configuration visited and to keep a counter. Similar to Cook-Levin theorem, each configuration can be represented by encoding the contents local to the tape head. Hence, D can be simulated to use only polynomial space.

Answer 2. First, it will be shown that any arbitrary language in Σ_{i}^{p} can be reduced in polynomial time to Σ_{i} SAT. Let $L \in \Sigma_{i}^{p}$ be any arbitrary language. Then by definition, there is a polynomial time TM M and a polynomial q s.t.

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\}^{q(|x|)} \cdot \forall u_{2} \in\{0,1\}^{q(|x|)} \ldots Q_{i} u_{i} \in\{0,1\}^{q(|x|)} \cdot M\left(x, u_{1}, u_{2}, \ldots, u_{i}\right)=1
$$

Following similar construction as in the proof of Cook-Levin theorem, one can use the configuration graph of the TM M, subjected to the input $\left\langle x, u_{1}, u_{2}, \ldots, u_{i}\right\rangle$, to create a formula φ s.t. M accepts the input if and only if φ is satisfiable (i.e. $\varphi \in \mathrm{SAT}$). It is known that this reduction can be done in polynomial time.

Furthermore, from the definion of $\Sigma_{i} \mathrm{SAT}$, it is easy to see that $\Sigma_{i} \mathrm{SAT}$ is itself in Σ_{i}^{p}. Hence Σ_{i} SAT is Σ_{i}^{p}-complete.

Answer 3. (a) First, it will be shown that any language in DP is reduced to $S A T-U N S A T$ in polynomial time. Let $L \in \mathbf{D P}$. Then by definition, there exist two languages $L_{1} \in \mathbf{N P}$ and $L_{2} \in \mathbf{c o N P}$ s.t. the following holds:

$$
\begin{equation*}
x \in L \Leftrightarrow x \in L_{1} \wedge x \in L_{2} . \tag{1}
\end{equation*}
$$

Using Cook-Levin theorem, one can reduce L_{1} and L_{2}, subjected to input x, to SAT and UNSAT (by reducing $\overline{L_{2}}$ to SAT instance) instances in polynomial time; let ϕ_{1} and ϕ_{2} represent the corresponding boolean formulae respectively. Then we can say that

$$
x \in L \Leftrightarrow \phi_{1} \in \operatorname{SAT} \wedge \phi_{2} \in \mathrm{UNSAT},
$$

which by definition is an instance of the language SAT - UNSAT.
Moreover, SAT - UNSAT is itself in DP by definition. Hence SAT - UNSAT is DP-complete under ploynomial time reduction.
(b) To prove that EXACT - INDSET is DP-complete, we use the property that INDSET is

NP-complete. Following is the definition of INDSET and $\overline{I N D S E T}$:

$$
\begin{aligned}
& I N D S E T=\{\langle G, k\rangle \mid \text { Graph } G \text { has an independent set of size } \geq k\} \\
& \overline{I N D S E T}=\{\langle G, k\rangle \mid \text { Graph } G \text { does not have an independent set of size } \geq k\}
\end{aligned}
$$

Then the language $E X A C T-I N D S E T$ can be defined as:

$$
E X A C T-I N D S E T=\{\langle G, k\rangle \mid\langle G, k\rangle \in I N D S E T \wedge\langle G, k+1\rangle \in \overline{I N D S E T}\} .
$$

Now any language which is in DP has two associated languages in NP and coNP respectively (as in Eqn. (1)). Since $I N D S E T$ is NP-complete and consequently $\overline{I N D S E T}$ is coNP-complete, hence L_{1} and L_{2} reduces in polynomial time to $I N D S E T$ and $\overline{I N D S E T}$ respectively. Hence EXACT-INDSET is DP-hard.

Moreover, since $I N D S E T$ and $\overline{I N D S E T}$ are themselves in NP and coNP, hence EXACT $I N D S E T$ is in DP itself. Hence completeness is proven.

Answer 4. (a) First it will be shown that using Shannon's decomposition, every n-ary function can be computed using a circuit of size $O\left(2^{n}\right)$. Fig. 1 shows the circuit in the form of a tree. Note that the \wedge and \vee gates are located at interleaving depths. We can simply count the number of gates by observing the tree:

Figure 1: Circuit realizing a function f using Shannon's decomposition

The total number of \wedge gates in the circuit $=$

$$
2^{1}+2^{2}+\ldots+2^{n}=\frac{2 \times 2^{n+1}-2}{2-1}=2^{n+2}-2
$$

Total number of \vee gates $=$

$$
2^{0}+2^{1}+\ldots+2^{n}=\frac{1 \times 2^{n+1}-1}{2-1}=2^{n+1}-1
$$

Total number of \neg gates $=n$. Hence, size of the circuit $=2^{n+2}+2^{n+1}+n-3=O\left(2^{n}\right)$.
(b) Now the second part will be proved, i.e. every n-ary function can be realized by a circuit of size $O\left(2^{n} / n\right)$.

1. Claim 1. For each l, there is a circuit of size $O\left(2^{2^{l}}\right)$ with $2^{2^{l}}$ outputs which computes all l-ary Boolean functions simultaneously.

Proof. The claim will be proved by induction.
Base case: $i=1$. There are four possible functions of the form $\{0,1\} \rightarrow\{0,1\}$, as in the following:

$$
\begin{array}{ll}
f_{1}\left(x_{1}\right)=0 & f_{2}\left(x_{1}\right)=1 \\
f_{3}\left(x_{1}\right)=x_{1} & f_{4}\left(x_{1}\right)=\neg x_{1}
\end{array}
$$

These functions can be simultaneously realized by a circuit with four outputs and just one \neg gate. Hence the Claim holds for $i=1$. Inductive step: let, the Claim holds for $i=l$. It will be shown that the Claim will hold for $i=l+1$ as well.
Given an $(l+1)$-ary function $f\left(x_{1}, \ldots, x_{l+1}\right)$, we can use Shannon's decomposition:

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{l+1}\right) & =x_{1} \wedge f\left(1, x_{2}, \ldots, x_{l+1}\right) \vee \neg x_{1} \wedge f\left(0, x_{2}, \ldots, x_{l+1}\right) \\
& =x_{1} \wedge g\left(x_{2}, \ldots, x_{l+1}\right) \vee \neg x_{1} \wedge g\left(x_{2}, \ldots, x_{l+1}\right)
\end{aligned}
$$

g being an l-ary function, by induction hypothesis, there exists a $O\left(2^{2^{l}}\right)$ size circuit C which outputs simultaneously the $2^{2^{l}}$ possible forms of g. Using C as a building block, we can realize f by a circuit of size $\left(O\left(2^{2^{l}}\right)\right)^{2}+1=O\left(2^{2^{l+1}}\right)+1=O\left(2^{2^{l+1}}\right)$.
2. Next, it will be shown that for a choice of k s.t. $2^{k}>2^{2^{n-k}}, f$ can be computed using a circuit of size $s=O\left(2^{n} / n\right)$. Set $l=\log _{2}(k)$. Then by Claim 1, there is a circuit of size $O\left(2^{2^{l}}\right)=O\left(2^{2^{\log _{2}(k)}}\right)=$ $O\left(2^{k}\right)$ which computes all l-ary functions and produces 2^{k} outputs simultaneously. This circuit may be used to compute the functions $h_{1}, \ldots, h_{2^{k}}$ simulataneously, provided the number of inputs l is greater than $n-k$ to accomodate all the $(n-k)$ inputs of $h_{1}, \ldots, h_{2^{k}}$. But this condition holds always because of the choice of $k: 2^{k}>2^{2^{n-k}} \Rightarrow k>2^{n-k} \Rightarrow l>n-k$.
We will find an optimum k for attaining minimum circuit complexity. Consider the following derivation:

$$
\begin{align*}
l & >n-k \\
\Rightarrow k & >n-l \\
\Rightarrow k & >n-\log _{2}(k) \\
& >n-\log _{2}(n) \tag{2}
\end{align*}
$$

where the last inequality comes from $k<n \Rightarrow \log _{2}(k)<\log _{2}(n)$.
Now let us compute the total size of the resulting circuit. This is given by

$$
s+O\left(2^{k}\right)=O\left(2^{k}\right)+O\left(2^{k}\right)=O\left(2^{k}\right)
$$

Then by $\operatorname{Inq}(2)$, the minimum complexity for optimum choice of k is given by

$$
O\left(2^{n-\log _{2}(n)}\right)=O\left(\frac{2^{n}}{2^{\log _{2}(n)}}\right)=O\left(\frac{2^{n}}{n}\right)
$$

Answer 5. $\mathbf{P}=\mathbf{N P}$ implies $P H=\mathbf{P}$. Since $\mathbf{P} \subset \mathbf{E X P}$, hence using \mathbf{P} as oracle does not add any extra power to the class EXP; the querries to the oracle \mathbf{P} can be simulated by the TM (running in exponential time) itself with no extra overhead. Hence, $\mathbf{E X P}=\mathbf{E X P}^{\mathbf{P}}=\mathbf{E X P}^{P H}$.
-Incomplete-
Answer 6. Claim: Iterated addition is in $\mathbf{N C}^{1}$.
Proof. Given $k n$-bit numbers a_{1}, \ldots, a_{k}, one can successiely use the constant depth circuit for addition to create a logarithmic depth $(O(\log (k \times n)))$ circuit as follows:

$$
\sum_{i=1}^{k} a_{i}=\left(\left(a_{1}+a_{2}\right)+\left(a_{3}+a_{4}\right)\right) \ldots\left(\left(a_{k-3}+a_{k-2}\right)+\left(a_{k-1}+a_{k}\right)\right)
$$

Hence iterated addition is in $\mathbf{N C}^{1}$.
Claim: multiplication of two n-bit numbers is in $\mathbf{N C}^{1}$.
Proof. Given two n-bit numbers a, b, multiplication can be implemented with the help of iterated addition as in the following:

$$
a \times b=\sum_{i=1}^{n} a \times b_{i} \times 2^{i}
$$

Each term $\left(a \times b_{i} \times 2^{i}\right)$ can be realized using constant depth circuit, and the sum can be implemented using logarithmic depth circuit.

Answer 7. Consider the following undecidable language:
$L:=\left\{1^{k} \mid\right.$ binary representation of k represents an encoding $\langle M, x\rangle$ s.t. the TM M halts on input $\left.x\right\}$.

Think of a real number $\rho \in[0,1]$ as an advice string for a PTM N , s.t. the k-th bit of the binary representation of ρ is 1 iff $1^{k} \in L$. However the exact value of ρ is unknown to the PTM N, which only has access to a biased coin coming up with head with probability ρ. The question is then given input 1^{k}, how to recover the k-th bit of ρ by repeatedly tossing the coin.

The question appeared in previous year's homework problem set, and the following solution was presented by Oliver Bachtler:
$L=\left\{1^{k} \mid M_{k}\right.$ halts on input $\left.1^{k}\right\}$ is undecidable. Let

$$
\rho:=\sum_{k=1}^{\infty} 2^{-2 k}+\sum_{k=1}^{\infty} b_{k} 2^{-2 k+1} \in[0,1] .
$$

Note that the last part is true, because the right hand side is less than or equal to $\sum_{i=0}^{\infty} 2^{-i}-1=2-1=1$ and as such it is bounded from above and is monotone increasing, hence it converges.

Let M be a PTM that can flip a coin with a chance of ρ to land on heads. We claim that M can decide L, but before we describe how M works we make one observation.
Let X_{n} be the random variable that counts the number of times heads comes up in n flips of the ρ-biased coin. Then $E\left[X_{n}\right]=n \rho$ and $\operatorname{Var}\left[X_{n}\right]=n \rho(1-\rho)$. By the Chebyshev's inequality (or however you want to spell it) we get

$$
P\left[\left|\frac{X_{n}}{n}-\rho\right| \geq \varepsilon\right]=P\left[\left|X_{n}-n \rho\right| \geq n \varepsilon\right] \leq \frac{n \rho(1-\rho)}{n^{2} \varepsilon^{2}}=\frac{\rho(1-\rho)}{n \varepsilon^{2}}
$$

This gives us that

$$
\begin{equation*}
P\left[\left|\frac{X_{n}}{n}-\rho\right|<\varepsilon\right] \geq 1-\frac{\rho(1-\rho)}{n \varepsilon^{2}} . \tag{1}
\end{equation*}
$$

We make use of this as follows: On input $1^{k} M$ flips $n=\frac{\rho(1-\rho)}{\varepsilon^{2}} \cdot 3$ coins, where $\varepsilon=2^{-2 k}$. If, as before, X_{n} is the amount of times heads is flipped then M returns the $(2 k-1)$-st bit of $\frac{X_{n}}{n}$ (to be precise, the $(2 k-1)-s t$ bit after the comma). Plugging our values for n and ε into (1), we get

$$
\begin{equation*}
P\left[\left|\frac{X_{n}}{n}-\rho\right|<\varepsilon\right] \geq 1-\frac{1}{3}=\frac{2}{3} \tag{2}
\end{equation*}
$$

Now let us make sure this does the trick.
Case $1 L(x)=1$: Let X be a number such that the $(2 k-1)-s t$ bit is 0 . Let x^{\prime} correspond to ρ on the first $2 k-2$ bits followed by only ones and ρ^{\prime} corresponds to ρ on the first $2 k$ bits, followed by only zeroes. This gives us that $x \leq x^{\prime} \leq \rho^{\prime} \leq \rho$ and consequently we get

$$
\begin{equation*}
|x-\rho| \geq\left|x^{\prime}-\rho^{\prime}\right|=2^{-2 k+1}-\sum_{i=1}^{\infty} 2^{-(2 k+i)}=2^{-2 k} \tag{3}
\end{equation*}
$$

Using $x=\frac{X_{n}}{n}$ in (3) together with the fact that the $(2 k-1)$-st bit of ρ is one we get

$$
\begin{equation*}
\left|\frac{X_{n}}{n}-\rho\right|<2^{-2 k} \Rightarrow(2 k-1) \text {-st bit of } \frac{X_{n}}{n} \text { is one. } \tag{4}
\end{equation*}
$$

After gathering together all the necessary parts, it is time to check the actually required property:

$$
\begin{aligned}
\operatorname{Pr}[M(x)=1] & =\operatorname{Pr}\left[(2 k-1) \text {-st bit of } \frac{X_{n}}{n} \text { is } 1\right] \\
& \stackrel{(4)}{\geq} \operatorname{Pr}\left[\left|\frac{X_{n}}{n}-\rho\right|<2^{-2 k}\right] \\
& \stackrel{(2)}{\geq} \frac{2}{3}
\end{aligned}
$$

Case $2 L(x)=0$: This case works analogously. In the same way as above we get

$$
\begin{equation*}
\left|\frac{X_{n}}{n}-\rho\right|<2^{-2 k} \Rightarrow(2 k-1) \text {-st bit of } \frac{X_{n}}{n} \text { is zero } \tag{5}
\end{equation*}
$$

and again

$$
\begin{aligned}
\operatorname{Pr}[M(x)=0] & =\operatorname{Pr}\left[(2 k-1) \text {-st bit of } \frac{X_{n}}{n} \text { is } 0\right] \\
& \stackrel{(5)}{\geq} \operatorname{Pr}\left[\left|\frac{X_{n}}{n}-\rho\right|<2^{-2 k}\right] \\
& \stackrel{(2)}{\geq} \frac{2}{3}
\end{aligned}
$$

This covers both cases and shows that M in fact computes L.

