Solution of Tutorial 3
Kaushik Mallik

Email: kmallik@mpi-sws.org

Answer 1. (a) APSPACE C EXP. This direction is trivial. Any alternating TM which uses polyno-
mial space can be simulated by a DTM running in exponential time.

(b) EXP C APSPACE. Let L € EXP. Then there is a DTM M which runs in time O(2""), for
some constant ¢, to decide L. Consider the configuration graph Gas, of M on input . The machine
accepts x if there is a path from the initial configuration to the accepting configuration of length 2. Such
a path exists if and only if there ezists configurations C1, ..., Cyne—1 s.t. for all i € [2" 1], Ci;1 takes
at most 2" ! steps from C;. This quantification alternation can be can be realized by an alternating
TM D. Since space can be reused, D just needs to keep track of the last configuration visited and to
keep a counter. Similar to Cook-Levin theorem, each configuration can be represented by encoding the

contents local to the tape head. Hence, D can be simulated to use only polynomial space.

Answer 2. First, it will be shown that any arbitrary language in ¥¥ can be reduced in polynomial time
to X;SAT. Let L € X be any arbitrary language. Then by definition, there is a polynomial time TM
M and a polynomial g s.t.

z e L < Ju e {0,13902D vuy, € {0,1390°D | Quu; € {0,1390°D M (2, uy, us, ... ug) = 1.

Following similar construction as in the proof of Cook-Levin theorem, one can use the configuration
graph of the TM M, subjected to the input (z,u,us,...,u;), to create a formula ¢ s.t. M accepts
the input if and only if ¢ is satisfiable (i.e. ¢ € SAT). It is known that this reduction can be done in
polynomial time.

Furthermore, from the definion of ¥;SAT, it is easy to see that ¥;SAT is itself in X¥. Hence X;SAT

is ¥¥-complete.

Answer 3. (a) First, it will be shown that any language in DP is reduced to SAT — UNSAT in
polynomial time. Let L € DP. Then by definition, there exist two languages L; € NP and Lo € coNP
s.t. the following holds:

relLsxeli Nz € L. (1)

Using Cook-Levin theorem, one can reduce L; and Lo, subjected to input x, to SAT and UNSAT (by
reducing Lo to SAT instance) instances in polynomial time; let ¢; and ¢, represent the corresponding

boolean formulae respectively. Then we can say that
x € L& ¢ € SAT A ¢ € UNSAT,

which by definition is an instance of the language SAT — UNSAT.

Moreover, SAT — UNSAT is itself in DP by definition. Hence SAT — UNSAT is DP-complete under
ploynomial time reduction.

(b) To prove that EXACT — INDSET is DP-complete, we use the property that INDSET is

NP-complete. Following is the definition of INDSET and INDSET:

INDSET = {(G, k) | Graph G has an independent set of size > k}
INDSET = {{(G, k) | Graph G does not have an independent set of size > k}

Then the language EXACT — INDSET can be defined as:
EXACT —INDSET = {(G,k) | (G,k) e INDSET N {(G,k+1) e INDSET}.

Now any language which is in DP has two associated languages in NP and coNP respectively (as in
Eqn. (1)). Since INDSET is NP-complete and consequently INDSET is coNP-complete, hence L,
and Ly reduces in polynomial time to INDSET and INDSET respectively. Hence EXACT—-INDSET
is DP-hard.

Moreover, since INDSET and INDSET are themselves in NP and coNP, hence EXACT —
INDSET is in DP itself. Hence completeness is proven.

Answer 4. (a) First it will be shown that using Shannon’s decomposition, every n-ary function can be
computed using a circuit of size O(2"). Fig. 1 shows the circuit in the form of a tree. Note that the A
and V gates are located at interleaving depths. We can simply count the number of gates by observing
the tree:

Figure 1: Circuit realizing a function f using Shannon’s decomposition

The total number of A gates in the circuit =

2 2n+1_2
ol 492 qpon=2XZ T2 _gni2_o
2—-1
Total number of V gates =
1 2n+1_1
2°+21+...+2"=X2—1=2"+1—1.

Total number of = gates = n. Hence, size of the circuit = 27+2 4 27+l 4 — 3 = O(2").
(b) Now the second part will be proved, i.e. every n-ary function can be realized by a circuit of size

0(2"/n).

1. Claim 1. For each [, there is a circuit of size O(2%) with 22 outputs which computes all l-ary

Boolean functions simultaneously.

Proof. The claim will be proved by induction.

Base case: i = 1. There are four possible functions of the form {0,1} — {0,1}, as in the following:

filz) =0 fo(z1) =1

f3(z1) =21 fa(z1) = ~21

These functions can be simultaneously realized by a circuit with four outputs and just one — gate.
Hence the Claim holds for ¢ = 1. Inductive step: let, the Claim holds for ¢ = [. It will be shown
that the Claim will hold for i =14 1 as well.

Given an (I + 1)-ary function f(x1,...,2;4+1), we can use Shannon’s decomposition:

f((El, N ,$l+1) =X A\ f(l,l’g, N ,.’Kl+1) \Y -1 AN f(O,:UQ, N ,il'lJrl)

= /\g(.CCQ7 e ,{Bl+1) V —xq /\g(l‘g, e 7$l+1)-

g being an [-ary function, by induction hypothesis, there exists a O(22l) size circuit C' which outputs

simultaneously the 22 possible forms of g. Using C as a building block, we can realize f by a circuit

of size (0 (221))2+1:0(22‘“)+1:0(22”1). 0

2. Next, it will be shown that for a choice of k s.t. 2F > 22"%, f can be computed using a circuit of size
s = 0(2"/n). Set | = loga(k). Then by Claim 1, there is a circuit of size O(22') = 0(22@2(“) =
O(2%) which computes all [-ary functions and produces 2* outputs simultaneously. This circuit
may be used to compute the functions hq, ..., hox simulataneously, provided the number of inputs
[is greater than n — k to accomodate all the (n — k) inputs of hq, ..., hor. But this condition holds
always because of the choice of k: 2F > 2" s k> ks >n—k.

We will find an optimum k for attaining minimum circuit complexity. Consider the following

derivation:

Il>n—k
=k>n-—1
=k >n —logs(k)
> n — loga(n) (2)

where the last inequality comes from k < n = loga(k) < loga(n).

Now let us compute the total size of the resulting circuit. This is given by
s+ 0(2%) = 0(2%) + 0(2%) = 0(2").

Then by Inq (2), the minimum complexity for optimum choice of & is given by

© (2%[092(”)) =0 (gzin)) =0 (2:) '

Answer 5. P = NP implies PH = P. Since P C EXP, hence using P as oracle does not add any
extra power to the class EXP; the querries to the oracle P can be simulated by the TM (running in
exponential time) itself with no extra overhead. Hence, EXP = EXPP = EXPPH.

—Incomplete—
Answer 6. Claim: Iterated addition is in NC'.

Proof. Given k n-bit numbers aq, ..., ax, one can successiely use the constant depth circuit for addition

to create a logarithmic depth (O(log(k x n))) circuit as follows:
k
Zai = ((a1 + a2) + (a3 + aq)) ... ((ar—3 + ax—2) + (ar—1 + ax))
i=1

Hence iterated addition is in NC!. O
Claim: multiplication of two n-bit numbers is in NC!.

Proof. Given two n-bit numbers a, b, multiplication can be implemented with the help of iterated addition

as in the following:

axb:ZaxbixT

i=1

Each term (a x b; x 2%) can be realized using constant depth circuit, and the sum can be implemented

using logarithmic depth circuit. O

Answer 7. Consider the following undecidable language:
L:= {1k | binary representation of k represents an encoding < M,z > s.t. the TM M halts on input z}.

Think of a real number p € [0,1] as an advice string for a PTM N, s.t. the k-th bit of the binary
representation of p is 1 iff 1¥ € L. However the exact value of p is unknown to the PTM N, which only
has access to a biased coin coming up with head with probability p. The question is then given input
1%, how to recover the k-th bit of p by repeatedly tossing the coin.

The question appeared in previous year’s homework problem set, and the following solution was
presented by Oliver Bachtler:

L = {1* | M, halts on input 1¥} is undecidable. Let

pi=> 274> " p 27 e [0, 1].
k=1 k=1

Note that the last part is true, because the right hand side is less than or equal to Z;ﬁo 27t -1=2-1=1

and as such it is bounded from above and is monotone increasing, hence it converges.

Let M be a PTM that can flip a coin with a chance of p to land on heads. We
claim that M can decide L, but before we describe how M works we make one
observation.

Let X,, be the random variable that counts the number of times heads comes up
in n flips of the p-biased coin. Then E[X,,| = np and Var[X,] = np(1 — p). By the
Chebyshev’s inequality (or however you want to spell it) we get

X, 1- -
n n<e ne
|

We make use of this as follows: On input 1* M flips n = @ - 3 coins, where
e = 272k If, as before, X,, is the amount of times heads is flipped then M returns
the (2k — 1)-st bit of 2= (to be precise, the (2k — 1) — st bit after the comma).
Plugging our values for n and ¢ into (1), we get

This gives us that

Xn p(l — P)

Zn_pl<el>1 -2 1
‘ p\ | 21-205)

Xn 1 2
P[n p‘<5]21 3= 3 (2)
Now let us make sure this does the trick.

Case 1 L(z) = 1: Let X be a number such that the (2k — 1) — st bit is 0. Let z’
correspond to p on the first 2k — 2 bits followed by only ones and p’ corresponds to
p on the first 2k bits, followed by only zeroes. This gives us that z < 2’ < p' <p
and consequently we get

oo
|ZE _ p| > |Z/ _ p/| _ 2—2k+1 _ 22—(2k+i) — 2—2,10' (3)
i=1

Using « = 2= in (3) together with the fact that the (2k — 1)-st bit of p is one we

get

Xn . X .
— - p‘ < 2728 = (2k — 1)-st bit of =2 is one. (4)
n n

After gathering together all the necessary parts, it is time to check the actually
required property:

PriM(z)=1] = Pr [(2]@ — 1)-st bit of % is 1]

@ X,

> Pr { —p’ < 22’“}
n

@ 2

> —.

-3

Case 2 L(z) = 0: This case works analogously. In the same way as above we get
X X
‘n — p‘ < 272F = (2k — 1)-st bit of =" is zero (5)
n n
and again

Pr[M(z) =0] = Pr [(214: — 1)-st bit of % is O]

(5) X,

> Pr{p’ <22k}
n

(2 2

> —.

-3

This covers both cases and shows that M in fact computes L.

