Cryptography lecture notes

Marko Horvat, taken from Arora-Barak

January 16, 2018

Introduction

- Cryptography enables security
- Secure browsing, voting, cryptocurrencies, smart contracts, etc.
- Computational complexity enables cryptography
- Symmetric and asymmetric keys, one-way functions, encryption schemes, digital signatures, zero-knowledge proofs, etc.
- These cryptographic primitives should not be breakable by any realistic adversary
- Realistic=efficient, (probabilistic) polynomial-time
- Security proofs via reductions: breaking crypto would lead to breaking a convincingly unbreakable computational hardness assumption
- Kerckhoff's principle: adversary knows our methods
- Under some restrictions, we can allow even more: he has access to encryption/decryption oracles
- We try to make realistic adversary precise because achieving security against all adversaries is highly impractical
- The biggest hindrance is: keys need to be as long as messages

Perfect secrecy and its limitations

- Alice wants to send a secret message x (the plaintext) to Bob, but an adversary Eve is eavesedropping on the communication channel
- One way for Alice to do so is to encrypt the message using some information that Bob has, but Eve does not; we call it the key k
- Alice can then send the encrypted message (the ciphertext) $E_{k}(x)$, so that Bob can decrypt it upon receipt to recover the plaintext
- Note that Alice and Bob need to have agreed on two things beforehand:
- the key k; an important part of cryptography and information security is devoted to authenticated key exchange (AKE)
- the encryption scheme: a pair of algorithms (E, D) such that for all messages $x \in$ $\{0,1\}^{m}$ and keys $k \in\{0,1\}^{n}, D_{k}\left(E_{k}(x)\right)=x$
- e.g. one-time pad/Vernham cipher: $x \oplus k$ where k is a random bit string
- Ideally, we want the scheme to reveal nothing about the payload to the adversary
- e.g. getting just the first character should be impossible

Definition 1. An encryption scheme (E, D) is perfectly secret if for all x, x^{\prime}, the random variables $E_{U_{n}}(x)$ and $E_{U_{n}}\left(x^{\prime}\right)$ are identically distributed (U_{n} is the uniform distribution over $\left.\{0,1\}^{n}\right)$.

- Example: one-time pad (never reuse keys!)

Example 1 (Exercise 9.1). The one-time pad is perfectly secret.

Proof sketch. Assume $m=n=1$, and let $X, K: \Omega \rightarrow\{0,1\}$ be independent random variables. We know

$$
\begin{aligned}
& P(K=0)=P(K=1)=\frac{1}{2} \\
& P(X=0)=p ; \quad P(X=1)=1-p \\
& P(X \oplus K=0)=P(X=0 \mid K=0) \cdot P(K=0) \\
& +P(X=1 \mid K=1) \cdot P(K=1) \\
& =p \cdot \frac{1}{2}+(1-p) \cdot \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

- However, the one-time pad is not practical enough to secure communications

Example 2 (Exercise 9.2). Every perfectly secret encryption scheme uses keys at least as long as messages.

Proof. Let (E, D) be a perfectly secret encryption scheme. Assume to the contrary that $n<m$. Pick any x, k_{1} and consider $E_{k_{1}}(x)$. Then

$$
\begin{gathered}
D_{k_{1}}\left(E_{k_{1}}(x)\right) \\
D_{k_{2}}\left(E_{k_{1}}(x)\right) \\
\vdots \\
D_{k_{2^{n}}}\left(E_{k_{1}}(x)\right)
\end{gathered}
$$

are all the messages that can be encrypted to $E_{k_{1}}(x)$ and there is at most 2^{n} of them. Due to $n<m$, this is strictly less than the number 2^{m} of all messages. Hence there exists

$$
x^{\prime} \in\{0,1\}^{m} \backslash\left\{D_{k_{1}}\left(E_{k_{1}}(x)\right), \ldots, D_{k_{2^{n}}}\left(E_{k_{1}}(x)\right)\right\} .
$$

This implies

$$
\begin{aligned}
& P\left(E_{U_{n}}\left(x^{\prime}\right)=E_{k_{1}}(x)\right)=0 \text { and } \\
& P\left(E_{U_{n}}(x)=E_{k_{1}}(x)\right)>0 .
\end{aligned}
$$

HW: How much is the probability exactly?

Computational security

Question: Can an encryption scheme be used with short keys to achieve perfect secrecy with respect to a polynomial-time adversary?

Theorem 1. Assume $P=N P$. Let (E, D) be an encryption scheme with $n<m$. Then there is a polynomial-time algorithm A such that for every input length m, there is a pair $x_{0}, x_{1} \in\{0,1\}^{m}$ such that

$$
\operatorname{Pr}_{\substack{b \in_{R}\{0,1\} \\ k \in R\{0,1\}^{n}}}\left(A\left(E_{k}\left(x_{b}\right)\right)=b\right) \geq \frac{3}{4} .
$$

Proof. Let $x_{0}=0^{m}, S=\left\{E_{k}\left(x_{0}\right): k \in\{0,1\}^{n}\right\}$ and $A(x)=\mathbf{1}_{\{0,1\}^{m} \backslash S}(x)$. Then

$$
\begin{aligned}
\operatorname{Pr}_{\substack{b \in_{R}\{0,1\} \\
k \in_{R}\{0,1\}^{n}}}\left(A\left(E_{k}\left(x_{b}\right)\right)=b\right) & =\frac{1}{2} \operatorname{Pr}\left(A\left(E_{U_{n}}\left(x_{0}\right)\right)=0\right)+\frac{1}{2} \operatorname{Pr}\left(A\left(E_{U_{n}}\left(x_{1}\right)\right)=1\right) \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{Pr}\left(A\left(E_{U_{n}}\left(x_{1}\right)\right)=1\right) .
\end{aligned}
$$

It suffices to prove there exists x_{1} such that $\operatorname{Pr}\left(A\left(E_{U_{n}}\left(x_{1}\right)\right)=1\right) \geq \frac{1}{2}$, i.e. $\operatorname{Pr}\left(E_{U_{n}}\left(x_{1}\right) \in S\right) \leq \frac{1}{2}$. Suppose otherwise that for all $x_{1}, \operatorname{Pr}\left(E_{U_{n}}\left(x_{1}\right) \in S\right)>\frac{1}{2}$. Then for $X \sim U_{m}$,

$$
\begin{gathered}
\operatorname{Pr}\left(E_{U_{n}}(X) \in S\right)=\sum_{x} \operatorname{Pr}\left(E_{U_{n}}(x) \in S \mid X=x\right) \operatorname{Pr}(X=x)>\frac{1}{2} \sum_{x} \operatorname{Pr}(X=x)=\frac{1}{2} \\
\operatorname{Pr}\left(E_{U_{n}}(X) \in S\right)=\sum_{\substack{k, x \\
E_{k}(x) \in S}} \operatorname{Pr}\left(U_{n}=k\right) \operatorname{Pr}(X=x)=\left|\left\{(k, x): E_{k}(x) \in S\right\}\right| 2^{-n} 2^{-m} \stackrel{(*)}{\leq} \frac{1}{2}
\end{gathered}
$$

We know $(*)$ because for each k, the injection $x \mapsto E_{k}(x)$ maps at most $|S| \leq 2^{n}$ x's to S.
Answer: Perhaps, but only if $\mathbf{P} \neq \mathbf{N P}$ (whether this assumption is enough is an open problem). We will strengthen this assumption (by assuming that one-way permutations exist) to construct a computationally secure encryption scheme.

One way functions: Definition and some examples

Definition 2 (Negligible function). A function $\epsilon: \mathbb{N} \rightarrow[0,1]$ is called negligible if

$$
\forall c \in \mathbb{N} . \exists n_{0} \in \mathbb{N} . \forall n \geq n_{0} . \epsilon(n)<n^{-c}
$$

We also write this as $\epsilon(n)=n^{-\omega(1)}$.
Definition 3 (One-way function). A polynomial-time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a one-way function if for every probabilistic polynomial-time algorithm A, there is a negligible function $\epsilon: \mathbb{N} \rightarrow[0,1]$ such that for every n,

$$
\operatorname{Pr}_{\substack{x \in \in_{R}\{0,1\}^{n} \\ y=f(x)}}\left(A(y)=x^{\prime} \text { s.t. } f\left(x^{\prime}\right)=y\right)<\epsilon(n)
$$

- Existence of one-way functions implies $\mathbf{P} \neq \mathbf{N P}$
- Intuitively, a one-way function is easy to compute, but hard to invert
- It is unknown whether the converse holds
- Conjectured one-way functions: multiplication, the RSA function, AES, etc.

Encryption from one-way functions

- We set out to design a reasonably secure encryption scheme with reasonably short keys against an efficient adversary
- There are many definitions of security of varying strength; we choose a fairly simple one

Definition 4 (Computationally secure encryption scheme). We say that an encryption scheme (E, D) is computationally secure if for every probabilistic polynomial-time algorithm A, there is a negligible function $\epsilon: \mathbb{N} \rightarrow[0,1]$ such that

$$
\operatorname{Pr}_{\substack{k \in \in_{R}\{0,1\}^{n} \\ x \in_{R}\{0,1\}^{m}}}\left(A\left(E_{k}(x)\right)=(i, b) \text { s.t. } x_{i}=b\right) \leq \frac{1}{2}+\epsilon(n)
$$

- The one-time pad is a computationally secure encryption scheme (Exercise 9.3), but it warrants long keys, i.e. shared random strings
- For every $c \in \mathbb{N}$, we can stretch random strings of length n to pseudorandom strings of length n^{c} by using pseudorandom generators
- Pseudorandom strings cannot be distinguished from random by a poly-time adversary

Definition 5 (Polynomial-time computable function of stretch l). Let $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ and $l: \mathbb{N} \rightarrow \mathbb{N}$ be polynomial-time computable functions such that for every $n \in \mathbb{N}, l(n)>n$. We say that G is a polynomial-time computable function of stretch l if for all $x \in\{0,1\}^{*}$, $|G(x)|=l(|x|)$.
Definition 6 (Secure pseudorandom generator of stretch l). Let G be a polynomial-time computable function of stretch l. We say that G is a secure pseudorandom generator of stretch l if for all probabilistic polynomial-time algorithms A, there exists a negligible function $\epsilon: \mathbb{N} \rightarrow[0,1]$ such that for all $n \in \mathbb{N}$,

$$
\left|\operatorname{Pr}\left(A\left(G\left(U_{n}\right)\right)=1\right)-\operatorname{Pr}\left(A\left(U_{l(n)}\right)=1\right)\right|<\epsilon(n)
$$

- Can we take a short random string of length n, apply to it a suitable secure pseudorandom generator, and use the pseudorandom string of length n^{c} as a key with the one-time pad to securely encrypt a plaintext of length n^{c} ?
- Yes! If a poly-time adversary A could predict a bit of the plaintext with chance much greater than $\frac{1}{2}$ in polynomial time, it could distinguish between a random and pseudorandom key having been used in the one-time pad with this probability
- In order to get the existence of such PRGs, we will assume that one-way permutations exist
- It is actually enough to assume the existence of one-way functions (Håstad et al., 1999)

Lemma 1. Suppose that there exists a bijective one-way function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*},|f(x)|=|x|$. Then for every $c \in \mathbb{N}$, there exists a secure pseudorandom generator of stretch n^{c}.

- To prove this lemma, we need two famous results:

Yao (1982): unpredictability implies pseudorandomness

Goldreich-Levin (1989): construction of PRG of stretch 1 from one-way permutation
Definition 7 (Unpredictable function of stretch l). Let G be a polynomial-time computable function of stretch l. We say that G is an unpredictable function of stretch l if for every probabilistic poly-time algorithm B, there is a negligible function $\epsilon: \mathbb{N} \rightarrow[0,1]$ such that for all $n \in \mathbb{N}$,

$$
\operatorname{Pr}_{\substack{x \in_{R}\{0,1\}^{n} \\ y=G(x) \\ i \in_{R}\{1, \ldots, l(n)\}}}\left(B\left(1^{n}, y_{1}, \ldots, y_{i-1}\right)=y_{i}\right) \leq \frac{1}{2}+\epsilon(n)
$$

- It is easy to see that a predictor B for a function G of stretch l breaks pseudorandomness:
- Define $A(y)$ as 1 if $l(n)=|y|$ and $B\left(1^{n}, y_{1}, \ldots, y_{l(n)-1}\right)=y_{l(n)}$, and 0 otherwise
- Then there exists an ϵ such that for all $n \in \mathbb{N}$,

$$
\operatorname{Pr}\left(A\left(U_{l(n)}\right)=1\right) \leq \frac{1}{2}+\epsilon(n)
$$

- For 2ϵ (as well as any other negligible function), there is an n_{0} such that

$$
\begin{gathered}
\operatorname{Pr}\left(A\left(G\left(U_{n}\right)\right)=1\right) \geq \frac{1}{2}+2 \epsilon\left(n_{0}\right) \\
\left|\operatorname{Pr}\left(A\left(G\left(U_{n_{0}}\right)\right)=1\right)-\operatorname{Pr}\left(A\left(U_{l\left(n_{0}\right)}\right)=1\right)\right| \geq \epsilon\left(n_{0}\right)
\end{gathered}
$$

Theorem 2 (Yao, 1982). Let G be an unpredictable function of stretch l. Then G is a secure pseudorandom generator. Moreover, for every probabilistic polynomial-time algorithm A, there exists a probabilistic polynomial-time algorithm B such that for every $n \in \mathbb{N}$ and $\epsilon>0$, if $\operatorname{Pr}\left(A\left(G\left(U_{n}\right)\right)=1\right)-\operatorname{Pr}\left(A\left(U_{l(n)}\right)=1\right) \geq \epsilon$, then

$$
\operatorname{Pr}_{\substack{x \in_{R}\{0,1\}^{n} \\ y=G(x) \\ i \in_{R}\{1, \ldots, l(n)\}}}\left(B\left(1^{n}, y_{1}, \ldots, y_{i-1}\right)=y_{i}\right) \geq \frac{1}{2}+\frac{\epsilon}{l(n)} .
$$

Proof. It suffices to prove the second part of the theorem. Assuming the second part and that G is not a PRG, there is some algorithm A and $c \in \mathbb{N}$ such that for infinitely many $n \in \mathbb{N}$, we have

$$
\left|\operatorname{Pr}\left(A\left(G\left(U_{n}\right)\right)=1\right)-\operatorname{Pr}\left(A\left(U_{l(n)}\right)=1\right)\right| \geq n^{-c}
$$

We can ensure that the above holds without the absolute value (we might need to replace A with $1-A)$; then by our assumption there is a predictor B that succeeds with probability at least $\frac{1}{2}+\frac{n^{-c}}{l(n)}$.

We now prove the second part. Let A be more likely to output 1 for inputs drawn from $G\left(U_{n}\right)$ than $U_{l(n)}$. We now define B; on input $\left(1^{n}, y_{1}, \ldots, y_{i-1}\right), B$ draws bits $z_{i}, \ldots, z_{l(n)}$ independently and uniformly at random, and outputs z_{i} if $A\left(y_{1}, \ldots, y_{i-1}, z_{i}, \ldots, z_{l(n)}\right)=1$; otherwise, B outputs $1-z_{i}$.

The next step is called the hybrid argument. For every i, we define the distribution D_{i}; choose $x \in_{R}\{0,1\}^{n}$ and let $y=G(x)$, draw bits $z_{i+1}, \ldots, z_{l(n)}$ independently and uniformly at random, and output $y_{1}, \ldots, y_{i}, z_{i+1}, \ldots, z_{l(n)}$. We define $p_{i}=\operatorname{Pr}\left(A\left(D_{i}\right)=1\right)$ and compute

$$
\epsilon \leq p_{l(n)}-p_{0}=\left(p_{l(n)}-p_{l(n)-1}\right)+\left(p_{l(n)-1}-p_{l(n)-2}\right)+\ldots+\left(p_{1}-p_{0}\right)=l(n) \cdot E_{i \in\{1, \ldots, l(n)\}}\left(p_{i}-p_{i-1}\right) .
$$

We also have for all $i \in\{1, \ldots, l(n)\}$,

$$
\begin{aligned}
\operatorname{Pr}_{\substack{x \in R\{0,1\}^{n} \\
y=G(x)}}\left(B\left(1^{n}, y_{1}, \ldots, y_{i-1}\right)=y_{i}\right) & =\frac{1}{2} \operatorname{Pr}\left(A\left(D_{i}\right)=1 \mid z_{i}=y_{i}\right)+\frac{1}{2}\left(1-\operatorname{Pr}\left(A\left(D_{i}\right)=1 \mid z_{i}=1-y_{i}\right)\right) \\
& =\frac{1}{2}-\operatorname{Pr}\left(A\left(D_{i}\right)=1\right)+\operatorname{Pr}\left(A\left(D_{i}\right)=1 \mid z_{i}=y_{i}\right)=\frac{1}{2}+p_{i}-p_{i-1} .
\end{aligned}
$$

Now we can combine the results to get

$$
\begin{aligned}
\operatorname{Pr}_{\substack{x \in R\{0,1\}^{n} \\
y=G(x) \\
i \in_{R}\{1, \ldots, l(n)\}}}\left(B\left(1^{n}, y_{1}, \ldots, y_{i-1}\right)=y_{i}\right) & =E_{i \in\{1, \ldots, l(n)\}}\left(\operatorname{Pr}_{\substack{x \in R\{0,1\}^{n} \\
y=G(x)}}\left(B\left(1^{n}, y_{1}, \ldots, y_{i-1}\right)=y_{i}\right)\right) \\
& =\frac{1}{2}+E_{i \in\{1, \ldots, l(n)\}}\left(p_{i}-p_{i-1}\right) \geq \frac{1}{2}+\frac{\epsilon}{l(n)} .
\end{aligned}
$$

HW: Complete the construction of a computationally secure encryption scheme that uses short keys against a poly-time adversary.

- Missing ingredient: Goldreich-Levin
- If f is a one-way permutation of length n, then $G(x, r)=(f(x), r, x \odot r)$ is a PRG of stretch 1 .
- Yao's theorem: extension to arbitrary stretch
- Then otp can be used
- Keys should never be reused if XOR-ed directly: $(x \oplus k) \oplus\left(x^{\prime} \oplus k\right)=x \oplus x^{\prime}$
- Either use each key only once, or combine otp with Goldreich-Goldwasser-Micali (GGM)!
- GGM construction: suppose G is a n-to- $2 n$ PRG; rather than sending $x \oplus k$, choose $r \in_{R}\{0,1\}^{n}$ and send $\left(r, x \oplus f_{k}(r)\right)$, where $f_{k}(r)=G_{k_{n}}\left(\ldots\left(G_{k_{2}}\left(G_{k_{1}}(r)\right)\right) \ldots\right)$ and $G_{0}(r), G_{1}(r)$ are the left and right half of $G(r)$, respectively
- Another application: MAC (Message Authentication Code) - send ($x, r, f_{k}(x, r)$) to ensure integrity of x

Zero-knowledge proofs

- In order to convince somebody that a statement is true, we might want to avoid saying why it is true
- We know a way to save millions for a future employer - say an airline where we have a more efficient flight schedule - we want to prove this during the job interview, but without revealing any details about the schedule
- Idea: run an interactive probabilistic proof where the verifier learns only what it could have computed by itself, without interaction
- Formal definition of perfect zero knowledge for $L \in \mathbf{I P} \cap \mathbf{N P}$ and prover P for L : For every probabilistic polynomial-time interactive strategy V^{*}, there exists an expected probabilistic polynomial-time (stand-alone) algorithm S^{*} such that for all $x \in L$ and certificates u,

$$
\text { out }_{V *}\left\langle P(x, u), V^{*}(x)\right\rangle \equiv S^{*}(x)
$$

- This condition can be relaxed (Exercise 9.17)
- Simulation is a central idea in enabling security through crypto (Exercise 9.9, semantic security; Section 9.5.4, secure multi-party computation)

Zero-knowledge proof for graph isomorphism

Public input: graphs G_{0}, G_{1} with n vertices
Prover's private input: permutation $\pi:[n] \rightarrow[n]$ such that $G_{1}=\pi\left(G_{0}\right)$ (π permutes rows and columns of adjacency matrix)

- Completeness: if P and V follow the protocol, V accepts with probability 1
- Soundness: if G_{0} and G_{1} are not isomorphic, V rejects with probability $\frac{1}{2}$ (there is a b for which $\pi_{b}\left(G_{0}\right)$ is not equal to G, and that b is chosen with probability $\frac{1}{2}$)

HW: Perfect
zero
knowledge

Tossing coins over the phone

- Both parties contribute, last to reveal must secretly commit
- Assuming we have a one-way permutation f_{n}, we can apply the Goldreich-Levin theorem

