
Cryptography lecture notes

Marko Horvat, taken from Arora-Barak

January 16, 2018

Introduction

• Cryptography enables security

– Secure browsing, voting, cryptocurrencies, smart contracts, etc.

• Computational complexity enables cryptography

– Symmetric and asymmetric keys, one-way functions, encryption schemes, digital sig-
natures, zero-knowledge proofs, etc.

– These cryptographic primitives should not be breakable by any realistic adversary

– Realistic=efficient, (probabilistic) polynomial-time

– Security proofs via reductions: breaking crypto would lead to breaking a convincingly
unbreakable computational hardness assumption

• Kerckhoff’s principle: adversary knows our methods

– Under some restrictions, we can allow even more: he has access to encryption/decryption
oracles

• We try to make realistic adversary precise because achieving security against all adversaries
is highly impractical

– The biggest hindrance is: keys need to be as long as messages

Perfect secrecy and its limitations

• Alice wants to send a secret message x (the plaintext) to Bob, but an adversary Eve is
eavesedropping on the communication channel

• One way for Alice to do so is to encrypt the message using some information that Bob has,
but Eve does not; we call it the key k

• Alice can then send the encrypted message (the ciphertext) Ek(x), so that Bob can decrypt
it upon receipt to recover the plaintext

• Note that Alice and Bob need to have agreed on two things beforehand:

– the key k; an important part of cryptography and information security is devoted to
authenticated key exchange (AKE)

– the encryption scheme: a pair of algorithms (E,D) such that for all messages x ∈
{0, 1}m and keys k ∈ {0, 1}n, Dk(Ek(x)) = x

1

– e.g. one-time pad/Vernham cipher: x⊕ k where k is a random bit string

• Ideally, we want the scheme to reveal nothing about the payload to the adversary

– e.g. getting just the first character should be impossible

Definition 1. An encryption scheme (E,D) is perfectly secret if for all x, x′, the random
variables EUn

(x) and EUn
(x′) are identically distributed (Un is the uniform distribution

over {0, 1}n).

– Example: one-time pad (never reuse keys!)

Example 1 (Exercise 9.1). The one-time pad is perfectly secret.

Proof sketch. Assume m = n = 1 HW: m,n
arbitrary

, and let X,K : Ω → {0, 1} be independent random
variables. We know

P (K = 0) = P (K = 1) =
1

2

P (X = 0) = p; P (X = 1) = 1− p

P (X ⊕K = 0) = P (X = 0|K = 0) · P (K = 0)

+ P (X = 1|K = 1) · P (K = 1)

= p · 1

2
+ (1− p) · 1

2
=

1

2

• However, the one-time pad is not practical enough to secure communications

Example 2 (Exercise 9.2). Every perfectly secret encryption scheme uses keys at least as
long as messages.

Proof. Let (E,D) be a perfectly secret encryption scheme. Assume to the contrary that
n < m. Pick any x, k1 and consider Ek1

(x). Then

Dk1
(Ek1

(x))

Dk2(Ek1(x))

...

Dk2n
(Ek1(x))

are all the messages that can be encrypted to Ek1
(x) and there is at most 2n of them. Due

to n < m, this is strictly less than the number 2m of all messages. Hence there exists

x′ ∈ {0, 1}m \ {Dk1(Ek1(x)), . . . , Dk2n
(Ek1(x))}.

This implies HW: How
much is the
probability
exactly?

P (EUn
(x′) = Ek1

(x)) = 0 and

P (EUn(x) = Ek1(x)) > 0.

2

Computational security

Question: Can an encryption scheme be used with short keys to achieve perfect secrecy with
respect to a polynomial-time adversary?

Theorem 1. Assume P = NP . Let (E,D) be an encryption scheme with n < m. Then there is
a polynomial-time algorithm A such that for every input length m, there is a pair x0, x1 ∈ {0, 1}m
such that

Pr
b∈R{0,1}
k∈R{0,1}n

(A(Ek(xb)) = b) ≥ 3

4
.

Proof. Let x0 = 0m, S = {Ek(x0) : k ∈ {0, 1}n} and A(x) = 1{0,1}m\S(x). Then

Pr
b∈R{0,1}
k∈R{0,1}n

(A(Ek(xb)) = b) =
1

2
Pr(A(EUn(x0)) = 0) +

1

2
Pr(A(EUn(x1)) = 1)

=
1

2
+

1

2
Pr(A(EUn

(x1)) = 1).

It suffices to prove there exists x1 such that Pr(A(EUn
(x1)) = 1) ≥ 1

2 , i.e. Pr(EUn
(x1) ∈ S) ≤ 1

2 .
Suppose otherwise that for all x1, Pr(EUn

(x1) ∈ S) > 1
2 . Then for X ∼ Um,

Pr(EUn(X) ∈ S) =
∑
x

Pr(EUn(x) ∈ S|X = x) Pr(X = x) >
1

2

∑
x

Pr(X = x) =
1

2

Pr(EUn
(X) ∈ S) =

∑
k,x

Ek(x)∈S

Pr(Un = k) Pr(X = x) = |{(k, x) : Ek(x) ∈ S}|2−n2−m
(∗)
≤ 1

2

We know (∗) because for each k, the injection x 7→ Ek(x) maps at most |S| ≤ 2n x’s to S.

Answer: Perhaps, but only if P 6= NP (whether this assumption is enough is an open problem).
We will strengthen this assumption (by assuming that one-way permutations exist) to construct
a computationally secure encryption scheme.

One way functions: Definition and some examples

Definition 2 (Negligible function). A function ε : N→ [0, 1] is called negligible if

∀c ∈ N.∃n0 ∈ N.∀n ≥ n0.ε(n) < n−c.

We also write this as ε(n) = n−ω(1).

Definition 3 (One-way function). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is a one-way function if for every probabilistic polynomial-time algorithm A, there is a negligible
function ε : N→ [0, 1] such that for every n,

Pr
x∈R{0,1}n
y=f(x)

(A(y) = x′ s.t. f(x′) = y) < ε(n)

• Existence of one-way functions implies P 6= NP

– Intuitively, a one-way function is easy to compute, but hard to invert

– It is unknown whether the converse holds

– Conjectured one-way functions: multiplication, the RSA function, AES, etc.

3

Encryption from one-way functions

• We set out to design a reasonably secure encryption scheme with reasonably short keys
against an efficient adversary

• There are many definitions of security of varying strength; we choose a fairly simple one

Definition 4 (Computationally secure encryption scheme). We say that an encryption scheme
(E,D) is computationally secure if for every probabilistic polynomial-time algorithm A, there is
a negligible function ε : N→ [0, 1] such that

Pr
k∈R{0,1}n
x∈R{0,1}m

(A(Ek(x)) = (i, b) s.t. xi = b) ≤ 1

2
+ ε(n)

• The one-time pad is a computationally secure encryption scheme (Exercise 9.3), but it
warrants long keys, i.e. shared random strings

• For every c ∈ N, we can stretch random strings of length n to pseudorandom strings of
length nc by using pseudorandom generators

– Pseudorandom strings cannot be distinguished from random by a poly-time adversary

Definition 5 (Polynomial-time computable function of stretch l). Let G : {0, 1}∗ → {0, 1}∗
and l : N → N be polynomial-time computable functions such that for every n ∈ N, l(n) > n.
We say that G is a polynomial-time computable function of stretch l if for all x ∈ {0, 1}∗,
|G(x)| = l(|x|).

Definition 6 (Secure pseudorandom generator of stretch l). Let G be a polynomial-time com-
putable function of stretch l. We say that G is a secure pseudorandom generator of stretch l if
for all probabilistic polynomial-time algorithms A, there exists a negligible function ε : N→ [0, 1]
such that for all n ∈ N,

|Pr(A(G(Un)) = 1)− Pr(A(Ul(n)) = 1)| < ε(n).

• Can we take a short random string of length n, apply to it a suitable secure pseudorandom
generator, and use the pseudorandom string of length nc as a key with the one-time pad
to securely encrypt a plaintext of length nc?

– Yes! If a poly-time adversary A could predict a bit of the plaintext with chance
much greater than 1

2 in polynomial time, it could distinguish between a random and
pseudorandom key having been used in the one-time pad with this probability

• In order to get the existence of such PRGs, we will assume that one-way permutations exist

– It is actually enough to assume the existence of one-way functions (H̊astad et al.,
1999)

Lemma 1. Suppose that there exists a bijective one-way function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗, |f(x)| = |x|. Then for every c ∈ N, there exists a secure pseudorandom
generator of stretch nc.

• To prove this lemma, we need two famous results:

Yao (1982): unpredictability implies pseudorandomness

4

Goldreich-Levin (1989): construction of PRG of stretch 1 from one-way permutation

Definition 7 (Unpredictable function of stretch l). Let G be a polynomial-time computable
function of stretch l. We say that G is an unpredictable function of stretch l if for every
probabilistic poly-time algorithm B, there is a negligible function ε : N → [0, 1] such that for all
n ∈ N,

Pr
x∈R{0,1}n
y=G(x)

i∈R{1,...,l(n)}

(B(1n, y1, . . . , yi−1) = yi) ≤
1

2
+ ε(n).

• It is easy to see that a predictor B for a function G of stretch l breaks pseudorandomness:

– Define A(y) as 1 if l(n) = |y| and B(1n, y1, . . . , yl(n)−1) = yl(n), and 0 otherwise

– Then there exists an ε such that for all n ∈ N,

Pr(A(Ul(n)) = 1) ≤ 1

2
+ ε(n)

– For 2ε (as well as any other negligible function), there is an n0 such that

Pr(A(G(Un)) = 1) ≥ 1

2
+ 2ε(n0)

|Pr(A(G(Un0
)) = 1)− Pr(A(Ul(n0)) = 1)| ≥ ε(n0)

Theorem 2 (Yao, 1982). Let G be an unpredictable function of stretch l. Then G is a secure
pseudorandom generator. Moreover, for every probabilistic polynomial-time algorithm A, there
exists a probabilistic polynomial-time algorithm B such that for every n ∈ N and ε > 0, if
Pr(A(G(Un)) = 1)− Pr(A(Ul(n)) = 1) ≥ ε, then

Pr
x∈R{0,1}n
y=G(x)

i∈R{1,...,l(n)}

(B(1n, y1, . . . , yi−1) = yi) ≥
1

2
+

ε

l(n)
.

Proof. It suffices to prove the second part of the theorem. Assuming the second part and that G
is not a PRG, there is some algorithm A and c ∈ N such that for infinitely many n ∈ N, we have

|Pr(A(G(Un)) = 1)− Pr(A(Ul(n)) = 1)| ≥ n−c.

We can ensure that the above holds without the absolute value (we might need to replace A with
1 − A); then by our assumption there is a predictor B that succeeds with probability at least
1
2 + n−c

l(n) .

We now prove the second part. Let A be more likely to output 1 for inputs drawn from G(Un)
than Ul(n). We now define B; on input (1n, y1, . . . , yi−1), B draws bits zi, . . . , zl(n) independently
and uniformly at random, and outputs zi if A(y1, . . . , yi−1, zi, . . . , zl(n)) = 1; otherwise, B outputs
1− zi.

The next step is called the hybrid argument. For every i, we define the distribution Di; choose
x ∈R {0, 1}n and let y = G(x), draw bits zi+1, . . . , zl(n) independently and uniformly at random,
and output y1, . . . , yi, zi+1, . . . , zl(n). We define pi = Pr(A(Di) = 1) and compute

ε ≤ pl(n)−p0 = (pl(n)−pl(n)−1)+(pl(n)−1−pl(n)−2)+. . .+(p1−p0) = l(n)·Ei∈{1,...,l(n)}(pi−pi−1).

5

We also have for all i ∈ {1, . . . , l(n)},

Pr
x∈R{0,1}n
y=G(x)

(B(1n, y1, . . . , yi−1) = yi) =
1

2
Pr(A(Di) = 1|zi = yi) +

1

2
(1− Pr(A(Di) = 1|zi = 1− yi))

=
1

2
− Pr(A(Di) = 1) + Pr(A(Di) = 1|zi = yi) =

1

2
+ pi − pi−1.

Now we can combine the results to get

Pr
x∈R{0,1}n
y=G(x)

i∈R{1,...,l(n)}

(B(1n, y1, . . . , yi−1) = yi) = Ei∈{1,...,l(n)}(Pr
x∈R{0,1}n
y=G(x)

(B(1n, y1, . . . , yi−1) = yi))

=
1

2
+ Ei∈{1,...,l(n)}(pi − pi−1) ≥ 1

2
+

ε

l(n)
.

HW: Complete the construction of a computationally secure encryption scheme that uses short
keys against a poly-time adversary.

• Missing ingredient: Goldreich-Levin

– If f is a one-way permutation of length n, then G(x, r) = (f(x), r, x� r) is a PRG of
stretch 1.

• Yao’s theorem: extension to arbitrary stretch

• Then otp can be used

– Keys should never be reused if XOR-ed directly: (x⊕ k)⊕ (x′ ⊕ k) = x⊕ x′

– Either use each key only once, or combine otp with Goldreich-Goldwasser-Micali
(GGM)!

– GGM construction: suppose G is a n-to-2n PRG; rather than sending x ⊕ k, choose
r ∈R {0, 1}n and send (r, x ⊕ fk(r)), where fk(r) = Gkn

(. . . (Gk2
(Gk1

(r))) . . .) and
G0(r), G1(r) are the left and right half of G(r), respectively

– Another application: MAC (Message Authentication Code)—send (x, r, fk(x, r)) to
ensure integrity of x

Zero-knowledge proofs

• In order to convince somebody that a statement is true, we might want to avoid saying
why it is true

– We know a way to save millions for a future employer—say an airline where we have
a more efficient flight schedule—we want to prove this during the job interview, but
without revealing any details about the schedule

– Idea: run an interactive probabilistic proof where the verifier learns only what it could
have computed by itself, without interaction

6

– Formal definition of perfect zero knowledge for L ∈ IP∩NP and prover P for L: For
every probabilistic polynomial-time interactive strategy V ∗, there exists an expected
probabilistic polynomial-time (stand-alone) algorithm S∗ such that for all x ∈ L and
certificates u,

outV ∗〈P (x, u), V ∗(x)〉 ≡ S∗(x).

• This condition can be relaxed (Exercise 9.17)

• Simulation is a central idea in enabling security through crypto (Exercise 9.9, semantic
security; Section 9.5.4, secure multi-party computation)

Zero-knowledge proof for graph isomorphism

Public input: graphs G0, G1 with n vertices
Prover’s private input: permutation π : [n] → [n] such that G1 = π(G0) (π permutes rows and
columns of adjacency matrix)

P

G0, G1, π

V

G0, G1

π′ ∈R [n]→ [n]
G = π′(G1)

G

π0 := π′ ◦ π
π1 := π′

b ∈R {0, 1}

b

πb

πb(G0) = G

• Completeness: if P and V follow the protocol, V accepts with probability 1 HW: Perfect
zero
knowledge• Soundness: if G0 and G1 are not isomorphic, V rejects with probability 1

2 (there is a b for
which πb(G0) is not equal to G, and that b is chosen with probability 1

2)

Tossing coins over the phone

• Both parties contribute, last to reveal must secretly commit

• Assuming we have a one-way permutation fn, we can apply the Goldreich-Levin theorem

A B

choose xA, rA

(fn(xA), rA)

b ∈R {0, 1}
b

xA

(xA � rA)⊕ b (xA � rA)⊕ b

7

