Differences between revisions 3 and 24 (spanning 21 versions)
Revision 3 as of 2017-04-17 11:40:31
Size: 13593
Editor: rupak
Comment:
Revision 24 as of 2017-04-17 12:48:12
Size: 7245
Editor: rupak
Comment:
Deletions are marked like this. Additions are marked like this.
Line 7: Line 7:
Line 8: Line 9:
Line 10: Line 12:
Line 11: Line 14:
Line 13: Line 17:
Line 14: Line 19:
Line 15: Line 21:
Line 16: Line 23:
Line 31: Line 37:
Grading will be based on a written, open-notes, final exam. Open notes means that you are free to bring your notes to the exam. In order to appear for the exam, you have to turn in homework problems (to be assigned approximately biweekly), write up lecture notes for two lectures, and present a result to the class. Grading will be based on a written, open-notes, final exam. Open notes means that you are free to bring your notes to the exam. However, you may not use internet access on any device during an exam.
Line 33: Line 39:
 * '''Textbook''':
  . Class notes and research papers will be handed out.
In order to appear for the exam, you have to turn in homework problems (to be assigned approximately biweekly), write up lecture notes for two lectures, and present a result to the class.
Line 36: Line 41:
The text book Michael Sipser, Introduction to the theory of computation, contains the material we will cover in the first few weeks as well as the required background for the class.  * '''Text book'''
Line 38: Line 43:
 * '''Teamwork''':
  . Students may collaborate on homeworks, but each student needs to individually write up a solution set and be prepared to present it in class on the due date.
 * '''Logistics of Homework:'''
  . Homework exercises will be handed out every two weeks (weekday TBA). Your answers must be handed in until the day specified in the homework, at the end of the lecture. Answers can be handed in personally to any of the teaching assistants.
  .
The following text books cover most of the material (and much more):

 a. '''Michael Sipser''', ''Introduction to the theory of computation'', MIT Press

 b. '''Erich Graedel, Wolfgang Thomas, Thomas Wilke''', '' [[https://link.springer.com/book/10.1007/3-540-36387-4|Automata, Logics, and Infinite Games]]'', Springer

 c. '''Jeffrey Shallit''', A Second Course in Formal Languages and Automata Theory, Cambridge University Press

In addition, we shall provide lecture notes, surveys, or research papers for topics not covered in these books.

 * '''Homework:'''

Homework exercises will be handed out approximately every two weeks (weekday TBA). Your answers must be handed in until the day specified in the homework, at the beginning of the lecture.

 * '''Teamwork and Academic Honesty''':

Students may collaborate on homework assignments, but each student needs to individually write up a solution set and be prepared to present it in class on the due date. The work you submit in this course must be the result of your individual effort. You may discuss homework problems and general proof strategies or algorithms with other students in the course, but you must not collaborate in the detailed development or actual writing of problem sets. This implies that one student should never have in his or her possession a copy of all or part of another student's homework. It is your responsibility to protect your work from unauthorized access. In writing up your homework you are allowed to use any book, paper, or published material. However, you are not allowed to ask others for specific solutions, either in person or by using electronic forums such as newsgroups. Of course, during the administration of exams any form of cooperation or help is forbidden. Academic dishonesty has no place in a university; it wastes our time and yours, and it is unfair to the majority of students. Any dishonest behavior will be severely penalized and may lead to failure in the course.
Line 48: Line 65:
||<rowbgcolor="&quot" rowstyle="#B7AFA3&quot"2% style="&quot;font-weight:bold; &quot; ;text-align:center"># ||<4% style="&quot;font-weight:bold; &quot; ;text-align:center">Date ||<30% style="&quot;font-weight:bold; &quot; ;text-align:center">Course topic / lecture ||<20% style="&quot;font-weight:bold; &quot; ">Homework ||<35% style="&quot;font-weight:bold; &quot; ">Materials ||<9% style="&quot;font-weight:bold; &quot; ">Video ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L1 ||<style="text-align:center">April 23 ||<style="text-align:center">Introduction to formal verification || ||[[attachment:Lecture1.ppt|Lecture slides]]<<BR>>[[attachment:demillo.pdf|De Millo, Lipton, and Perlis. Social processes and proofs of programs.]] || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">- ||<style="text-align:center">April 25 || || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L2 ||<style="text-align:center">April 28 ||<style="text-align:center">Preliminaries: graph algorithms, automata theory ||[[attachment:hw1.pdf|Homework 1.]] Need not be turned in. ||[[attachment:Lecture2.pdf|Lecture notes]] || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L3 ||<style="text-align:center">April 30 ||<style="text-align:center">Preliminaries: propositional logic || ||[[attachment:Lecture3.pdf|Lecture notes]]<<BR>>[[http://ipsc.ksp.sk/2013/real/problems/l.html|Problem L (Labyrinth).]] [[https://github.com/fniksic/labyrinth|Solution]].<<BR>>[[http://try.ocamlpro.com|Try OCaml]], [[http://ocaml.org/learn/|Learn OCaml]], [[https://realworldocaml.org|Real World OCaml]] || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T1 ||<style="text-align:center">May 2 ||<style="text-align:center">Solutions to Homework 1. || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L4 ||<style="text-align:center">May 5 ||<style="text-align:center">The invariant verification problem. Enumerative invariant verification. Depth first search. Spin. || ||Notes from an unpublished text book by Rajeev Alur and Tom Henzinger: <<BR>> [[attachment:CavBook-1.pdf|The Reactive modules modeling language.]]<<BR>>[[attachment:CavBook-2.pdf|Invariant verification.]]<<BR>>[[http://spinroot.com/|SPIN]] web page. || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L5 ||<style="text-align:center">May 7 ||<style="text-align:center">Peterson's protocol. Heuristics for enumerative invariant verification. Symbolic invariant verification. Symbolic reachability. || ||[[attachment:CavBook-3.pdf|Alur and Henzinger. Symbolic graph representation.]] ||[[http://www.mpi-sws.org/seminars/vrs/2014-05-07_vrs.mpg|MPG (660 MB)]] ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T2 ||<style="text-align:center">May 9 ||<style="text-align:center">Q & A || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L6 ||<style="text-align:center">May 12 ||<style="text-align:center">Symbolic model checking with SAT || ||[[attachment:Sharad Malik MOD Chapter.pdf|Malik and Weissenbacher. Boolean satisfiability solvers: Techniques and extensions.]]<<BR>>[[attachment:NieOT-JACM-06.pdf|Nieuwenhuis, Oliveras, and Tinelli. Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).]] ||[[http://www.mpi-sws.org/seminars/vrs/2014-05-12_vrs.mpg|MPG (678 MB)]] ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L7 ||<style="text-align:center">May 14 ||<style="text-align:center">Implementing a SAT Solver. BDDs. ||[[attachment:hw2.pdf|Homework 2.]] Due May 28, 2014. || ||[[http://www.mpi-sws.org/seminars/vrs/2014-05-14_vrs.mp4|MP4 (529 MB)]] ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T3 ||<style="text-align:center">May 16 ||<style="text-align:center">Q & A || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L8 ||<style="text-align:center">May 19 ||<style="text-align:center">BDDs. || ||[[attachment:ieeetc86.pdf|Bryant. Graph-based algorithms for Boolean function manipulation. (The BDD paper.)]] ||[[http://www.mpi-sws.org/seminars/vrs/2014-05-19_vrs.mp4|MP4 (434 MB)]] ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L9 ||<style="text-align:center">May 21 ||<style="text-align:center">SMT. Timed automata and difference constraints. || ||[[attachment:Projects.pdf|Project suggestions.]]<<BR>>[[attachment:Timed Automata.pdf|Alur, Parthasarathy. Decision problems for timed automata: A survey.]] || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T4 ||<style="text-align:center">May 23 ||<style="text-align:center">Q & A || || ||[[http://www.mpi-sws.org/seminars/vrs/2014-05-23_vrs.mp4|MP4 (313 MB)]] ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L10 ||<style="text-align:center">May 26 ||<style="text-align:center">Symbolic execution. || ||[[attachment:cacm13.pdf|Cadar, Sen. Symbolic execution for software testing: Three decades later.]] || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L11 ||<style="text-align:center">May 28 ||<style="text-align:center">Inductive invariants. Abstraction. || || || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T5 ||<style="text-align:center">May 30 ||<style="text-align:center">Solutions to Homework 2. || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L12 ||<style="text-align:center">June 2 ||<style="text-align:center">Predicate abstraction and CEGAR. || ||[[attachment:SoftwareModelChecking.pdf|Survey on software model checking.]] || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L13 ||<style="text-align:center">June 4 ||<style="text-align:center">IC3. ||[[attachment:hw3.pdf|Homework 3.]] Due June 18, 2014. ||[[attachment:ic3_bradley.pdf|Bradley. SAT-based model checking without unrolling. (The IC3 paper.)]]<<BR>>[[attachment:ic3_tut.pdf|Somenzi, Bradley. IC3: Where monolithic and incremental meet. (The IC3 tutorial.)]] || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T6 ||<style="text-align:center">June 6 ||<style="text-align:center">Q & A || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">- ||<style="text-align:center">June 9 ||<style="text-align:center">Holiday (No lecture) || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L14 ||<style="text-align:center">June 11 ||<style="text-align:center">Interpolation-based model checking || ||[[attachment:McMillan-Interpolation.pdf|McMillan. Interpolation and SAT-based model checking.]] || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T7 ||<style="text-align:center">June 13 ||<style="text-align:center">Discussing projects || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L15 ||<style="text-align:center">June 16 ||<style="text-align:center">Simulation and Bisimulation || ||[[attachment:partition.pdf|Partition refinement]] || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L16 ||<style="text-align:center">June 18 ||<style="text-align:center">Simulation and Bisimulation || || || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T8 ||<style="text-align:center">June 20 ||<style="text-align:center">Solutions to Homework 3. || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L17 ||<style="text-align:center">June 23 ||<style="text-align:center">Well-structured Transition Systems || ||[[attachment:marktoberdorf-notes.pdf|Majumdar. Marktoberdorf 2013 lecture notes.]] || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">- ||<style="text-align:center">June 25 ||<style="text-align:center">Cancelled. || || || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T9 ||<style="text-align:center">June 27 ||<style="text-align:center">Q & A || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L18 ||<style="text-align:center">June 30 ||<style="text-align:center">Example: Concurrent programs || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L19 ||<style="text-align:center">July 2 ||<style="text-align:center">Safe Temporal Logic (STL) ||[[attachment:hw4.pdf|Homework 4.]] Due July 9/July 16, 2014. ||[[attachment:stl.pdf|Notes on STL]] || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T10 ||<style="text-align:center">July 4 ||<style="text-align:center">Q & A || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L20 ||<style="text-align:center">July 7 ||<style="text-align:center">Model checking STL || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L21 ||<style="text-align:center">July 9 ||<style="text-align:center">Safety vs liveness ||[[attachment:Endterm.pdf|Practice exam]] ||[[attachment:safetyvsliveness.pdf|Safety and liveness]] (We did not cover all the material) || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">- ||<style="text-align:center">July 11 ||<style="text-align:center">Cancelled || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L22 ||<style="text-align:center">July 14 ||<style="text-align:center">CTL || ||[[attachment:CTL.pdf|CTL]] (For reading about linear time logics and automata: [[attachment:automata.pdf|Automata-theoretic verification]] || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L23 ||<style="text-align:center">July 16 ||<style="text-align:center">Model checking CTL ||[[attachment:exam-solutions.pdf|Solutions to the Practice Exam]] || || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T11 ||<style="text-align:center">July 18 ||<style="text-align:center">Solutions to Homework 4. '''Moved to 10:00 am!''' || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">- ||<style="text-align:center">July 21 ||<style="text-align:center">No lecture (preperation time for project presentations) || || || ||
||<rowbgcolor="&quot" rowstyle="#F5FAFA&quot"style="text-align:center">L24 ||<style="text-align:center">July 23 ||<style="text-align:center">Project presentations || || || ||
||<rowbgcolor="&quot" rowstyle="#C1DAD6&quot"style="text-align:center">T12 ||<style="text-align:center">July 25 ||<style="text-align:center">Preparation for exam ||[[attachment:hw5.pdf|Homework 5.]] (No due date) || || ||
This schedule is preliminary and subject to change.
||# ||<style="font-weight:bold; text-align:center">Date ||<style="font-weight:bold;text-align:center">Course topic / lecture ||<style="font-weight:bold; ">Homework ||<style="font-weight:bold;">Additional Materials (lecture notes/papers) || ||
||L1 ||<style="text-align:center">April 18 || Introduction to the course. Review of finite automata. Basic constructions. || || || ||
||L2 ||<style="text-align:center">April 19 || Review of complexity classes. Further constructions on finite automata. || || || ||
||L3 ||<style="text-align:center">April 25 || (Weak) monadic second order logics on words (WS1S). Buchi-Elgot theorem. || || || ||
||L4 ||<style="text-align:center">April 26 || Antichains. Transducers. Alternating automata. || || || ||

||L5 ||<style="text-align:center">May 02 || Automata minimization: Myhill-Nerode theorem, non-determinism. || || || ||
||L6 ||<style="text-align:center">May 03 || Automata learning: Passive learning, L*. || || || ||
||L7 ||<style="text-align:center">May 09 || Applications of finite automata and learning. libalf. || || || ||
||L8 ||<style="text-align:center">May 10 || Spill slot. || || || ||
||L9 ||<style="text-align:center">May 16 || Omega automata: Buchi, co-Buchi, Rabin, Streett. || || || ||
||L10 ||<style="text-align:center">May 17 || Conversions between automata. Deterministic and non-deterministic automata. || || || ||

||L11 ||<style="text-align:center">May 23 || MSO (S1S) and Buchi's theorem. || || || ||
||L12 ||<style="text-align:center">May 24 || Determinization of automata. || || || ||
||L13 ||<style="text-align:center">May 30 || Determinization of automata. || || || ||
||L14 ||<style="text-align:center">May 31 || Alternating omega-automata: Miyano and Hayashi's construction. || || || ||
||L15 ||<style="text-align:center">June 06 || Linear temporal logic. Automata-theoretic model checking. || || || ||

||L16 ||<style="text-align:center">June 07 || Overflow: Applications, tools, open problems. || || || ||
||L17 ||<style="text-align:center">June 13 || Church's problem. Realizability. Games and synthesis. || || || ||
||L18 ||<style="text-align:center">June 14 || Safety, reachability, Buchi, parity games. || || || ||

||L19 ||<style="text-align:center">June 20 || Parity games and mu-calculus. || || || ||
||L20 ||<style="text-align:center">June 21 || Bounded synthesis. || || || ||
||L21 ||<style="text-align:center">July 04 || Tree automata and decidability of S2S || || || ||
||L22 ||<style="text-align:center">July 05 || Beyond regularity: nested word automata. || || || ||
||L23 ||<style="text-align:center">July 11 || Context free languages. Parikh's theorem. || || || ||
||L24 ||<style="text-align:center">July 12 || Timed automata. || || || ||

||L25 ||<style="text-align:center">July 18 || TBD. || || || ||
||L26 ||<style="text-align:center">July 19 || TBD. || || || ||

Course: Advanced Automata Theory

Summer 2017

Introduction

  • Syllabus and contents.

We shall study automata on finite/infinite words and trees and their relationship to logic and computer-aided verification of systems.

  • Intended Audience.

Computer science or math students with background in logic and theory of computation. (Familiarity with basic algorithms, logic, and theory of computation will be assumed). Talk to the instructor if you are not sure if you have the background. We shall try to keep the class self-contained, please attend the initial lecture for background material.

Further, I expect you (1) have "mathematical maturity" (e.g., you should be comfortable with proofs and abstract reasoning); (2) are interested in the material; and (3) are willing to spend time outside of class in order to better understand the material presented in lectures.

  • Grading

Grading will be based on a written, open-notes, final exam. Open notes means that you are free to bring your notes to the exam. However, you may not use internet access on any device during an exam.

In order to appear for the exam, you have to turn in homework problems (to be assigned approximately biweekly), write up lecture notes for two lectures, and present a result to the class.

  • Text book

The following text books cover most of the material (and much more):

  1. Michael Sipser, Introduction to the theory of computation, MIT Press

    b. Erich Graedel, Wolfgang Thomas, Thomas Wilke, Automata, Logics, and Infinite Games, Springer

    c. Jeffrey Shallit, A Second Course in Formal Languages and Automata Theory, Cambridge University Press

In addition, we shall provide lecture notes, surveys, or research papers for topics not covered in these books.

  • Homework:

Homework exercises will be handed out approximately every two weeks (weekday TBA). Your answers must be handed in until the day specified in the homework, at the beginning of the lecture.

  • Teamwork and Academic Honesty:

Students may collaborate on homework assignments, but each student needs to individually write up a solution set and be prepared to present it in class on the due date. The work you submit in this course must be the result of your individual effort. You may discuss homework problems and general proof strategies or algorithms with other students in the course, but you must not collaborate in the detailed development or actual writing of problem sets. This implies that one student should never have in his or her possession a copy of all or part of another student's homework. It is your responsibility to protect your work from unauthorized access. In writing up your homework you are allowed to use any book, paper, or published material. However, you are not allowed to ask others for specific solutions, either in person or by using electronic forums such as newsgroups. Of course, during the administration of exams any form of cooperation or help is forbidden. Academic dishonesty has no place in a university; it wastes our time and yours, and it is unfair to the majority of students. Any dishonest behavior will be severely penalized and may lead to failure in the course.

Announcements

  • The first lecture is on April 18, 2017.

Schedule

This schedule is preliminary and subject to change.

#

Date

Course topic / lecture

Homework

Additional Materials (lecture notes/papers)

L1

April 18

Introduction to the course. Review of finite automata. Basic constructions.

L2

April 19

Review of complexity classes. Further constructions on finite automata.

L3

April 25

(Weak) monadic second order logics on words (WS1S). Buchi-Elgot theorem.

L4

April 26

Antichains. Transducers. Alternating automata.

L5

May 02

Automata minimization: Myhill-Nerode theorem, non-determinism.

L6

May 03

Automata learning: Passive learning, L*.

L7

May 09

Applications of finite automata and learning. libalf.

L8

May 10

Spill slot.

L9

May 16

Omega automata: Buchi, co-Buchi, Rabin, Streett.

L10

May 17

Conversions between automata. Deterministic and non-deterministic automata.

L11

May 23

MSO (S1S) and Buchi's theorem.

L12

May 24

Determinization of automata.

L13

May 30

Determinization of automata.

L14

May 31

Alternating omega-automata: Miyano and Hayashi's construction.

L15

June 06

Linear temporal logic. Automata-theoretic model checking.

L16

June 07

Overflow: Applications, tools, open problems.

L17

June 13

Church's problem. Realizability. Games and synthesis.

L18

June 14

Safety, reachability, Buchi, parity games.

L19

June 20

Parity games and mu-calculus.

L20

June 21

Bounded synthesis.

L21

July 04

Tree automata and decidability of S2S

L22

July 05

Beyond regularity: nested word automata.

L23

July 11

Context free languages. Parikh's theorem.

L24

July 12

Timed automata.

L25

July 18

TBD.

L26

July 19

TBD.

Courses/AdvancedAutomataTheory-SS2017 (last edited 2018-03-29 06:38:49 by neider)