Differences between revisions 15 and 20 (spanning 5 versions)
Revision 15 as of 2017-04-17 11:59:00
Size: 12380
Editor: rupak
Comment:
Revision 20 as of 2017-04-17 12:19:25
Size: 7003
Editor: rupak
Comment:
Deletions are marked like this. Additions are marked like this.
Line 43: Line 43:
The following text books cover most of the material: The following text books cover most of the material (and much more):
Line 45: Line 45:
 a. '''Michael Sipser''', ''Introduction to the theory of computation'', MIT Press b. '''Graedel, Thomas, Wilke''', '' [[https://link.springer.com/book/10.1007/3-540-36387-4|Automata, Logics, and Infinite Games]]'', Springer  a. '''Michael Sipser''', ''Introduction to the theory of computation'', MIT Press

b. '''Erich Graedel, Wolfgang Thomas, Thomas Wilke''', '' [[https://link.springer.com/book/10.1007/3-540-36387-4|Automata, Logics, and Infinite Games]]'', Springer
Line 62: Line 64:
||# ||<4% style="&quot; &amp; quot; &amp; amp; quot; &amp; amp; amp; quot;font-weight:bold; &amp; amp; amp; quot; ;text-align:center&amp; amp; quot; &amp; quot; &quot; ">Date ||<30% style="&quot; &amp; quot; &amp; amp; quot; &amp; amp; amp; quot;font-weight:bold; &amp; amp; amp; quot; ;text-align:center&amp; amp; quot; &amp; quot; &quot; ">Course topic / lecture ||<20% style="&quot; &amp; quot; &amp; amp; quot; &amp; amp; amp; quot;font-weight:bold; &amp; amp; amp; quot; &amp; amp; quot; &amp; quot; &quot; ">Homework ||<35% style="&quot; &amp; quot; &amp; amp; quot; &amp; amp; amp; quot;font-weight:bold; &amp; amp; amp; quot; &amp; amp; quot; &amp; quot; &quot; ">Additional Materials (lecture notes/papers) || ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #F5FAFA&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; &quot;"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">L1 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">April 23 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Introduction to formal verification || || || ||
||rowstyle="&quot; &amp; quot; &amp; amp; quot; #C1DAD6&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;"> ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">April 25 || || || || ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #F5FAFA&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">L2 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">April 28 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Preliminaries: graph algorithms, automata theory ||[[attachment:hw1.pdf|Homework 1.]] Need not be turned in. ||[[attachment:Lecture2.pdf|Lecture notes]] || ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #F5FAFA&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">L3 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">April 30 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Preliminaries: propositional logic || ||[[attachment:Lecture3.pdf|Lecture notes]]<<BR>>[[http://ipsc.ksp.sk/2013/real/problems/l.html|Problem L (Labyrinth).]] [[https://github.com/fniksic/labyrinth|Solution]].<<BR>>[[http://try.ocamlpro.com|Try OCaml]], [[http://ocaml.org/learn/|Learn OCaml]], [[https://realworldocaml.org|Real World OCaml]] || ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #C1DAD6&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">T1 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">May 2 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Solutions to Homework 1. || || || ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #F5FAFA&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">L4 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">May 5 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">The invariant verification problem. Enumerative invariant verification. Depth first search. Spin. || ||Notes from an unpublished text book by Rajeev Alur and Tom Henzinger: <<BR>> [[attachment:CavBook-1.pdf|The Reactive modules modeling language.]]<<BR>>[[attachment:CavBook-2.pdf|Invariant verification.]]<<BR>>[[http://spinroot.com/|SPIN]] web page. || ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #F5FAFA&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">L5 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">May 7 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Peterson's protocol. Heuristics for enumerative invariant verification. Symbolic invariant verification. Symbolic reachability. || ||[[attachment:CavBook-3.pdf|Alur and Henzinger. Symbolic graph representation.]] ||[[http://www.mpi-sws.org/seminars/vrs/2014-05-07_vrs.mpg|MPG (660 MB)]] ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #C1DAD6&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">T2 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">May 9 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Q & A || || || ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #F5FAFA&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">L6 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">May 12 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Symbolic model checking with SAT || ||[[attachment:Sharad Malik MOD Chapter.pdf|Malik and Weissenbacher. Boolean satisfiability solvers: Techniques and extensions.]]<<BR>>[[attachment:NieOT-JACM-06.pdf|Nieuwenhuis, Oliveras, and Tinelli. Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).]] ||[[http://www.mpi-sws.org/seminars/vrs/2014-05-12_vrs.mpg|MPG (678 MB)]] ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #F5FAFA&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">L7 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">May 14 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Implementing a SAT Solver. BDDs. ||[[attachment:hw2.pdf|Homework 2.]] Due May 28, 2014. || ||[[http://www.mpi-sws.org/seminars/vrs/2014-05-14_vrs.mp4|MP4 (529 MB)]] ||
||<rowstyle="&quot; &amp; quot; &amp; amp; quot; #C1DAD6&amp; amp; amp; quot&amp; amp; quot; ; &amp; amp; amp; quot&amp; amp; quot&amp; quot; ; &amp; amp; quot&amp; quot&quot; ;&amp;quot&quot"style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">T3 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">May 16 ||<style="&quot; &amp; quot; &amp; amp; quot;text-align:center&amp; amp; quot; &amp; quot; &quot;">Q & A || || || ||
||# ||<style="font-weight:bold; text-align:center">Date ||<style="font-weight:bold;text-align:center">Course topic / lecture ||<style="font-weight:bold; ">Homework ||<style="font-weight:bold;">Additional Materials (lecture notes/papers) || ||
||L1 ||<style="text-align:center">April 18 || Introduction to the course. Review of finite automata. Basic constructions. || || || ||
||L2 ||<style="text-align:center">April 19 || Constructions on finite automata. || || || ||
||L3 ||<style="text-align:center">April 25 || Automata minimization: Myhill-Nerode theorem, non-determinism. || || || ||
||L4 ||<style="text-align:center">April 26 || Automata learning: Passive learning, L*. || || || ||
||L5 ||<style="text-align:center">May 02 || Antichains and implementations. || || || ||
||L6 ||<style="text-align:center">May 03 || Alternating automata. || || || ||
||L7 ||<style="text-align:center">May 09 || Applications. Open problems. || || || ||
||L8 ||<style="text-align:center">May 10 || (Weak) monadic second order logics on words (WS1S). Buchi-Elgot theorem. || || || ||
||L9 ||<style="text-align:center">May 16 || Omega automata: Buchi, co-Buchi, Rabin, Streett. || || || ||
||L10 ||<style="text-align:center">May 17 || Conversions between automata. Deterministic and non-deterministic automata. || || || ||
||L11 ||<style="text-align:center">May 23 || MSO (S1S) and Buchi's theorem. || || || ||
||L12 ||<style="text-align:center">May 24 || Determinization of automata. || || || ||
||L13 ||<style="text-align:center">May 30 || Determinization of automata. || || || ||
||L14 ||<style="text-align:center">May 31 || Alternating automata. || || || ||
||L15 ||<style="text-align:center">June 06 || Linear temporal logic. Automata-theoretic odel checking. || || || ||
||L16 ||<style="text-align:center">June 07 || Overflow: Applications, tools, open problems. || || || ||
||L17 ||<style="text-align:center">June 13 || Church's problem. Realizability. Games and synthesis. || || || ||
||L18 ||<style="text-align:center">June 14 || Safety, reachability, Buchi, parity games. || || || ||
||L19 ||<style="text-align:center">June 20 || Parity games: algorithms. || || || ||
||L20 ||<style="text-align:center">June 21 || Tree automata and decidability of S2S || || || ||
||L21 ||<style="text-align:center">July 04 || Tree automata and decidability of S2S || || || ||
||L22 ||<style="text-align:center">July 05 || Beyond regularity: nested word automata. || || || ||
||L23 ||<style="text-align:center">July 11 || Advanced topics. Parikh's theorem. || || || ||
||L23 ||<style="text-align:center">July 12 || Advanced topics. Parikh's theorem. || || || ||
||L23 ||<style="text-align:center">July 18 || Advanced topics. Parikh's theorem. || || || ||
||L23 ||<style="text-align:center">July 19 || Advanced topics. Parikh's theorem. || || || ||

Course: Advanced Automata Theory

Summer 2017

Introduction

  • Syllabus and contents.

We shall study automata on finite/infinite words and trees and their relationship to logic and computer-aided verification of systems.

  • Intended Audience.

Computer science or math students with background in logic and theory of computation. (Familiarity with basic algorithms, logic, and theory of computation will be assumed). Talk to the instructor if you are not sure if you have the background. We shall try to keep the class self-contained, please attend the initial lecture for background material.

Further, I expect you (1) have "mathematical maturity" (e.g., you should be comfortable with proofs and abstract reasoning); (2) are interested in the material; and (3) are willing to spend time outside of class in order to better understand the material presented in lectures.

  • Grading

Grading will be based on a written, open-notes, final exam. Open notes means that you are free to bring your notes to the exam. However, you may not use internet access on any device during an exam.

In order to appear for the exam, you have to turn in homework problems (to be assigned approximately biweekly), write up lecture notes for two lectures, and present a result to the class.

  • Text book

The following text books cover most of the material (and much more):

  1. Michael Sipser, Introduction to the theory of computation, MIT Press

    b. Erich Graedel, Wolfgang Thomas, Thomas Wilke, Automata, Logics, and Infinite Games, Springer

In addition, we shall provide lecture notes, surveys, or research papers for topics not covered in these books.

  • Homework:

Homework exercises will be handed out approximately every two weeks (weekday TBA). Your answers must be handed in until the day specified in the homework, at the beginning of the lecture.

  • Teamwork and Academic Honesty:

Students may collaborate on homework assignments, but each student needs to individually write up a solution set and be prepared to present it in class on the due date. The work you submit in this course must be the result of your individual effort. You may discuss homework problems and general proof strategies or algorithms with other students in the course, but you must not collaborate in the detailed development or actual writing of problem sets. This implies that one student should never have in his or her possession a copy of all or part of another student's homework. It is your responsibility to protect your work from unauthorized access. In writing up your homework you are allowed to use any book, paper, or published material. However, you are not allowed to ask others for specific solutions, either in person or by using electronic forums such as newsgroups. Of course, during the administration of exams any form of cooperation or help is forbidden. Academic dishonesty has no place in a university; it wastes our time and yours, and it is unfair to the majority of students. Any dishonest behavior will be severely penalized and may lead to failure in the course.

Announcements

  • The first lecture is on April 18, 2017.

Schedule

This schedule is preliminary and subject to change.

#

Date

Course topic / lecture

Homework

Additional Materials (lecture notes/papers)

L1

April 18

Introduction to the course. Review of finite automata. Basic constructions.

L2

April 19

Constructions on finite automata.

L3

April 25

Automata minimization: Myhill-Nerode theorem, non-determinism.

L4

April 26

Automata learning: Passive learning, L*.

L5

May 02

Antichains and implementations.

L6

May 03

Alternating automata.

L7

May 09

Applications. Open problems.

L8

May 10

(Weak) monadic second order logics on words (WS1S). Buchi-Elgot theorem.

L9

May 16

Omega automata: Buchi, co-Buchi, Rabin, Streett.

L10

May 17

Conversions between automata. Deterministic and non-deterministic automata.

L11

May 23

MSO (S1S) and Buchi's theorem.

L12

May 24

Determinization of automata.

L13

May 30

Determinization of automata.

L14

May 31

Alternating automata.

L15

June 06

Linear temporal logic. Automata-theoretic odel checking.

L16

June 07

Overflow: Applications, tools, open problems.

L17

June 13

Church's problem. Realizability. Games and synthesis.

L18

June 14

Safety, reachability, Buchi, parity games.

L19

June 20

Parity games: algorithms.

L20

June 21

Tree automata and decidability of S2S

L21

July 04

Tree automata and decidability of S2S

L22

July 05

Beyond regularity: nested word automata.

L23

July 11

Advanced topics. Parikh's theorem.

L23

July 12

Advanced topics. Parikh's theorem.

L23

July 18

Advanced topics. Parikh's theorem.

L23

July 19

Advanced topics. Parikh's theorem.

Courses/AdvancedAutomataTheory-SS2017 (last edited 2018-03-29 06:38:49 by neider)