Algorithm 1: Partition refinement algorithm

Input: A DFA $\mathcal{A} = (Q, q_0, \Sigma, \delta, F)$

1 Initialize initial partition (B_1, B_2) with $B_1 \leftarrow F$ and $B_2 \leftarrow Q \setminus F$

2 while there exist sets B_i, B_j , states $p, q \in B_j$, and $a \in \Sigma$ such that $\delta(p, a) \in B_j \Leftrightarrow \delta(q, a) \notin B_j$ do

3 | Split B_i into $\{p \in B_i \mid \delta(p, a) \in B_j\}$ and $\{p \in B_i \mid \delta(p, a) \notin B_j\}$ **4** end

5 return $\sim_{\mathcal{A}}$ such that $p \sim_{\mathcal{A}} q$ if and only if $p, q \in B_{\ell}$ for some ℓ

Algorithm 2: Bisimulation marking algorithm

Input: Two LTS $\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, \Delta_{\mathcal{A}})$ and $\mathcal{B} = (Q_{\mathcal{B}}, \Sigma, \Delta_{\mathcal{B}})$

1 Mark $(p,q) \in Q_{\mathcal{A}} \times Q_{\mathcal{B}}$ if $p \in F_{\mathcal{A}} \not\Leftrightarrow q \in F_{\mathcal{B}}$

 $\mathbf{2}$ while some states have been marked in the last iteration \mathbf{do}

- **3** Mark each previously unmarked pair (p,q) for which a $(p,a,p') \in \Delta_{\mathcal{A}}$ exists such that for each $(q, a, q') \in \Delta_{\mathcal{B}}$ the pair (p', q') is marked
- 4 Mark each previously unmarked pair (p, q) for which a $(q, a, q') \in \Delta_{\mathcal{B}}$ exists such that for each $(p, a, p') \in \Delta_{\mathcal{A}}$ the pair (p', q') is marked

5 end

6 return all marked pairs of states