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This article is a self-contained introduction to the theory of finite-state automata
on infinite words. The study of automata on infinite inputs was initiated by Büchi
in order to settle certain decision problems arising in logic. Subsequently, there
has been a lot of fundamental work in this area, resulting in a rich and elegant
mathematical theory. In recent years, there has been renewed interest in these
automata because of the fundamental role they play in the automatic verification
of finite-state systems.

Introduction

Büchi initiated the study of finite-state automata working on infinite inputs in
[1]. He was interested in showing that the monadic second order logic of infinite
sequences (S1S) was decidable. Büchi discovered a deep and elegant connection
between sets of models of formulas in this logic and ω-regular languages, the class
of languages over infinite words accepted by finite-state automata.

A few years later, Muller independently proposed an alternative definition of
finite-state automata on infinite inputs [2]. His work was motivated by questions in
switching theory.

The theory of ω-regular languages and automata on infinite words is substan-
tially more complex than the corresponding theory for finite words. This was evident
from Büchi’s initial work, where he showed that non-deterministic automata over
infinite inputs are strictly more powerful than deterministic automata. This means
that basic constructions like complementation are correspondingly more intricate
for this class of automata.

During the 1960’s, fundamental contributions were made to this area. Mc-
Naughton proved that with Muller’s definition, deterministic automata suffice for
recognizing all ω-regular languages [3]. Later, Rabin extended Büchi’s decidability
result for S1S to the monadic second order of the infinite binary tree (S2S) [4]. The
logical theory S2S is extremely expressive and Rabin’s theorem can be used to settle
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a number of decision problems in logic.
Despite this strong connection between automata on infinite inputs and the

decidability of logical theories, there was a lull in the area during the 1970’s. One
reason for this was Meyer’s negative result about the complexity of the automata-
theoretic decision procedure for S1S and S2S [5]—he showed that, in the worst case,
the automata that one constructs would be hopelessly large and impossible to use
in practice.

Since the 1980s, however, there has been renewed interest in applying automata
on infinite words to solve problems in logic. To a large extent, this is a consequence
of the development of temporal logic as a formalism for specifying and verifying
properties of programs [6, 7]. It turns out that automata on infinite words (and
trees) can be directly applied to settle important questions in temporal logic, without
invoking S1S and S2S. In conjunction with these new applications, there has been
greater emphasis on evaluating the complexity of different constructions on these
automata [8–11].

In this article, we present a self-contained introduction to the theory of finite-
state automata on infinite words. We begin with some preliminaries on the notation
we will use in the paper. In Section 1.1, we introduce Büchi automata and ω-regular
languages and prove some basic results. The next section describes in detail the
connection between ω-regular languages and formulas of S1S. In Section 1.3, we look
at stronger definitions of automata, proposed by Muller, Rabin and Streett. The
last technical section, Section 1.4, describes in detail a determinization construction
for Büchi automata. We conclude with a quick summary of various aspects of the
theory that could not be discussed in this article.

For a more detailed introduction to the area, the reader is encouraged to consult
the excellent survey by Thomas [12]. This chapter—especially Sections 1.1 and
1.2—draws heavily on the material presented in [12].

Notation

Throughout this article, Σ denotes a finite set of symbols called an alphabet. A word
is a sequence of symbols from Σ. The set Σ∗ denotes the set of finite words over Σ
while the set Σω is the set of infinite words over Σ. A language is a set of words.
Every language we consider either consists exclusively of finite words or exclusively
of infinite words.

Typically, elements of Σ will be denoted a, b, c, . . . , finite words will be denoted
u, v, w, . . . , and infinite words will be denoted α,β, . . . . We use U, V, . . . to denote
languages of finite words—that is, subsets of Σ∗. L will be reserved for languages
consisting exclusively of infinite words.

An infinite word α ∈ Σω is an infinite sequence of symbols from Σ. We shall
represent α as a function α : N0 → Σ, where N0 is the set {0, 1, 2, . . .} of nat-
ural numbers. Thus, α(i) denotes the letter occurring at the ith position. For
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natural numbers m and n, m ≤ n, [m..n] will denote the set {m, m+1, . . . , n}
and [m..] the infinite set {m, m+1, . . .}. We let α[m..n] denote the finite word
α(m)α(m+1) · · ·α(n−1)α(n) occurring between positions m and n and α[m..] de-
note the infinite α(m)α(m+1) . . . starting at position m.

In general, if S is a set and σ an infinite sequence of symbols over S—in other
words, σ : N0 → S—then inf(σ) denotes the set of symbols from S that occur
infinitely often in σ. Formally, inf(σ) = {s ∈ S | ∃ωn ∈ N0 : σ(n) = s}, where ∃ω

denotes the quantifier “there exist infinitely many”.

1.1. Büchi automata

A Büchi automaton is a non-deterministic finite-state automaton that takes infinite
words as input. A word is accepted if the automaton goes through some designated
“good” states infinitely often while reading it.

Automata An automaton is a triple A = (S,→, Sin) where S is a finite set of
states, Sin ⊆ S is a set of initial states and → ⊆ S ×Σ× S is a transition relation.
Normally, we write s

a
−→ s′ to denote that (s, a, s′) ∈ →.

The automaton is said to be deterministic if Sin is a singleton and → is a
function from S × Σ to S.

We could have weakened the condition for deterministic automata by permitting
→ to be a partial function from S ×Σ to S. A “weak” deterministic automaton can
always be converted to a “strong” deterministic automaton by adding a “dump”
or “reject” state to take care of all missing transitions. Since it is often convenient
to assume that deterministic automata are “complete” and never get stuck when
reading their input, we shall stick to the stronger definition in this paper.

If u is a finite non-empty word, we write s
u
−→+ s′ to denote the fact that there

is a sequence of transitions labelled by u leading from s to s′. In other words, if
u = a1a2 · · · am, then s

u
−→+ s′ if there exist states s0, s1, . . . , sm such that s = s0

a1−→
s1

a2−→ · · ·
am−−→ sm = s′.

Runs Let A = (S,→, Sin) be an automaton and α : N0 → Σ an input word. A
run of A on α is a infinite sequence ρ : N0 → S such that ρ(0) ∈ Sin and for all

i ∈ N0, ρ(i)
α(i)
−−→ ρ(i+1).

A run of A on the finite word w = a0a1 . . . am is a sequence of states s0s1 . . . sm+1

such that s0 ∈ Sin and for all i ∈ [0..m], s1
α(i)
−−→ si+1.

So, a run is just a “legal” sequence of states that an automaton can pass through
while reading the input. In general, an input may admit many runs because of non-
determinism. Since a non-deterministic automaton may have states where there
are no outgoing transitions corresponding to certain input letters, it is also possible
that an input admits no runs—in this case, every potential run leads to a state
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from where there is no outgoing transition enabled for the next input letter. If the
automaton is deterministic, each input admits precisely one run.

Automata on finite words A finite-state automaton on finite words is a struc-
ture (A, F ) with A = (S,→, Sin) and F ⊆ S. The automaton A accepts an input
w = a0a1 . . . am if w admits a run s0s1 . . . sm+1 such that sm+1 ∈ F . The language
recognized by (A, F ), L(A, F ), is the set of all finite words accepted by (A, F ).

Throughout this article, we shall refer to languages recognized by finite-state
automata on finite words as regular languages. In other words, a set U ⊆ Σ∗ is
regular iff there is an automaton (A, F ) such that U = L(A, F ).

Our goal is to study automata that recognize languages of infinite words. The
first definition of such automata was proposed by Büchi [1].

Büchi automata A Büchi automaton is a pair (A, G) where A = (S,→, Sin) and
G ⊆ S. G denotes a set of good states. The automaton (A, G) accepts an input
α : N0 → Σ if there is a run ρ of A on α such that inf(ρ) ∩ G )= ∅. The language
recognized by (A, G), L(A, G), is the set of all infinite words accepted by (A, G). A
set L ⊆ Σω is said to be Büchi-recognizable if there is a Büchi automaton (A, G)
such that L = L(A, G).

According to the definition, a Büchi automaton accepts an input if there is a
run along which some subset of G occurs infinitely often. Since G is a finite set, it
is easy to see that there must actually be a state g ∈ G that occurs infinitely often
along σ. In other words, if we regard the state space of a Büchi automaton as a
graph, an accepting run traces an infinite path that starts at some state s in Sin,
reaches a good state g ∈ G and, thereafter, keeps looping back to g infinitely often
(see Figure 1.1).

s g

Fig. 1.1. A typical accepting run of a Büchi automaton, with s ∈ Sin and g ∈ G.

Example 1.1. Consider the alphabet Σ = {a, b}. Let L ⊆ Σω consist of all infinite
words α such that there are infinitely many occurrences of a in α. Figure 1.2 shows
a Büchi automaton recognizing L. The initial state is marked by an incoming
arrow. There is only one good state, which is indicated with a double circle. In
this automaton, all transitions labelled a lead into the good state and, conversely,
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all transitions coming into the good state are labelled a. From this, it follows that
the automaton accepts an infinite word iff it has infinitely many occurrences of a.

s1 s2

b

a

a b

Fig. 1.2. A Büchi automaton for L (Example 1.1)

The complement of L, which we denote L, is the set of all infinite words α such
that α has only finitely many occurrences of a. An automaton recognizing L is
shown in Figure 1.3. The automaton guesses a point in the input beyond which it
will see no more a’s—such a point must exist in any input with only a finite number
of a’s. Once it has made this guess, it can process only b’s—there is no transition
labelled a from the second state—so if it reads any more a’s it gets stuck.

s1 s2
b

a, b b

Fig. 1.3. A Büchi automaton for L (Example 1.1)

In the example, notice that the automaton recognizing L is deterministic while
the automaton for L is non-deterministic. We now show that the non-determinism
in the second case is unavoidable—that is, there is no deterministic automaton
recognizing L. This means that Büchi automata are fundamentally different from
their counterparts on finite inputs: we know that over finite words, deterministic
automata are as powerful as non-deterministic automata.

Limit languages Let U ⊆ Σ∗ be a language of finite strings. The limit of U ,
lim(U) is the set

{α ∈ Σω | ∃ωn ∈ N0 : α[0..n] ∈ U}.

So, a word belongs to lim(U) iff it has infinitely many prefixes in U . We then
have the following characterization of languages recognized by deterministic Büchi
automata.
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Theorem 1.2. A language L ⊆ Σω is recognizable by a deterministic Büchi au-
tomaton iff L is of the form lim(U) for some regular language U ⊆ Σ∗.

Proof. Let U be a regular language. Then, there exists a deterministic finite-
state automaton (DFA) of the form (A, F ) where A = (S,→, Sin) and F ⊆ S such
that (A, F ) recognizes U . It is easy to see that if we interpret F as a set of good
states, the Büchi automaton (A, F ) accepts lim(U).

Conversely, let L be recognized by a deterministic Büchi automaton (A, G).
Treat G as a set of final states and let U be the language recognized by the DFA
(A, G). Once again, it is easy to see that L = lim(U). !

We now show that the language L of Example 1.1 is not of the form lim(U) for
any language U . Recall that L is the set of all infinite words α over the alphabet
Σ = {a, b} such that α contains only finitely many occurrences of a.

Suppose that L = lim(U) for some U ⊆ Σ∗. Since bω ∈ L, there must be some
finite prefix bn1 ∈ U . Since, bn1abω ∈ L, we can then find a prefix bn1abn2 ∈ U .
From the fact that bn1abn2abω ∈ L, we obtain a prefix bn1abn2abn3 ∈ U . Proceeding
in this way, we get an infinite sequence of words {bn1 , bn1abn2 , bn1abn2abn3 , . . .} ⊆ U .
From this it follows that the infinite word β = bn1abn2abn3a · · · abnia · · · belongs to
lim(U). But β has infinitely many occurrences of a, so it certainly does not belong
to L, thus contradicting the assumption that L = lim(U).

From this observation and Example 1.1, we deduce the following corollary.

Corollary 1.3. Non-deterministic Büchi automata are strictly more powerful than
deterministic Büchi automata—there are languages recognized by non-deterministic
Büchi automata that cannot be recognized by any deterministic Büchi automaton.

1.1.1. Characterizing Büchi-recognizable languages

For finite words, we can characterize the class of languages recognized by non-
deterministic finite-state automata in a number of ways—for instance, in terms of
regular expressions, or in terms of syntactic congruences. In the same spirit, we
now describe a characterization of Büchi-recognizable languages of infinite words.
We first need to define the ω-iteration of a set of finite words. Let U ⊆ Σ∗. Then

Uω = {α ∈ Σω | α = u0u1u2 · · · where ui ∈ U for all i ∈ N0}.

Also, we observe that if U is a language of finite words and L is a language
of infinite words, we can define the language UL of infinite words obtained by
concatenating each finite word in U with an infinite word from L. Formally, UL =
{α | ∃u ∈ U : ∃β ∈ L : α = uβ}.

ω-regular languages A language L ⊆ Σω is said to be ω-regular if it is of the
form

⋃

i∈[1..n] UiV ω
i , where each Ui and Vi is a regular language of finite words.

Theorem 1.4. A language is Büchi-recognizable iff it is ω-regular.
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Proof.

(⇒): Let L be recognized by a Büchi automaton (A, G), where A = (S,→, Sin).
We have observed earlier that each infinite word α ∈ L admits an accepting run ρ
that begins in an initial state, reaches a good state g, and then loops back through
g infinitely often. For s, s′ ∈ S, let Vss′ = {w ∈ Σ∗ | s

w
−→+ s′} denote the set of

finite words that can lead from s to s′. It is easy to see that Vss′ is regular—to
recognize this set, use the non-deterministic automaton (S,→, {s}) with {s′} as the
set of final states. From our observation about accepting runs, it follows that we
can write L(A, G) as

⋃

s∈Sin, g∈G VsgV ω
gg .

(⇐): It is not difficult to show that the set of Büchi-recognizable languages satisfies
the following closure properties:

(i) If U is regular, then Uω is Büchi-recognizable.
(ii) If U is regular and L is Büchi-recognizable then UL is Büchi recognizable.
(iii) If L1, L2, . . . , Ln are Büchi-recognizable, so is

⋃

i∈[1..n] Li.

From this, it follows that every language of the form
⋃

i∈[1..n] UiV ω
i , where each Ui

and Vi is regular, is Büchi-recognizable. !

1.1.2. Constructions on Büchi automata

It turns out that the class of Büchi-recognizable languages is closed under boolean
operations and projection. These operations will be crucial when applying Büchi
automata to settle decision problems in logic.

Union To show closure under finite union (which we have already assumed when
proving the previous theorem!), let (A1, G1) and (A2, G2) be two Büchi automata.
To construct an automaton (A, G) such that L(A, G) = L(A1, G1) ∪ L(A2, G2), we
take A to be the disjoint union of A1 and A2. Since we are permitted to have a
set of initial states in A, we retain the initial states from both copies. If a run of
A starts in an initial state contributed by A1, it will never cross over into the state
space contributed by A2 and vice versa. Thus, we can set the good states of A to
be the union of the good states contributed by both components.

Complementation Showing that Büchi-recognizable languages are closed under
complementation is highly non-trivial. One problem is that we cannot determinize
Büchi automata, as we have observed in Corollary 1.3. Even if we could work with
deterministic automata, the formulation of Büchi acceptance is not symmetric with
respect to complementation in the following sense. Suppose (A, G) is a deterministic
Büchi automaton and α is an infinite word that does not belong to L(A, G). Then,
the (unique) run ρ

α
of A on α is such that inf(ρ

α
) ∩ G = ∅. Let G denote the

complement of G. It follows that inf(ρ
α
) ∩ G )= ∅, since some state must occur
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infinitely often in ρ
α
. It would be tempting to believe that the automaton (A, G)

recognizes Σω−L(A, G). However, there may be words that admit runs which visit
both G and G infinitely often. These words will be including both in L(A, G) as
well as in L(A, G). So, there is no convenient way to express the complement of a
Büchi condition again as a Büchi condition.

We shall postpone describing a complementation construction for Büchi au-
tomata until Section 1.4. Till then we shall, however, assume that we can comple-
ment these automata.

Intersection Turning to intersection, the natural way to intersect automata A1

and A2 is to construct an automaton whose state space is the cross product of the
state spaces of A1 and A2 and let both copies process the input simultaneously. For
finite words, the input is accepted if each copy can generate a run that reaches a
final state at the end of the word.

For infinite inputs, we have to use a more sophisticated product construction.
An infinite input α should be accepted by the product system provided both copies
generate runs that visit good states infinitely often. Unfortunately, there is no
guarantee that these runs will ever visit good states simultaneously—for instance,
it could be that the first run goes through a good state after α(0), α(2), . . . while
the second run enters good states after α(1), α(3), . . . So, the main question is
one of identifying the good states of the product system.

The key observation is that to detect that both components of the product visit
good states infinitely often, one need not record every point where the copies visit
good states; in each copy, it suffices to observe an infinite subsequence of the overall
sequence of good states. So, we begin by focusing on the first copy and waiting
for its run to enter a good state. When this happens, we switch attention to the
other copy and wait for a good state there. Once the second copy reaches a good
state, we switch back to the first copy and so on. Clearly, we will switch back
and forth infinitely often iff both copies visit their respective good states infinitely
often. Thus, we can characterize the good states of the product in terms of the
states where one switches back and forth.

Formally, the construction is as follows. Let (A1, G1) and (A2, G2) be two
Büchi automata such that Ai = (Si,→i, Si

in) for i = 1, 2. Define (A, G), where
A = (S,→, Sin), as follows:

• S = S1 × S2 × {1, 2}
• The transition relation → is defined as follows:

(s1, s2, 1)
a
−→ (s′1, s

′
2, 1) if s1

a
−→1 s′1, s2

a
−→2 s′2 and s1 /∈ G1.

(s1, s2, 1)
a
−→ (s′1, s

′
2, 2) if s1

a
−→1 s′1, s2

a
−→2 s′2 and s1 ∈ G1.

(s1, s2, 2)
a
−→ (s′1, s

′
2, 2) if s1

a
−→1 s′1, s2

a
−→2 s′2 and s2 /∈ G2.

(s1, s2, 2)
a
−→ (s′1, s

′
2, 1) if s1

a
−→1 s′1, s2

a
−→2 s′2 and s2 ∈ G2.

• Sin = {(s1, s2, 1) | s1 ∈ S1
in and s2 ∈ S2

in}
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• G = S1 × G2 × {2}.

In the automaton A, each product state carries an extra tag indicating whether
the automaton is checking for a good state on the first or the second component.
The automaton accepts if it switches focus from the second component to the first
infinitely often. (Notice that we could equivalently have defined G to be the set
G1 × S2 × {1}.) It is not difficult to verify that L(A, G) = L(A1, G1) ∩ L(A2, G2).

Projection Let Σ1 and Σ2 be alphabets such that |Σ2| ≤ |Σ1|. A projection
function from Σ1 to Σ2 is a surjective map π : Σ1 → Σ2. We can extend π from
individual letters to words as usual: if α ∈ Σω1 , π(α) denotes the word β where
β(i) = π(α(i)) for all i in N0.

Let L ⊆ Σω1 . Then π(L), the projection of L via π, is the language {β ∈ Σω2 |
∃α ∈ L : β = π(α)}. It is easy to verify that if L is Büchi-recognizable, then so
is π(L). Let (A1, G1) be an automaton recognizing L, where A1 = (S1,→1, S1

in).
We construct an automaton A2 = (S2,→2, S2

in) over Σ2 as follows: set S2 = S1,

S2
in = S1

in and s
b
−→2 s′ iff s

a
−→1 s′ for some a ∈ Σ1 such that π(a) = b. It is easy to

verify that (A2, G1) recognizes π(L).

Emptiness In applications, we will need to be able to check whether the language
accepted by a Büchi automaton is empty. To do this, we recall our observation that
any accepting run of a Büchi automaton must begin in an initial state, reach a final
state g and then cycle back to g infinitely often.

If we ignore the labels on the transitions, we can regard the state space of a
Büchi automaton (A, G) as a directed graph GA = (VA, EA) where VA = S and
(s, s′) ∈ EA iff for some a ∈ Σ, s

a
−→ s′. Recall that a set of vertices X in a directed

graph is a strongly connected component iff for every pair of vertices v, v′ ∈ X ,
there is a path from v to v′. Clearly, L(A, G) is non-empty iff there is a strongly
connected component X in GA such that X contains a vertex g from G and X is
reachable from one of the initial states. We thus have the following theorem.

Theorem 1.5. The emptiness problem for Büchi automata is decidable.

Notice that it is sufficient to analyze maximal strongly connected components
in GA in order to check that L(A, G) )= ∅. Computing the maximal strongly
connected components of a directed graph can be done in time linear in the size of
the graph [13], where the size of a graph G = (V, E) is, as usual, given by |V |+ |E|.
Checking reachability can also be done in linear time. So, if A has n states, checking
that L(A, G) )= ∅ can be done in time O(n2).
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1.2. The logic of sequences

Büchi’s original motivation for studying automata on infinite inputs was to solve a
decision problem from logic. He discovered a deep and beautiful connection between
ω-regular languages and sets of models of formulas in certain logics.

S1S

The logic that Büchi considered was the monadic second-order theory of one succes-
sor, abbreviated as S1S. This logic is interpreted over the set N0 of natural numbers.
In general, second-order logic permits quantification over relations and functions,
unlike first-order logic, which permits quantification over just individual elements.
However, the fact that we are dealing with a “monadic” second-order logic restricts
this extra power to quantification over one-place relations. Since a one-place re-
lation is just a subset, this effectively means that we can quantify over individual
elements of N0 and subsets of N0. The fact that we are dealing with “one successor”
means we are talking about N0 with the usual ordering where each element has a
unique successor. Permitting two successors, for instance, would produce the infi-
nite binary tree which has countably many nodes but has two successors for each
node.

Formally, the logical language S1S is defined as follows.

Terms A term in S1S is built up from the constant 0 and individual variables
x, y, . . . by application of the successor function succ. Thus, the following are
terms: 0, succ(x), succ(succ(succ(0))), succ(succ(y)), . . . .

Atomic formulas Let t, t′, . . . be terms. An atomic formula is of the form t = t′

or t ∈ X , where X is a set variable.

Formulas A formula is built up from atomic formulas using the boolean connec-
tives ¬ (not) and ∨ (or), together with the existential quantifier ∃. The quantifier
∃ can be applied to both individual and set variables—one can write ∃x and ∃X . In
other words, if ϕ and ψ are inductively assumed to be formulas, so are ¬ϕ, ϕ ∨ ψ,
(∃x) ϕ and (∃X) ϕ.

In addition, we can define the remaining boolean connectives like ∧ (and), ⇒
(if-then), ⇔ (iff) as usual, in terms of ¬ and ∨: for instance, ϕ ⇒ ψ is defined as

(¬ϕ∨ψ). We also have the universal quantifier ∀ which is the dual of ∃: (∀x) ϕ
def
=

¬((∃x) ¬ϕ) and (∀X) ϕ
def
= ¬((∃X) ¬ϕ).

Assigning truth values to formulas Formulas are interpreted over N0. The
constant 0 denotes the number 0. Individual variables x, y, . . . are interpreted as
natural numbers—that is, elements of N0. The function succ corresponds to adding



April 20, 2009 21:48 World Scientific Review Volume - 9.75in x 6.5in Mukund-Buchi

Finite-state Automata on Infinite Inputs 11

one: succ(x) denotes the number that is one greater than the interpretation of x.
Thus, the term succ(succ(succ(0))) represents the number 3. And, if the current
interpretation of x is the number 47 then succ(x) denotes 48.

The connective = used in defining atomic formulas denotes equality, as usual.
Thus t = t′ is true provided t and t′ denote the same natural number.

Set variables like X , Y , . . . are interpreted as subsets of N0. The atomic formula
t ∈ X is true iff the number denoted by t belongs to the set denoted by X .

Once the interpretation of atomic formulas has been fixed, the meaning of com-
pound formulas involving ¬, ∨ and ∃ is the “natural” one.

Let ϕ be a formula. A variable is said to occur free in ϕ if it is not
within the scope of a quantifier. For instance, in the formula (∃x)(∀Y ) (0 ∈
Y ) ∨ (x = y) ∨ (x ∈ X), the variables y and X occur free. Variables that do
not occur free are said to be bound. In the preceding formula, x and Y are
bound. We write ϕ(x1, x2, . . . , xk, X1, X2, . . . , X#) to indicate that all the vari-
ables that occur free in ϕ come from the set {x1, x2, . . . , xk, X1, X2, . . . , X#}. Let
−→
X = (x1, x2, . . . , xk, X1, X2, . . . , X#). To assign a truth value to the formula ϕ(

−→
X ),

we have to first fix an interpretation of the variables in
−→
X . In other words, we must

map each individual variable xi to a natural number mi ∈ N0 and each set variable
Xj to a subset Mj ⊆ N0. Let

−→
M = (m1, m2, . . . , mk, M1, M2, . . . , M#). We write

−→
M |= ϕ(

−→
X ) to denote that ϕ is true under the interpretation {xi 2→ mi}i∈[1..k] and

{Xi 2→ Mi}i∈[1..#]. Rather than go into formal details, we look at some illustrative
examples.

Example 1.6.

(i) Let Sub(X, Y ) = (∀x) x ∈ X ⇒ x ∈ Y .
Then (M, N) |= Sub(X, Y ) iff M ⊆ N .

(ii) Let Zero(X) = (∃x) [x ∈ X ∧ ¬(∃y)(y < x)].
This formula asserts that X contains an element that has no predecessors in
N0. Thus, M |= Zero(X) iff 0 ∈ M .

(iii) Let Lt(x, y) = (∀Z)[succ(x) ∈ Z ∧ (∀z)(z ∈ Z ⇒ succ(z) ∈ Z)] ⇒ (y ∈ Z).
Then (m, n) |= Lt(x, y) iff m < n. What the formula asserts is that any set
Z that contains x+1 and is closed with respect to the successor function must
also contain y.

(iv) Let Sing(X) = (∃Y ) [Sub(Y, X) ∧ (Y )= X) ∧
¬(∃Z) (Sub(Z, Y ) ∧ (Z )= X) ∧ (Z )= Y ))].

In this formula, X )= Y abbreviates ¬(X = Y ), where X = Y is itself an
abbreviation for Sub(X, Y ) ∧ Sub(Y, X). The formula asserts that X has only
one proper subset, which is Y . This is true only for singletons, where Y is the
empty set. So, M |= Sing(X) iff M is a singleton {m}.

A sentence is a formula in which no variables occur free. A sentence ϕ is either
true or false—we do not have to interpret any variables to assign meaning to ϕ. For
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instance consider the sentence

(∀X) [0 ∈ X ∧ (∀x) (x ∈ X ⇒ succ(x) ∈ X)] ⇒ (∀x) x ∈ X.

This sentence is true: it expresses the familiar property of mathematical induction
for subsets of N0—if a set of natural numbers contains 0 and is closed with respect
to the successor function, then the set in fact includes all of N0.

Satisfiability An S1S formula ϕ(x1, . . . , xk, X1, . . . , X#) is said to be satisfiable

if we can choose
−→
M = (m1, . . . , mk, M1, . . . , M#) such that

−→
M |= ϕ(

−→
X ).

Büchi showed how to associate an ω-regular language Lϕ with each S1S formula
ϕ, such that every word in Lϕ represents an interpretation for the free variables in
ϕ under which the formula ϕ evaluates to true. Moreover, every interpretation that
makes ϕ true is represented by some word in Lϕ. Thus, ϕ is satisfiable iff there
is some interpretation that makes it true iff Lϕ is non-empty. The language Lϕ is
defined over the alphabet {0, 1}m, where m is the number of free variables in ϕ.

In fact, Büchi showed that the converse is also true. Let us say that a language
L ⊆ ({0, 1}m)ω is S1S-definable if L = Lϕ for some S1S formula ϕ. We can always
embed an arbitrary alphabet Σ as a subset of {0, 1}m for some suitable choice of
m. In this way, any language L ⊆ Σω can be converted into an equivalent language
L{0,1} over {0, 1}m. Büchi showed that if L is ω-regular, then L{0,1} is S1S-definable.

Thus, the notions of S1S-definability and ω-regularity are equivalent. The rest
of this section will be devoted to formally stating and proving this result.

We begin by defining Lϕ for an S1S formula ϕ(x1, x2, . . . , xk, X1, X2, . . . , X#).

Let
−→
M = (m1, m2, . . . , mk, M1, M2, . . . , M#) such that

−→
M |= ϕ(

−→
X ). We can associate

with
−→
M an infinite word α

M
over {0, 1}k+# that represents the characteristic function

of
−→
M . For i ∈ N0, and j ∈ [1..k+)], let α

M
(i)(j) denote the jth component of α

M
(i).

Then for i ∈ N0 and j ∈ [1..k], α
M

(i)(j) = 1 iff i = mj and α
M

(i)(j) = 0 iff i )= mj .
Similarly, for i ∈ N0, and j ∈ [k+1..k+)], α

M
(i)(j) = 1 iff i ∈ Mj and α

M
(i)(j) = 0

iff i /∈ Mj . Then

Lϕ = {α
M

|
−→
M |= ϕ(

−→
X )}.

Next we define the {0, 1}-image L{0,1} corresponding to a language L over an
arbitrary alphabet Σ. Let Σ = {a1, a2, . . . , am}. Then, each word α ∈ Σω can be
represented by a word α{0,1} over {0, 1}m, where for all i ∈ N0 and j ∈ [1..m],
α{0,1}(i)(j) = 1 if α(i) = aj and α{0,1}(i)(j) = 0 if α(i) )= aj . Then

L{0,1} = {α{0,1} | α ∈ L}.

We can now state Büchi’s result more precisely.

Theorem 1.7.

(i) Let ϕ be an S1S formula. Then Lϕ is an ω-regular language.
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(ii) Let L be an ω-regular language. Then L{0,1} is S1S-definable.∗

Proof.

(i) To show that Lϕ is ω-regular, we proceed by induction on the structure of ϕ.
To do this, it will be convenient to cut down the language S1S to an equivalent
language S1S0 that has a simpler syntax.
Formally, in S1S0 we do not have individual variables xi—there are only set
variables Xj . The atomic formulas are of the form X ⊆ Y and succ(X, Y ). The
first formula is true if X is a subset of Y while the second is true if X and Y
are singletons {x} and {y} respectively and y = x+1.
We now argue that every S1S formula ϕ can be converted to an S1S0 formula
ϕ0 such that Lϕ = Lϕ0.
We begin by eliminating nested applications of the successor function. For
instance, if the S1S formula contains the atomic formula succ(succ(x)) ∈ X , we
write instead

(∃y)(∃z) y = succ(x) ∧ z = succ(y) ∧ z ∈ X .
We then eliminate formulas of the form 0 ∈ X using the formula Zero(X)
defined in Example 1.6.
Finally, we eliminate singleton variables using the formula Sing from Exam-
ple 1.6. For instance, we rewrite (∀x)(∃y) succ(x) = y ∧ y ∈ Z as

(∀X) (Sing(X) ⇒ [(∃Y ) Sing(Y ) ∧ succ(X, Y ) ∧ Y ⊆ Z]).
Notice that we can uniformly replace Sub(X, Y ) by X ⊆ Y in Sing since X ⊆ Y
is an atomic formula in SIS0.
We now construct for each S1S0 formula ϕ, a Büchi automaton (Aϕ, Gϕ) rec-
ognizing Lϕ.

s1 s2
〈1, 0〉

〈0, 0〉
〈0, 1〉
〈1, 1〉

Fig. 1.4. Büchi automaton for the atomic formula X ⊆ Y

For the atomic formula X ⊆ Y , the corresponding automaton over {0, 1}×{0, 1}
is shown in Figure 1.4. This automaton accepts any input word that does not
contain 〈1, 0〉—if α(i) = 〈1, 0〉, in the corresponding interpretation, i ∈ X but
i /∈ Y , thus violating the requirement that X ⊆ Y .
The other atomic formula is succ(X, Y ). The corresponding automaton

∗We have fixed a apecific embedding of Σ into {0, 1}m that is relatively easy to describe in S1S.
In general, we can choose any embedding for defining L{0,1} and the result will still go through.
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is shown in Figure 1.5. This automaton accepts inputs of the form
〈0, 0〉i〈1, 0〉〈0, 1〉〈0, 0〉ω, i ∈ N0, corresponding to the interpretation where
X = {i} and Y = {i+1}.
For the induction step, we need to consider the connectives ¬, ∨ and ∃X .
Let ϕ = ¬ψ. Then, Lϕ is the complement of Lψ. By the induction hypothesis,
there exists a Büchi automaton (Aψ, Gψ) that recognizes Lψ. As we mentioned
earlier, there is an effective way to construct an automaton (Aϕ, Gϕ) recognizing
the complement of Lψ. The details will be described in Section 1.4.
If ϕ = ϕ1 ∨ ϕ2, then Lϕ = Lϕ1 ∪ Lϕ2 . By the induction hypothesis, there exist
automata (Aϕ1 , Gϕ1) and (Aϕ2 , Gϕ2) such that L(Aϕi

, Gϕi
) = Lϕi

for i = 1, 2.
We have seen in Section 1.1.2 how to construct an automaton (Aϕ, Gϕ) such
that L(Aϕ, Gϕ) = Lϕ1 ∪ Lϕ2 .
Finally, if ϕ = (∃X1) ψ(X1, X2, . . . Xm), the language Lϕ corresponds to the
projection of Lψ via the function π : {0, 1}m → {0, 1}m−1 that erases the first
component of each m-tuple in {0, 1}m. A word of (m−1)-tuples belongs to Lϕ
if it can be padded out with an extra component so that the resulting word over
m-tuples is in Lψ. This padding operation corresponds to guessing a witness
for the set X1. The automaton (Aϕ, Gϕ) recognizing Lϕ can be obtained from
(Aψ , Gψ), the automaton recognizing Lψ, as described in Section 1.1.2.
In this way, we inductively associate with each S1S0 formula ϕ, a Büchi au-
tomaton (Aϕ, Gϕ) such that Lϕ = L(Aϕ, Gϕ).
There is a slight technicality involved when we deal with sentences. Notice that
every time we encounter an existential quantifier, we eliminate one component
from the input alphabet of Aϕ. If ϕ is a sentence—that is, all variables in
ϕ are bound—we would have erased all components of the input by the time
we construct Aϕ. In other words, Aϕ will be an input-free automaton whose
states and transitions define an unlabelled directed graph. If we were dealing
with languages of finite words, we could say that a sentence ϕ is true iff Lϕ
contains the empty word. Since the empty word is not a member of Σω, we
would have to slightly modify our definition of Lϕ to accommodate this case
cleanly in our framework. However, we shall not worry too much about this
since it is clear that a sentence ϕ is true iff there is an unlabelled path in the
graph corresponding to Aϕ that begins at some initial state and visits a good

s1 s2 s3
〈1, 0〉 〈0, 1〉

〈0, 0〉 〈0, 0〉

Fig. 1.5. Büchi automaton for the atom formula succ(X, Y )
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state infinitely often.
(ii) Let (A, G) be a Büchi automaton recognizing L ⊆ Σω, where Σ =

{a1, a2, . . . , am} and A = (S,→, Sin), with S = {s1, s2, . . . , sk}. We use free
variables A1, A2, . . . , Am to describe each infinite word over Σ—the variable Ai

describes the positions in the input where letter ai occurs. We then use exis-
tentially quantified variables S1, S2, . . . , Sk to describe runs of the automaton
over the input—the variable Sj describes the positions in the run where the
automaton is in state sj .
The formula ϕL can then be written as follows:

(∃S1)(∃S2) · · · (∃Sk)

(∀x)
∨

i∈[1..m]

(x ∈ Ai) ∧
∧

i∈[1..m]



x ∈ Ai ⇒
∨

j %=i

x /∈ Aj





∧ (∀x)
∨

i∈[1..k]

(x ∈ Si) ∧
∧

i∈[1..k]



x ∈ Si ⇒
∨

j %=i

x /∈ Sj





∧
∨

si∈Sin

(0 ∈ Si)

∧ (∀x)
∨

(si,aj,sk)∈→

(x ∈ Si) ∧ (x ∈ Aj) ∧ (succ(x) ∈ Sk)

∧
∨

si∈G

(∀x)(∃y) (x < y) ∧ (y ∈ Si)

The first two lines capture the fact that with each position x ∈ N0 we associate
precisely one input letter and one state from the run. The third line asserts
that the position 0 corresponds to an initial state. The fourth line guarantees
that the sequence of states represented by S1, S2, . . . , Sk is a run. The last line
then says that the run is good—that is, some final state appears infinitely often.
It is not difficult to verify that LϕL

= L{0,1}.
!

1.3. Stronger acceptance conditions

As we saw earlier, deterministic Büchi automata cannot recognize all ω-regular
languages (Corollary 1.3). It turns out that we can define classes of determinis-
tic automata that recognize ω-regular languages by strengthening the acceptance
criterion. We begin with the definition proposed by Muller [2].

Muller automata A Muller automaton is a pair (A, T ) where A = (S,→, Sin)
is an automaton, as before, and T = 〈F1, F2, . . . , Fk〉 is an acceptance table with
Fi ⊆ S for i ∈ [1..k].

The automaton (A, T ) accepts an input α : N0 → Σ if there is a run ρ of A on
α such that inf(ρ) ∈ T —that is, inf(ρ) = Fi for some i ∈ [1..k].
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The acceptance table of a Muller automaton places a much more stringent re-
quirement on runs than a Büchi condition does. The table entry Fi makes a positive
demand on the states in Fi, as well as a negative demand on the states in S − Fi—
states in Fi must all be visited infinitely often while states outside Fi must be visited
only finitely often. In other words, for a run ρ to satisfy the table entry Fi, after
some point it must “settle down” in the set Fi and visit all the states in this set
infinitely often without making transitions to any state outside Fi.

s1 s2

b

a

a b

Fig. 1.6. Automaton for L and L (Example 1.8)

Example 1.8. Recall the language L over {a, b} defined in Example 1.1—L con-
tains all words that contain infinitely many occurrences of a. We saw that the
deterministic automaton with two states shown in Figure 1.6 recognizes L with a
Büchi condition {s1}.

To accept L using a Muller condition, we retain the same automaton and set
the acceptance table to 〈{s1}, {s1, s2}〉.

We also saw that L, the complement of L could not be recognized by any deter-
ministic Büchi automaton. However, it is easy to verify that L can be recognized
with a Muller condition by using the same automaton as for L, but with the accep-
tance table given by 〈{s2}〉.

Simulations The example shows that deterministic Muller automata are strictly
more powerful than deterministic Büchi automata. It is quite straightforward to
simulate a Büchi automaton by a Muller automaton—we construct an entry in the
Muller table for each subset of states that contains a good state. Formally, let
(A, G) be a Büchi automaton, where A = (S,→, Sin). The corresponding Muller
automaton is given by (A, TG) where TG = {F ⊆ S | F ∩ G )= ∅}. It is easy to see
that L(A, G) = L(A, TG)—any successful run of the Büchi automaton will satisfy
one of the entries in the Muller table. Conversely, any run that satisfies an entry
in TG must visit a good state infinitely often. Notice that the Muller automaton
(A, TG) is deterministic iff the original automaton (A, G) was deterministic: this
simulation neither introduces nor removes any non-determinism.

Conversely, any Muller automaton can be simulated by a non-deterministic
Büchi automaton. Let (A, T ) be a Muller automaton, where T = 〈F1, F2, . . . , Fk〉.
For each i ∈ [1..k], we construct a Büchi automaton (Ai, Gi) such that (Ai, Gi)
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accepts an input α iff there is a run ρ of (A, T ) on α with inf(ρ) = Fi. It is easy to
see that L(A, T ) =

⋃

i∈[1..k] L(Ai, Gi). As described in Section 1.1.2, we can then
construct a Büchi automaton (AT , GT ) that recognizes L(A, T ).

To construct (Ai, Gi) we proceed as follows. When reading an input α, Ai

simulates a run of A. At some point, A non-deterministically decides that no more
states from S−Fi will occur along the run being simulated. After this guess is made,
Ai will only simulate moves that stay within Fi. At the same time, Ai repeatedly
cycles through Fi, checking that all states from Fi are seen infinitely often.

Let A = (S,→, Sin) and Fi = {si1 , si2 , . . . , sim
}. Then (Ai, Gi), with Ai =

(Si,→i, Si
in), is defined as follows:

• Si = {(s, finite) | s ∈ S} ∪ {(s, infinite, j) | s ∈ Fi, j ∈ [0..m−1]}.
• The transition relation →i is given as follows:

(s, finite)
a
−→i (s′, finite) if s

a
−→ s′.

(s, finite)
a
−→i (s′, infinite, 0) if s

a
−→ s′ and s′ ∈ Fi.

(s, infinite, k)
a
−→i (s′, infinite, k) if s

a
−→ s′, s′ ∈ Fi and s )= sik+1 .

(s, infinite, k)
a
−→i (s′, infinite, (k+1) mod m) if s

a
−→ s′, s′ ∈ Fi and s =

si(k+1) mod m
.

• Si
in = {(s, finite) | s ∈ Sin}.

• Gi = {(sim
, infinite, m−1)}.

These two simulation constructions show that the class of Muller-recognizable lan-
guages coincides with the class of Büchi-recognizable languages. In other words,
Muller automata also recognize ω-regular languages.

However, Example 1.8 suggests that deterministic Muller automata may suffice
for recognizing all ω-regular languages. In fact, this is the case—this non-trivial
result was proved by McNaughton [3].

Theorem 1.9. Every ω-regular language is recognized by a deterministic Muller
automaton.

We shall prove McNaughton’s result indirectly in Section 1.4. Notice that Mc-
Naughton’s theorem, combined with the simulation constructions described above,
yields a complementation construction for Büchi automata. This is because com-
plementing deterministic Muller automata is easy. Let (A, T ) be a deterministic
Muller automaton, where A = (S,→, Sin). Let T = {F ⊆ S | F /∈ T }. It is
straightforward to verify that L(A, T ) = Σω−L(A, T ). So, to complement a Büchi
automaton (A, G), we first convert it into an equivalent deterministic Muller au-
tomaton (A, T ) using McNaughton’s theorem. We then simulate (A, T ) using the
construction described earlier to get a Büchi automaton (AT , GT ) that accepts the
complement of L(A, G).

Rather than follow this route, we shall describe an alternative determinization
construction due to Safra [8]. Safra’s construction converts a Büchi automaton to
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a deterministic automaton with a pairs table. Acceptance in terms of a pairs table
was first described by Rabin [4].

Rabin automata A Rabin automaton is a structure (A,PT ) where A = (S,→
, Sin) is an automaton, as before, and PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉 is a
pairs table with Gi, Ri ⊆ S for i ∈ [1..k].

The automaton (A,PT ) accepts an input α : N0 → Σ if there is a run ρ of A
on α such that for some i ∈ [1..k], inf(ρ) ∩ Gi )= ∅ and inf(ρ) ∩ Ri = ∅.

Thus each pair (Gi, Ri) in the pairs table of a Rabin automaton specifies a
positive and a negative requirement on the run, as in the acceptance table of a Muller
automaton. The positive entry Gi is just a Büchi condition while the negative entry
Ri is like the one specified for S −Fi by an entry Fi in a Muller acceptance table. If
we think of Gi and Ri as “green lights” and “red lights”, a run ρ satisfies (Gi, Ri)
if some green light from Gi flashes infinitely often and no red light from Ri flashes
infinitely often.

Returning to Example 1.8, the language L is accepted by the automaton of Fig-
ure 1.6 with the pairs table 〈({s1}, ∅)〉, while L is accepted by the same automaton
with the pairs table 〈({s2}, {s1})〉.

Büchi automata can be simulated trivially by Rabin automata—if (A, G) is a
Büchi automaton, the corresponding Rabin automaton is (A,PT G), where PT G =
〈{G, ∅}〉.

Conversely, we can simulate Rabin automata by Büchi automata using a con-
struction similar to the one for simulating Muller automata by Büchi automata. As
before, it suffices to construct a separate Büchi automaton (Ai, G′

i) for each entry
(Gi, Ri) in the pairs table of a Rabin automaton (A,PT ). The automaton (Ai, G′

i)
simulates a run of A and guesses when no more states from Ri will be seen. It then
checks that states from Gi occur infinitely often.

Let A = (S,→, Sin) and PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉. Then
(Ai, G′

i), with Ai = (Si,→i, Si
in), is defined as follows:

• Si = {(s, finite) | s ∈ S} ∪ {(s, infinite, j) | s ∈ (S − Ri), j ∈ {0, 1}}}.
• The transition relation →i is given as follows:

(s, finite)
a
−→i (s′, finite) if s

a
−→ s′.

(s, finite)
a
−→i (s′, infinite, 0) if s

a
−→ s′ and s′ /∈ Ri.

(s, infinite, 0)
a
−→i (s′, infinite, 0) if s

a
−→ s′, s′ /∈ Ri and s /∈ Gi.

(s, infinite, 0)
a
−→i (s′, infinite, 1) if s

a
−→ s′, s′ /∈ Ri and s ∈ Gi.

(s, infinite, 1)
a
−→i (s′, infinite, 0) if s

a
−→ s′ and s′ /∈ Ri.

• Si
in = {(s, finite) | s ∈ Sin}.

• G′
i = {(s, infinite, 1) | s ∈ (S − Ri)}.

Notice that a Rabin automaton can also simulated by a Muller automaton in quite a
straightforward manner. Let (A,PT ) be a Rabin automaton, where A = (S,→, Sin)
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and PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉. Each pair (Gi, Ri) generates a Muller
table Ti = {F ⊆ (S − Ri) | F ∩ Gi )= ∅}. Let T =

⋃

i∈[1..k] Ti. It is easy to see
that (A, T ) recognizes L(A,PT ). Once again, since we have not modified A, the
simulating automaton is deterministic iff the original automaton was.

To simulate Muller automata using Rabin automata one has to use a construc-
tion that is pretty much the same as the one for simulating Muller automata
by Büchi automata. Such a simulation introduces non-determinism: there is no
straightforward way to directly simulate a deterministic Muller automaton by a
deterministic Rabin automaton even though deterministic Rabin automata do rec-
ognize all ω-regular languages, as we shall see in the next section.

The last acceptance condition we look at is obtained by interpreting the pairs
table of a Rabin automaton in a complementary fashion.

Streett automata A Streett automaton is a structure (A,PT ) where A = (S,→
, Sin) and PT = 〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉 are defined in the same way as
for Rabin automata.

The Streett automaton (A,PT ) accepts an input α : N0 → Σ if there is a run
ρ of A on α such that for every i ∈ [1..k], if inf(ρ) ∩ Gi )= ∅ it is also the case that
inf(ρ) ∩ Ri )= ∅.

These automata were defined by Streett in [14]. They are useful for describing
fairness conditions in infinite computations—for instance, conditions of the form
“if a request for a resource is made infinitely often, then the system grants access
to the resource infinitely often”. The following observation is immediate from the
close connection between Rabin and Streett automata.

Proposition 1.10. Let (A,PT ) be a deterministic automaton with a pairs table.
Let LR be the language accepted by (A,PT ) when PT is interpreted as a Rabin
condition and LS be the language accepted by (A,PT ) when PT is interpreted as a
Streett condition. Then LS is the complement of LR.

As usual, simulating a Büchi automaton (A, G) by a Streett automaton is easy.
Let A = (S,→, Sin). Construct an automaton (A,PT G) where PT G = 〈(S, G)〉.
Since inf(ρ) ∩ S must be non-empty for any run ρ of A, it follows that a run
ρ satisfies the pair (S, G) iff inf(ρ) ∩ G )= ∅, which is precisely what the Büchi
condition demands.

In the converse direction, Safra describes a construction due to Vardi that shows
that Streett automata can be efficiently simulated by Büchi automata [8].

Lemma 1.11. Let (A,PT ) be a Street automaton where A = (S,→, Sin).
Let n = |S| and let k be the number of pairs in PT : that is, PT =
〈(G1, R1), (G2, R2), . . . , (Gk, Rk)〉. Then, we can construct a Büchi automaton
(A′, G′) with A′ = (S′,→′, S′

in) such that L(A′, G′) = L(A,PT ) and |S′| = n·2O(k).
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Proof. The automaton A′ simulates A. As usual, A′ guesses an initial prefix of
the run after which every state that is visited by the run will in fact be visited
infinitely often. After making this guess, A checks that the acceptance criterion is
met for each pair (Gi, Ri) ∈ PT . In other words, for every i such that some state
from Gi appears in the infinite portion of the run, A′ ensures that some state from
Ri also appears infinitely often. To do this, A′ maintains two sets as part of its state.
The first set accumulates the list of indices corresponding to pairs (Gi, Ri) where
some element of Gi occurs infinitely often. The second set repeatedly accumulates
indices of pairs (Gi, Ri) for which some element of Ri has been visited. Each time
the second set becomes as large as the first, it is reset to empty. It is not difficult to
see that the acceptance criterion specified by PT is met iff the second set is reset
to empty infinitely often during the simulation.

Formally, we construct (A′, G′) as follows:

• S′ = {(s, finite) | s ∈ S} ∪ {(s, X1, X2) | s ∈ S and X1, X2 ⊆ [1..k]}.
• The transition relation →′ is defined as follows:

(s, finite)
a
−→′ (s′, finite) if s

a
−→ s′.

(s, finite)
a
−→′ (s′, ∅, ∅) if s

a
−→ s′.

(s, X, Y )
a
−→′ (s′, X ∪ Gs′ , Y ∪ Rs′) if s

a
−→ s′ and X ∪ Gs′ )⊆ Y ∪ Rs′ ,

where Gs′ = {i ∈ [1..k] | s′ ∈ Gi} and
Rs′ = {i ∈ [1..k] | s′ ∈ Ri}.

(s, X, Y )
a
−→′ (s′, X ∪ Gs′ , ∅) if s

a
−→ s′ and X ∪ Gs′ ⊆ Y ∪ Rs′ .

• Si
in = {(s, finite) | s ∈ Sin}.

• Gi = {(s, X, ∅) | s ∈ S, X ⊆ [1..k]}.
!

1.4. Determinizing Büchi automata

We now describe an elegant construction due to Safra for determinizing Büchi au-
tomata [8]. Safra’s construction converts a non-deterministic Büchi automaton
(A, G) into a deterministic Rabin automaton (AG,PT G) such that L(AG,PT G) =
L(A, G). If we regard (AG,PT G) as a Streett automaton, we get a determinis-
tic automaton recognizing the complement of L(A, G). By Lemma 1.11, we can
simulate the Streett automaton (AG,PT G) by a Büchi automaton. Thus Safra’s
construction also solves the complementation problem for Büchi automata.

Also, recall that it is easy to convert a deterministic Rabin automaton into a
deterministic Muller automaton. As a consequence, Safra’s construction gives an
indirect proof of McNaughton’s Theorem (Theorem 1.9).

Safra’s determinization construction for Büchi automata is a clever extension to
the infinite word case of the classical subset construction for determinizing automata
on finite words. In order to motivate the construction, we begin with the subset
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construction for finite words and enhance it in a graded manner to achieve the final
result.

Subset construction For automata on finite words, the subset construction is
the standard way to eliminate non-determinism. If the original automaton is (A, F ),
with A = (S,→, Sin), each state of the subset automaton (Ssub,→sub, Ssub

in ) is a
subset of S. The (single) initial state of the subset automaton is the set Sin of
initial states of A. The subset automaton’s transition relation →sub is defined as
follows:

X
a
−→sub Y iff Y = {y ∈ S | ∃x ∈ X : x

a
−→ y}.

Henceforth, we use δsub(X, a) to denote the set Y such that X
a
−→sub Y .

The subset automaton satisfies the following property: If X
w
−→+

sub Y then for
each state y in Y , there is an state x ∈ X such that x

w
−→+ y in the original

automaton.
From this, it follows that if we set the set of final states of the subset automaton

to be Fsub = {X ⊆ S | S ∩ F )= ∅}, then (Asub, Fsub) recognizes the same set of
words as the original automaton.

Let (A, G) be a non-deterministic Büchi automaton, with A = (S,→, Sin). The
natural extension of the subset construction to Büchi automata would set the good
states of the subset automaton to Gsub = {X ⊆ S | X ∩ G )= ∅}.

It is easy to see that if (A, G) accepts an input α, so will (Asub, Gsub). Unfortu-
nately, the converse is not true—the subset automaton will accept words that are
not part of the original language.

Example 1.12. Consider the automaton of Example 1.1 (Figure 1.3) over {a, b}
that recognizes L = {α | α has only a finite number of occurrences of a}.

In this example, Gsub, the set of good states of the extended sub-
set automaton, is given by {{s1, s2}, {s2}}. On the input (ab)ω =
ababab · · · , the (unique) run of the subset automaton is {s1}({s1}{s1, s2})ω =
{s1}{s1}{s1, s2}{s1}{s1, s2}{s1}{s1, s2} · · · . Since this run visits Gsub infinitely
often, the automaton (Asub, Gsub) accepts the word (ab)ω, even though a occurs
infinitely often in this word.

s1 s1 s1

s2

s1 s1

s2

. . .a b

b

a b

b

Fig. 1.7. A run of the extended subset automaton for L on input (ab)ω (Example 1.12)

The problem with the subset construction is best brought out by drawing all the
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“threads” between the individual subsets in this run of the subset automaton—see
Figure 1.7.

As we can see, every finite run of the original automaton that reaches a good
state actually dies out at that point. In general, all that this subset construction
guarantees is that the original automaton has arbitrarily long finite runs that visit
good states.

Marked subset construction We next try to strengthen the subset construction
so that it explicitly keeps track of the threads between subsets. In the marked
subset construction, in addition to keeping a subset of states, the subset automaton
also has the ability to “mark” each state in the subset. A state in the current
subset is marked if it satisfies one of two conditions: either it is a good state, or
it has a marked predecessor in the previous subset. However, if all the states in
the previous subset are marked, then only good states are marked in the current
subset—no marks are inherited from a fully marked state. The good states in the
marked subset automaton are those where the entire subset is marked.

Concretely, let (A, G) be the original non-deterministic Büchi automaton with
A = (S,→, Sin). Then, the marked subset automaton (AM , GM ), with AM =
(SM ,→M , SM

in ), is given as follows.

• SM = {(X, f) | X ⊆ S, f : X → {marked, unmarked}}.
• The transition function →M is as follows:

(X, f)
a
−→M (Y, g) iff

– Y = δsub(X, a).
(Recall that Y = δsub(X, a) iff in the normal subset automaton, X

a
−→sub

Y .)
– If f(x) = marked for all x ∈ X

then

∀y ∈ Y : g(y) =

{

marked if y ∈ G
unmarked otherwise

else

∀y ∈ Y : g(y) =







marked if y ∈ G or

(∃x ∈ X : f(x) = marked and x
a
−→ y)

unmarked otherwise

• SM
in = {(Sin, f) | ∀s ∈ Sin : f(s) = marked}.

• GM = {(X, f) | ∀x ∈ X : f(x) = marked}.

The main property satisfied by this automaton is the following.

Let ρ be a run of (AM , GM ) on an input α such that ρ(i) = (Xi, fi) for all
i ∈ Nat. Suppose that (Xk, fk) ∈ G for some k > 0. Let j be the largest
natural number less than k such that (Xj , fj) ∈ G—such a number j must
exist because the initial state of AM belongs to G.
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Then, for each state y ∈ Yk, there is a state x ∈ Xj such that x
α[j..k−1]
−−−−−−→+ y

in the original automaton and, moreover, when going from x to y on reading
α[j..k−1], the original automaton goes through some good state.

From this observation, we can deduce that the marked subset construction is sound.

Proposition 1.13. Let (AM , GM ) be the marked subset automaton that corresponds
to the Büchi automaton (A, G). Then, if (AM , GM ) accepts an input α, so does
(A, G).

Proof. Let ρ
α

be the (unique) run of AM on an input α with ρ
α
(i) = (Xi, fi)

for i ∈ N0. If (AM , GM ) accepts α, there must be an infinite sequence of positions
{i0, i1, . . .} ⊆ N0 such that 0 = i0 < i1 < · · · and (Xj , fj) ∈ G for all j ∈ {i0, i1, . . .}.

From our previous observation about the marked subset construction, we know
that for each index ik+1 in the set {i0, i1, . . .} and for each state x ∈ Xik+1 , there is a
state y ∈ Xik

such that in the original automaton, there is a sequence of transitions
leading from y to x on the input α[ik..ik+1−1] that passes through some good state.
Let us call such a state y a good predecessor of x.

We construct an infinite tree Tα as follows. The root of the tree is the set Sin of
initial states. At each level k of the tree, k ≥ 1, we have a node n(x,ik) corresponding
to each state x ∈ Xik

. The parent of a node n(x,j) at level j, j > 1, is a node n(y,j−1)

at level j−1 such y is a good predecessor of x. (Of course, x may have more than
one good predecessor. If this is the case, we arbitrarily select one of them and make
the corresponding node the parent of n(x,j) in the tree.)

The tree Tα is finitely branching and has an infinite number of nodes. By König’s
lemma, it must have an infinite path. Each infinite path in Tα corresponds to a run
of the original automaton A on α. By construction, such a run must pass through
a good state between each level in the tree. Thus, A has at least one run on α that
meets G infinitely often. !

Unfortunately, though the marked subset construction is sound, it is not complete—
there may be inputs accepted by (A, G) that are not accepted by (AM , GM ). Con-
sider the following example.

Example 1.14.

In the Büchi automaton shown in Figure 1.8, the input aω generates the sequence
of subsets {s0}({s1, s2})ω. Since s2 is not a final state, the subset {s1, s2} never
becomes fully marked. Thus, though the original automaton has an accepting run
s0sω1 on this input, the marked subset construction fails to detect this.

The problem is that the marked subset construction demands too much from
the underlying runs. As the example shows, it should be sufficient to identify a
portion of the subset that is marked and can infinitely often regenerate its marks.
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s0

s1

s2

a

a

a

a

Fig. 1.8. The marked subset construction is not complete (Example 1.14)

Hierarchical Marked Subset Construction A first attempt to weaken the
marked subset construction would be to have a hierarchy of marks. At the base
level, the subset automaton runs the marked subset construction and marks states
using a level 1 mark. The states that have level 1 marks then start off a nested
copy of the marked subset construction with level 2 marks. Similarly, the states
that have level 2 marks start off a marked subset construction with level 3 marks.
What we would like to detect is whether some level i can get completely marked.
This corresponds to checking if the set of nodes marked at level i is equal to the set
of nodes marked at level i+1. If so, we reset all marks at levels greater than i and
continue.

Since the number of nodes marked at level i is always strictly greater than the
set of nodes marked at level i+1, there can be at most as many levels as there are
states in the original automaton.

To specify the acceptance condition, we need to verify that some level i+1
gets set to empty infinitely often and that level i does not get set to empty in
between. In other words, level i denotes a permanent thread through the subset
construction that gets marked infinitely often. To do this, we have to pass from a
Büchi condition to a Rabin condition—for each i, a positive condition for level i+1
has to be qualified by a negative condition for level i. (Note that this transition
to a stronger acceptance condition was inevitable, since we have already seen that
deterministic Büchi automata cannot recognize all ω-regular languages.)

Here is a formal description of a hierarchical marked subset construction that
attempts to achieve this goal. Let (A, G) be a Büchi automaton, with A = (S,→
, Sin). Define (AH ,PT H), with AH = (SH ,→H , SH

in), as follows:

• Let |S| = n. SH consists of pairs of the form (σ,χ) where:

– σ : [1..n] → 2S is a subset list satisfying the condition that σ(i+1) is a
proper subset of σ(i) whenever σ(i) is non-empty.

– χ : [1..n] → {white, green} is a colour list.

• SH
in = (σ0,χ0), where σ0(1) = Sin, σ0(i) = ∅ for all i ∈ [2..n] and χ(i) = white

for all i ∈ [1..n].
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• The transition function →H performs the following sequence of actions. Ini-
tially, each level runs the subset construction locally. Next, any final states
appearing in the new subset at level i are added to the subset at level i+1—
this corresponds to generating fresh marks at level i. We now look for the
smallest level i whose subset is the same as that at level i+1. If such an i
exists, we “clear out” the subset list from level i+1 onwards and set the colour
of level i to green.
More formally, on reading an input a, the state (σ,χ) generates a new state
(σ′,χ′) as follows:

(i) Let σ1 : [1..n+1] → 2S be defined as follows:

– σ1(1) = δsub(σ(1), a).
– For i ∈ [2..n], σ1(i) = δsub(σ(i), a) ∪ (δsub(σ(i−1), a) ∩ G).
– σ1(n+1) = δsub(σ(n), a) ∩ G.

(ii) If there is no index i ∈ [1..n] such that σ1(i) = σ1(i+1), then

– σ′(i) = σ1(i) for all i ∈ [1..n].
– χ′(i) = white for all i ∈ [1..n].

else, let m be the smallest index such that σ1(m) = σ1(m+1). Then,

– σ′(i) = σ1(i) for all i ∈ [1..m] and σ′(i) = ∅ for all i > m.
– χ′(m) = green and χ′(i) = white for all i )= m.

• The acceptance table PT H consists of n pairs 〈(G1, R1), (G2, R2), . . . , (Gn, Rn)〉
where:

– Ri = {(σ,χ) | σ(i) = ∅}
– Gi = {(σ,χ) | χ(i) = green}

In this construction, the list σ implicitly records the levels of marks associated with
the states in the current subset—a state s belongs to σ(i+1) iff s has a level i mark
in the current subset. It is not difficult to show that this construction is complete.

Proposition 1.15. Let (AH ,PT H) be the hierarchical marked subset automaton
that corresponds to the Büchi automaton (A, G). If (A, G) accepts an input α, so
does (AH ,PT H).

Proof. Suppose (A, G) accepts α. Then, α admits a run ρ that visits G infinitely
often. We must show that the unique run ρ

α
of AH on α satisfies some entry in

PT H .
For j ∈ N0, let ρ

α
(j) = (σj ,χj). We know that for all j ∈ N0, σj(1) is the set

of states maintained by the subset construction. Since ρ is a valid run of A on α,
σj(1) is always non-empty. So, ρ

α
satisfies condition R1. If it also satisfies G1 then

(AH ,PT H) accepts α and we are done.
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If ρ
α

does not satisfy G1, let k0 be the last position where the colour of the first
level is green. We wait for the first position i0 > k0 where ρ, the accepting run of A
on α, next visits a good state. We know that σj(2) is non-empty for all j ≥ i0—once
the good state seen at position i0 gets pushed to level 2, the accepting run ρ will
be part of the subset construction maintained at level 2, thus guaranteeing that
at least one valid state is generated at each point. So, ρ

α
satisfies R2. If it also

satisfies G2 we are done.
Otherwise, we repeat the argument above and deduce that ρ

α
satisfies R3, with

the accepting run ρ a part of σj(3) for all j greater than a finite index i1. We can
repeat this argument only a finite number of times, till we reach level n. The subset
maintained at level n can never be more than a singleton. If the accepting run ρ is
part of the subset construction at level n, it must generate the signal green infinitely
often in which case ρ

α
satisfies the pair (Gn, Rn). !

Unfortunately, the hierarchical subset construction is not sound. Consider this
example.

Example 1.16.

s

g1

g2

a, b

b

a

a

a
b

Fig. 1.9. The hierarchical marked subset construction is not sound (Example 1.16)

The automaton shown in Figure 1.9 does not accept the input (ba)ω. However,
the run of the hierarchical marked subset automaton on this input is the following:

1 ({s}, white)

2 (∅, white)

3 (∅, white)

b
−→H

1 ({s, g1}, white)

2 ({g1}, white)

3 (∅, white)

a
−→H

1 ({s, g2}, white)

2 ({g2}, green)

3 (∅, white)

b
−→H

1 ({s, g1, g2}, white)

2 ({g1, g2}, white)

3 ({g2}, white)

a
−→H

1 ({s, g2}, white)

2 ({g2}, green)

3 (∅, white)

b
−→H · · ·

Since level 2 remains populated forever and turns green infinitely often, the hierar-
chical construction incorrectly accepts this input.
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In the preceding example, the problem is that the good state g2 that appears to
be permanently part of level 2 is actually a transient state. Each time an a is read,
the g2 state at level 2 disappears, only to be replaced by a fresh copy of g2 that is
pushed from level 1.

To rectify this defect, we distinguish new copies and old copies of a state at each
level by attaching a label to each fresh subset of states that is generated. If an older
copy of a state continues to exist, we remove the new copy. The labels partition
the states at each level into disjoint subsets. A label that persists corresponds to
an infinite run whereas when a run dies out, as in the example above, its label
disappears.

Safra’s construction implements such a labelling scheme. The hierarchy of sub-
sets is represented as a tree. Each node in the tree is a collection of states with the
same label, corresponding to a set of runs that were initiated at the same time. The
root of the tree contains the subset at the first level of the hiearchical construction.
The parent-child relation in the tree accurately records how subsets at each level
arise from subsets at the previous level. Only the oldest copy of each active state
is retained, bounding the size of the tree. This allows a fixed set of labels to be
recycled, making the overall construction finite-state.

Safra’s Construction Before presenting Safra’s construction, we review some
terminology regarding trees. A tree is a structure T = (V, vr,π) where V is a set
of nodes, vr ∈ T is a special node known as the root and for all v ∈ V − {vr},
π(v) ∈ T fixes the parent of the node. If v = πi(v′) for some i > 0, we say that v
is an ancestor of v′. The root vr is an ancestor of every other node. If v′ = π(v)
then v is said to be a child of v′. We assume that for any node v, all the children
of v are ordered so that we can talk of one child being to the left of another. This
generates a total order on nodes—if v and v′ are nodes, we say that v < v′ if v is
an ancestor of v′ or if there is a common ancestor u of v and v′ such that v is in
the subtree rooted at a child u1 of v, v′ is in the subtree rooted at a child u2 of v
and u1 is to the left of u2.

Given a Büchi automaton (A, G), with A = (S,→, Sin), Safra’s construction
produces a Rabin automaton (AG,PT G), with AG = (SG,→G, SG

in). The automa-
ton (AG,PT G) is as follows:

• Each state in SG is a structure (T,σ,χ,λ) where

– T = (V, vr,π) is a tree.
– σ : V → 2S associates a set of states of A with each node in V in such a

way that:

∗ The union of the sets associated with the children of a node v is a
proper subset of σ(v).

∗ If v and v′ are two nodes such that v is not an ancestor of v′ and v′ is
not an ancestor of v then σ(v) is disjoint from σ(v′).
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∗ If σ(v) = ∅, then v is the root vr.

It is not difficult to verify that the conditions imposed on the function σ
ensure that |V | can be no larger than n, where n is the number of states
in S.

– χ : V → {white, green} fixes a colour for each node.
– λ : V → L is an injective function that attaches a label from the set

L = {)1, )2, . . . , )2n} to each node. Notice that L has 2n elements.

As we mentioned earlier, each layer of the tree corresponds to one level of the
hierarchical marked subset construction, partitioned into disjoint subsets. The
tree structure records how the partitions at each level are connected to the
partitions at the previous level.

• On reading an input a, the state (T,σ,χ,λ) is transformed to the state
(T ′,σ′,χ′,λ′) as follows:

(i) Let T = (V, vr ,π). Expand the T to a tree T1 = (V1, vr,π1) as follows:
For each v ∈ V , if σ(v) ∩ G )= ∅, add a node v′ such that π1(v′) = v and
v′ is the right-most child of v.

(ii) Extend σ and λ to functions σ1 and λ1 over T1 as follows:
For all nodes v in V1 ∩ V , let σ1(v) = σ(v). For a new node v ∈ V1 − V ,
σ1(v) = σ(π1(v)) ∩ G.
All nodes v in V1 ∩ V inherit the label λ(v). For each node in V1 − V ,
choose a new label from L that is not assigned to any other node. Since
there 2n labels to choose from, this is always possible—each node in V
generates at most one new child in V1 and there were not more than n
nodes in V .

(iii) For every node v, apply the subset construction locally. In other words,
define a new function σ′

1 : V1 → 2S such that σ′
1(v) = δsub(σ1(v), a) for all

v ∈ V1.

At this stage, we have to “clean up” T1 and σ′
1 so that the structure once again

satisfies the conditions specified for states of AG.

(iv) For every node v ∈ V1, if s ∈ σ′
1(v) and s also belongs to σ′

1(v
′) for some

node v′ such that v′ is not an ancestor of v but v′ < v, (recall the total
order on all nodes in a tree) remove s from σ′

1(v). This corresponds to
retaining only the “oldest” copy of each active state in the simulation.

(v) Remove all nodes v such that σ′
1(v) = ∅ and v is not the root vr.

(vi) For each node v such that σ′
1(v) is equal to

⋃

{σ′
1(v

′) | v = π1(v′)}, remove
all the children of v and set χ1(v) = green. For all other nodes, set
χ1(v) = white.

(vii) Let the set of nodes remaining be V ′. For v ∈ V ′, σ′(v) is that part of
σ′

1(v) that remains after discarding states which already appear to the left,
as specified in step (iv) above. The label λ′(v) of a node v is retained from
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T1. Finally, set χ′ = χ1.

• The initial state of AG is the tree ({vr}, vr, ∅) where σ(vr) = Sin, χ(vr) = white

and λ(vr) = )1.
• The pairs table PT G = 〈(G1, R1), (G2, R2), . . . , (G2n, R2n)〉 is defined as fol-

lows:

– Ri = {(T = (V, vr,π),σ,χ,λ) | ∀v ∈ V : λ(v) )= )i}.
– Gi = {(T = (V, vr,π),σ,χ,λ) | ∃v ∈ V : λ(v) = )i and χ(v) = green}.

The labelling procedure guarantees that the labels of new nodes added at each stage
are disjoint from the labels of the existing nodes. In other words, if a node labelled
)i is deleted from the tree during a transition, the label )i temporarily disappears
from the tree.

Thus, an entry (Gi, Ri) in the pairs table specifies the following condition. The
condition Ri is satisfied if at some stage a node labelled )i is added to the tree and it
is never deleted henceforth. The condition Gi then says that this node turns green
infinitely often.

Figure 1.10 describes the run generated by Safra’s construction on the input
(ba)ω for the automaton shown in Figure 1.9. In the figure, each node of a tree
is denoted by a circle, with the label indicated inside the circle and the associated
subset written by its side. Nodes coloured green are drawn as double circles, while
white nodes are drawn as single circles. When selecting labels for new nodes added
to the tree at each stage, we have followed the policy of using the first “free” label
in L.

)1
{s}

)1

{s, g1}

)1

{s, g2}

)2
{g2}

)1

{s, g1, g2}

)2
{g2}

a a b a

)1

{s, g2}

)3

{g2}

)1

{s, g1, g2}

)3

{g2}

)1

{s, g2}

)2

{g2}

)1

{s, g1, g2}

)2

{g2}

. . .b a b a

Fig. 1.10. A run generated by Safra’s construction
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At the second level of the tree, nodes labelled )2 and )3 turn green infinitely often,
so the run satisfies G2 and G3. However, since both these labels also disappear from
the tree infinitely often, the run does not satisfy R2 or R3, thus ensuring that the
automaton rejects this input.

It is not difficult to see that Safra’s construction satisfies a property similar to
the one described for the marked subset construction:

Let ρ be a run of (AG,PT G) on an input α such that ρ(i) = (Ti,σi,χi,λi)
for all i ∈ N0. Let j, k ∈ N0 with j < k and ) be a label from L such that:

• For all positions i ∈ [j..k], there is a node v in the tree Ti such that
λi(v) = ).

• χj(v) = χk(v) = green and for all i such that j < i < k, χi(v) =
white.

Then, for each state y ∈ σk(v), there is a state x ∈ σj(v) such that

x
α[j..k−1]
−−−−−−→+ y in the original automaton and, moreover, when going from

x to y on reading α[j..k−1], the original automaton goes through some
good state.

Once we have this property, the soundness of Safra’s construction follows from
an argument very similar to the one described for the marked subset construction
in Proposition 1.13. In other words, we can show the following.

Proposition 1.17. Let (AG,PT G) be the Rabin automaton generated by Safra’s
construction, corresponding to the Büchi automaton (A, G). Then, if (AG,PT G)
accepts an input α, so does (A, G).

Proof. As in the proof of Proposition 1.13, we construct a finitely branching tree
Tα with an infinite set of nodes for each input α and argue that each infinite path
in Tα corresponds to an accepting run of A on α. We omit the details. !

The completeness of Safra’s construction is shown by an argument similar to
the one described for the hierarchical marked subset construction.

Proposition 1.18. Let (AG,PT G) be the Rabin automaton generated by Safra’s
construction corresponding to the Büchi automaton (A, G). If (A, G) accepts an
input α, so does (AG,PT G).

Proof. Suppose (A, G) accepts α. Then, α admits a run ρ that visits G infinitely
often. We must show that the unique run ρ

α
of AG on α satisfies some entry in

PT G.
For j ∈ N0, let ρ

α
(j) = (Tj ,σj ,χj ,λj). Initially, the root vr is assigned the label

)1. Since the root is never removed, the run ρ
α

satisfies R1. If it also satisfies G1

then (AG,PT G) accepts α and we are done.
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If ρ
α

does not satisfy G1, let k1 be the last position at which the root is coloured
green. Let i1 be the first position after k where ρ, the accepting run of A on α,
visits G. At this point, a child v1 of the root comes into existence.

We know that the accepting run ρ is part of the overall subset construction
maintained by the root node. Once v1 is created, we know that ρ is also being
maintained at the first level. It would appear that the run is maintained by v1

itself, but there is a subtle complication to be taken into account. Since we only
retain the left-most copy of each state, the run ρ may be passed on by v1 to some
sibling on the left. In any case, it can only move left a finite number of times. Let
us suppose it eventually settles down at some node v′1.

It is not difficult to verify that the node v′1 must already have been in the tree
when v1 was added. Let )i1 = λi1 (v

′
1) be the label of v′1. Since α never dies out, v′1

will never be deleted from the tree. In other words, ρ
α

satisfies the condition Ri1 .
If it satisfies the corresponding condition Gi1 we are done.

Otherwise, let k2 be the last time where v′1 turns green. As before, we wait for
i2, the next time ρ visits a good state, and look at the child v2 of v′1 that is created
at this point. The run ρ is copied into the subset maintained by v2 and passed on
left a finite number of times till it settles down at a node v′2. If )i2 is the label of
v′2, ρα

must satisfy Ri2 . If ρ
α

does not also satisfy Gi2 we push ρ down one more
level.

Since there are only n levels in the tree, we cannot do this indefinitely. Thus,
we must eventually find a node v′m labelled )im

such that ρ
α

satisfies the pair
(Gim

, Rim
). !

The complexity of Safra’s construction The automaton AG has 2O(n log n)

states, where n is the number of states in A. To see this, we estimate the number of
bits required to write down a typical state of AG. We have to specify the structure
(T,σ,λ,χ).

Since T has at most n nodes, we can “name” the nodes [1..n], with vr = 1.
The structure (V, vr,π) can then be written down as a list of the form {π(i)}i∈[1..n].
Since π(i) ∈ [1..n] requires log n bits to write down, T can be described using n log n
bits. Similarly, λ and χ can be written as lists of length n with each entry made up
of log n bits and 1 bit, respectively.

The only catch is with σ—if we näıvely represent the function σ : V → 2S as
a list of subsets, we will need n bits to represent each entry, resulting in n2 bits
overall. However, notice that if a state s belongs to σ(v) and σ(v′) for two different
nodes v and v′ it must be the case that v is an ancestor of v′ or that v′ is an ancestor
of v. Also, if s ∈ σ(v), s must belong to σ(v′) for every ancestor v′ of v, all the way
upto the root. Thus, we can characterize the set of nodes where s appears in terms
of the lowest node vs such that s ∈ σ(vs): if s ∈ σ(vs) then s ∈ σ(v′) for any other
node v′ iff v′ is an ancestor of vs. In this way, σ can also be represented as a list
of length n by matching each state s in S to its corresponding node vs in V . Each
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entry in this list can be written down using log n bits.
Since we can characterize a state of AG using O(n log n) bits, it follows that the

number of distinct states is bounded by 2O(n log n).
The number of pairs in PT G is O(n)—by construction, there is a pair (Gi, Ri)

for each label )i ∈ L and L contains exactly 2n elements.
By Lemma 1.11, we can simulate the Streett automaton (AG,PT G) by a Büchi

automaton with 2O(n log n) states. Thus, complementing Büchi automata using
Safra’s construction results in the state space blowing up from n to 2O(n log n).
Recall that for automata on finite words, the number of states in the complement
(via the subset construction) is 2O(n). It has been shown that the bound achieved
by Safra’s construction is optimal [15].

Why complement Büchi automata? We have seen that if we work with
Muller, Rabin or Streett conditions, we can in fact accept all ω-regular languages
using deterministic automata. So, why do we bother about complementing non-
deterministic Büchi automata?

The reason is that the natural translation of logical questions into automata
necessarily introduces non-determinism. For instance, when we constructed the
automaton (Aϕ, Gϕ) corresponding to an S1S formula ϕ in Section 1.2, non-
determinism was unavoidable in the inductive step for handling existential quantifi-
cation. This non-determinism arises regardless of what type of acceptance condition
we choose to work with. Surprisingly, determinizing Muller or Rabin automata di-
rectly is no easier than first converting them to Büchi automata and then applying
Safra’s construction [8].

Arguably, for our purposes it should suffice to complement Büchi automata— de-
terminization is a stronger construction that yields complementation as a corollary.
In fact, Klarlund [16] has shown that it is possible to directly complement non-
deterministic Büchi automata without determinizing them and without sacrificing
the optimal 2O(n log n) bound achieved by Safra’s construction. However, there are
applications where determinization is crucial—for instance, in the game-theoretic
analysis of automata on infinite trees [17].

1.5. Discussion

Our main focus in this survey has been in describing how Büchi automata can be
used to settle decision problems in logic. On the way, we have proved some simple
results about ω-regular languages. There has also been a lot of work on the algebraic
and topological aspects of ω-regular languages that we have not even touched on.
A detailed introduction can be found in the survey [12].

As mentioned in the Introduction, Meyer showed in [5] that the decision proce-
dure for S1S has a non-elementary complexity. A formula of length n may generate

an automaton with 22···
2

states, where the tower of exponentials is of height n. In
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other words, the size of the automaton cannot be bounded by a function of constant
exponential height. This result appears to make it impossible to use this elegant
theory in a practical setting for verifying properties of programs.

However, for temporal logics, it turns out that there are direct ways to construct
a Büchi automaton (Aϕ, Gϕ) recognizing Lϕ for a temporal logic formula ϕ, such
that the size of Aϕ is exponential in the length of the formula [18]. As shown
in [18], Büchi automata also provide a clean solution to the model-checking problem
for finite-state systems. The model checking problem is the following—given a
finite-state program P and a temporal logic formula ϕ, do all the computations of
P satisfy ϕ?

Rabin showed that Büchi’s decidability result for S1S could be extended to the
logic S2S, the monadic second order theory of the infinite binary tree [4]. The logic
S2S is very powerful—for instance, it is powerful enough to embed the logic SωS,
the monadic second order theory of the infinite countably branching tree.

Rabin’s results are proved by extending the techniques developed for automata
on infinite words to automata operating on infinite trees. These extensions are
highly non-trivial—especially the result that automata on infinite trees are closed
under complementation. A number of attempts have been made to simplify Rabin’s
difficult proof. A very readable account can be found in [19].

The theory of Büchi automata and ω-regular languages has also been lifted to
the setting of concurrent programs [20–22]. When dealing with concurrent pro-
grams, it is often advantageous to regard the runs of the system as partial orders
rather than as sequences. Two actions in such a run are unordered if they occur
independently. A sequential description of a concurrent program will generate a
number of equivalent interleavings for each partially ordered run. To verify proper-
ties of a concurrent program in terms of such a sequential description, we have to
check all these equivalent interleavings when, in principle, it should suffice to check
one representative interleaving for each partially ordered computation. By directly
working with infinite labelled partial orders rather than infinite sequences, we can
avoid some of this duplication of effort. A challenging open problem is to extend
the work of [20–22] to branching structures with concurrency, corresponding to the
case of infinite trees for sequential systems.
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