```
Algorithm 5: Angluin's algorithm
Input: A teacher for a regular language \(L \subseteq \Sigma^{*}\)
Initialize an empty observation table \(O=(R, S, T)\) with \(R=\{\varepsilon\}\) and \(S=\{\varepsilon\}\)
update ( \(O\) )
// Invokes a membership query
repeat
    while \(\mathcal{O}\) is not closed or not consistent do
        if \(O\) is not closed then
            Pick \(u \in R\) and \(a \in \Sigma\) with \(\llbracket u a \rrbracket_{O} \cap R=\emptyset\)
            \(R \leftarrow R \cup\{u a\}\)
                update \((O)\) // Invokes membership queries
            else if \(O\) is not consistent then
                Pick \(u \sim_{O} v \in R, a \in \Sigma\), and \(w \in S\) with \(T(u a w) \neq T(v a w)\)
                \(S \leftarrow S \cup\{a w\}\)
                update \((O)\) // Invokes membership queries
            end
    end
    Construct \(\mathcal{A}_{O}\) and perform an equivalence query
    if the teacher replies with a counterexample \(u\) then
        \(R \leftarrow R \cup \operatorname{Pref}(\{u\})\)
        update \((O)\) // Invokes membership queries
    end
until the teacher replies "yes" to an equivalence query with \(\mathcal{A}_{O}\)
return \(\mathcal{A}_{O}\)
```

