Algorithm 5: Angluin's algorithm

Input: A teacher for a regular language $L \subseteq \Sigma^*$ 1 Initialize an empty observation table O = (R, S, T) with $R = \{\varepsilon\}$ and $S = \{\varepsilon\}$ // Invokes a membership query **2** update(O)3 repeat while \mathcal{O} is not closed or not consistent do 4 if O is not closed then $\mathbf{5}$ Pick $u \in R$ and $a \in \Sigma$ with $\llbracket ua \rrbracket_O \cap R = \emptyset$ 6 $R \leftarrow R \cup \{ua\}$ 7 update(O)// Invokes membership queries 8 else if O is not consistent then 9 Pick $u \sim_O v \in R$, $a \in \Sigma$, and $w \in S$ with $T(uaw) \neq T(vaw)$ $\mathbf{10}$ $S \leftarrow S \cup \{aw\}$ 11 // Invokes membership queries update(O) $\mathbf{12}$ end $\mathbf{13}$ end $\mathbf{14}$ Construct \mathcal{A}_O and perform an equivalence query $\mathbf{15}$ if the teacher replies with a counterexample u then 16 $R \leftarrow R \cup Pref(\{u\})$ $\mathbf{17}$ update(O)// Invokes membership queries 18 end 19 20 until the teacher replies "yes" to an equivalence query with \mathcal{A}_O 21 return \mathcal{A}_O