
A Bisimulation for Type Abstraction and Recursion

EIJIRO SUMII

Tohoku University

and

BENJAMIN C. PIERCE

University of Pennsylvania

We present a bisimulation method for proving the contextual equivalence of packages in λ-calculus
with full existential and recursive types. Unlike traditional logical relations (either semantic or
syntactic), our development is “elementary,” using only sets and relations and avoiding advanced
machinery such as domain theory, admissibility, and >>-closure. Unlike other bisimulations, ours
is complete even for existential types. The key idea is to consider sets of relations—instead of just
relations—as bisimulations.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Abstract data types; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Type structure

General Terms: Theory, Languages

Additional Key Words and Phrases: Lambda-Calculus, Contextual Equivalence, Bisimulations,
Logical Relations, Existential Types, Recursive Types

1. INTRODUCTION

Proving the equivalence of computer programs is important not only for verifying
the correctness of program transformations such as compiler optimizations, but
also for showing the compatibility (substitutability) of program modules. Consider
two modules M and M ′ implementing the same interface I; if these different im-
plementations are equivalent under this common interface, then they are indeed
compatible, correctly hiding their differences from outside view.

Contextual equivalence is a natural definition of program equivalence: two pro-
grams are called contextually equivalent if they exhibit the same observable be-
havior when put in any legitimate context of the language. However, direct proofs
of contextual equivalence are typically infeasible, because its definition involves a
universal quantification over an infinite number of contexts (and naive approaches
such as structural induction on the syntax of contexts do not work). This has led
to a search for alternative methods for proving contextual equivalence, whose fruits
can be grouped into two categories: logical relations and bisimulations.

An extended abstract of this article has appeared in Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 63–74, 2005.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–43.

2 · E. Sumii and B. C. Pierce

Logical relations. Logical relations were first developed for denotational seman-
tics of typed λ-calculi (see, e.g., [Mitchell 1996, Chapter 8] for details) and can also
be adapted [Pitts 2000; 2005] to their term models; this adaptation is sometimes
called syntactic logical relations [Crary and Harper 2007]. Logical relations are
relations on terms defined by induction on their types: for instance, two pairs are
related when their elements are pairwise related; two tagged terms ini(M) and
inj(N) of a sum type are related when the tags i and j are equal and the contents
M and N are also related; and, crucially, two functions are related when they map
related arguments to related results. The soundness of logical relations is proved
via the Fundamental Property (or Basic Lemma), which states that any well-typed
term is related to itself.

Logical relations are pleasantly straightforward, as long as we stick to the simply
typed λ-calculus (or even the polymorphic λ-calculus) without recursion. However,
their extension with recursion is challenging. Recursive functions cause a problem
in the proof of the fundamental property that must be addressed by introducing
additional “unwinding properties” [Pitts 2000; 2005; Birkedal and Harper 1999;
Crary and Harper 2007]. Recursive types are even more difficult (in particular with
negative occurrences): since logical relations are defined by induction on types,
recursive types (with negative occurrences) require topological properties in the
definition of logical relations [Birkedal and Harper 1999; Crary and Harper 2007].
These difficulties are not confined to meta-theorems, but are visible to the users of
logical relations: in order to prove contextual equivalence using logical relations, one
often has to prove the admissibility, compute the limit, or calculate the >>-closure
of particular relations.1

Bisimulations. Bisimulations were originally developed for process calculi [Mil-
ner 1980; 1989; 1999] and state transition systems in general. Abramsky [1990]
adapted bisimulations to untyped λ-calculus and called them applicative bisimula-
tions. Briefly, two functions λx. M and λx. M ′ are bisimilar when (λx.M)N ⇓ ⇐⇒
(λx.M ′)N ⇓ for any N and the results are also bisimilar if these evaluations con-
verge. Gordon [1995a; 1995b] and Gordon and Rees [1996; 1995] extended applica-
tive bisimulations to calculi with objects, subtyping, universal polymorphism, and
recursive types. Sangiorgi [1992] defined context bisimulation, which is a variant of
applicative bisimulation for higher-order π-calculus.

Unlike logical relations, bisimulations have no difficulty with recursion (or even
concurrency). However, existing bisimulation methods for typed λ-calculi are too
weak in the presence of existential polymorphism; that is, they are not able to prove
interesting equivalence properties of existential packages. For instance, consider the
two packages

M = pack int, 〈1, λx : int. x int= 0〉 as τ

M ′ = pack bool, 〈true, λx : bool.¬x〉 as τ

where τ = ∃α. α× (α→ bool). Existing bisimulation methods cannot prove the
contextual equivalence ` M ≡ M ′ : τ of these simple packages, because they do not

1Recently, Ahmed [2006] proposed syntactic logical relations based on evaluation step indices. See
Section 7 for its relationship to our bisimulations.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 3

capture the fact that the only values of type α are 1 in the “left-hand world” and
true in the right-hand world. The same observation applies to context bisimulation.

The only exceptions to the problem above are bisimulations for polymorphic
π-calculi [Pierce and Sangiorgi 2000; Berger et al. 2003]. However, π-calculus is
name-based and low-level. As a result, it is rather difficult to encode polymorphic
λ-calculus into polymorphic π-calculus while preserving equivalence (though there
are some results [Berger et al. 2003] for the case without recursion), so it is at least as
difficult to use π-calculus for reasoning about abstraction in λ-calculus or similar
languages with (in particular higher-order) functions and recursion. In addition
to the problem of encoding, existing bisimulations for polymorphic π-calculi are
incomplete [Pierce and Sangiorgi 2000] and complex [Berger et al. 2003].

Encoding existential polymorphism in terms of universal polymorphism does not
help either. Consider the following encodings of M and M ′

N = λf :σ. f [int]〈1, λx : int. x int= 0〉
N ′ = λf :σ. f [bool]〈true, λx : bool.¬x〉

where σ = ∀α. α× (α→ bool)→ ans and ans is some answer type. In order to
establish the bisimulation between N and N ′, one has at least to prove

f [int]〈1, λx : int. x int= 0〉 ⇓
⇐⇒ f [bool]〈true, λx : bool.¬x〉 ⇓

for any observer function f of type σ, which is almost the same as the definition of
` M ≡ M ′ : τ .

Our solution. We address these problems—and thereby obtain a sound and com-
plete bisimulation for existential types (as well as universal and recursive types)—by
adapting key ideas from our previous work [Sumii and Pierce 2004] on bisimulation
for sealing [Morris 1973a; 1973b], a dynamic form of data abstraction. The crucial
insight is that we should define bisimulations as sets of relations—rather than just
relations—annotated with type information.

For instance, a bisimulation X showing the contextual equivalence of M and M ′

above can be defined (roughly) as

X = {(∅,R0), (∆,R1), (∆,R2), (∆,R3)}
where

R0 = {(M, M ′, τ)}
R1 = R0 ∪ {(〈1, λx : int. x int= 0〉,

〈true, λx : bool.¬x〉,
α× (α→ bool))}

R2 = R1 ∪ {(1, true, α),

(λx : int. x int= 0,

λx : bool.¬x,

α→ bool)}
R3 = R2 ∪ {(false, false, bool)}

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · E. Sumii and B. C. Pierce

∆ = {(α, int, bool)}.
Because we are ultimately interested in the equivalence of M and M ′, we begin by
including (∅,R0) in X. (The role of the first element ∅ of this pair will be explained
in a moment.) Next, since a context can open those packages and examine their
contents, we add (∆,R1) to X, where ∆ is a concretion environment mapping the
abstract type α to its respective concrete types in the left-hand side and the right-
hand side. Then, since the contents of the packages are pairs, a context can examine
their elements, so we add (∆,R2) to X. Last, since the second elements of the pairs
are functions of type α→ bool, a context can apply them to any arguments of type
α; the only such arguments are, in fact, 1 in the left-hand world and true in the
right-hand world, so we add (∆,R3) to X. Since the results of these applications
are equal as booleans, there is nothing else that a context can do to distinguish the
values in R3.

Conceptually, each R occurring in a pair (∆,R) ∈ X represents the knowledge
of a context at some point in time, which increases via new observations by the
context. In order to prove contextual equivalence, it suffices to find a bisimulation
X that is closed under this increase of contexts’ knowledge. (Thus, in fact, not only
X but also the singleton set {(∆,R3)} is a bisimulation in our definition.)

Why do we consider a bisimulation X to be a set of Rs (with corresponding ∆s)
instead of taking their union in the first place? Because the latter does not exist in
general! In other words, the union of two “valid” Rs is not always a valid R. For
instance, consider the union of R3 and its inverse R−1

3 = {(V ′, V, τ) | (V, V ′, τ) ∈
R3}. Although each of them makes perfect sense by itself, taking their union is
nonsensical because it confuses two different worlds (which, in fact, is not even type-
safe). This observation is absolutely fundamental in the presence of type abstraction
(or other forms of information hiding such as sealing), and it forms the basis of
many technicalities in the present work (as in our previous work [Sumii and Pierce
2004]). By considering a set of relations instead of taking their union, it becomes
straightforward to define bisimilarity to be the largest bisimulation and thereby
apply standard co-inductive arguments (to prove the completeness of bisimilarity,
for instance). In addition, this also gives a natural account of the generativity
of existential types, i.e., of the fact that opening the same package twice gives
incompatible contents.

This decision does not incur any significant difficulty for users of our bisimulation:
we devise a trick—explained below, in the definition of bisimulation for packages—
that keeps the set of relations finite in many cases; even where this trick does
not apply, it is not very difficult to define the infinite set of relations (e.g., by set
comprehension or by induction) and check it against our definition of bisimulation
(as we will do in Section 5.3 for generative functors, or as we did in previous
work [Sumii and Pierce 2004, Examples 4.7 and 4.8] for security protocols).

Contributions. This is an “elementary” (i.e., not using domain theory or its vari-
ants) characterization and proof method of contextual equivalence in a language
with full existential and recursive types. As discussed above, previous results in this
area were (1) limited to recursive types with no negative occurrence, (2) incomplete
for existential types, and/or (3) apt to be technically involved in general.

Many of the ideas used here are drawn from our previous work [Sumii and Pierce
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 5

2004] on a sound and complete bisimulation for untyped λ-calculus with dynamic
sealing (also known as perfect encryption). This form of information hiding is very
different from static type abstraction. Given the difference, it is surprising (and
interesting) in itself to find that similar ideas can be adapted to both settings.
Furthermore, the language in the present paper is typed (unlike in our previous
work), requiring many refinements to take type information into account throughout
the technical development. In general, typed equivalence is much coarser than
untyped equivalence—in particular with polymorphism—because not only terms
but also contexts have to respect types. Accordingly, our bisimulation keeps careful
track of the mapping of abstract type variables to concrete types, substituting the
former with the latter if and only if appropriate.

Overview. The rest of this paper is structured as follows. Section 2 presents
our language and its contextual equivalence, generalized in a non-trivial way for
open types as required by the technicalities which follow. Section 3 defines our
bisimulation. Section 4 proves soundness and completeness of the bisimulation with
respect to the generalized contextual equivalence and Section 5 gives examples to
illustrate its uses. Section 6 generalizes these results, which have been restricted
to closed values for simplicity, to non-values and open terms. Section 7 discusses
an extension of our bisimulation concerning higher-order functions and an “up-to
context” technique. Section 8 discusses related work, and Section 9 concludes with
future work.

Throughout the paper, we use overbars as shorthands for sequences—e.g., we
write x, [V /x], (α, σ, σ′) and x : τ instead of x1, . . . , xn, [V1, . . . , Vn/x1, . . . , xn],
(α1, σ1, σ

′
1), . . . , (αn, σn, σ′n) and x1 : τ1, . . . , xn : τn where n ≥ 0.

2. GENERALIZED CONTEXTUAL EQUIVALENCE

Our language is call-by-value λ-calculus with polymorphic and recursive types. (We
conjecture that it would also be straightforward to adapt our method to a call-by-
name setting.) Its syntax, semantics, and typing rules are given in Figures 1, 2,
and 3. We include recursive functions fix f(x : τ) : σ = M as a primitive for the
sake of exposition; alternatively, they can be implemented in terms of a fixed-point
operator, which is typable using recursive types. We adopt the standard notion of
variable binding with implicit α-conversion and write λx : τ.M for fix f(x : τ) : σ =
M when f is not free in M . We will write let x : τ = M in N for (λx : τ.N)M . We
sometimes omit type annotations—as in λx.M and let x = M in N—when they
are obvious from the context. The semantics is defined by the evaluation M ⇓ V
of term M to value V . We choose not to evaluate under Λ (unlike [Pitts 2005], for
example), though this choice is not essential for our developments. As is often the
case in polymorphic λ-calculus, a type environment Γ is the union of (1) a finite
set of type variables and (2) a finite map from variables to types. We write Γ, α for
Γ∪ {α} when α 6∈ Γ, and Γ, x : τ for Γ∪ {(x, τ)} when x 6∈ dom(Γ), where dom(Γ)
denotes {x} for Γ = {α, (x, τ)}.

For simplicity, we consider the equivalence of closed values only. (This restric-
tion entails no loss of generality: see Section 6.) However, in order to formalize
the soundness and completeness of our bisimulation with respect to contextual
equivalence, it helps to extend the definition of contextual equivalence to values

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · E. Sumii and B. C. Pierce

M, N, C, D ::= term
x variable
fix f(x : τ) : σ = M recursive function
MN application
Λα. M type function
M [τ] type application
pack τ, M as ∃α. σ packing
open M as α, x in N opening
〈M1, . . . , Mn〉 tupling
#i(M) projection
ini(M) injection
case M of in1(x1) ⇒ M1 [] . . . [] inn(xn) ⇒ Mn

case branch
fold(M) folding
unfold(M) unfolding

U, V, W ::= value
fix f(x : τ) : σ = M recursive function
Λα. M type function
pack τ, V as ∃α. σ package
〈V1, . . . , Vn〉 tuple
ini(V) injected value
fold(V) folded value

π, ρ, σ, τ ::= type
α type variable
τ →σ function type
∀α. τ universal type
∃α. τ existential type
τ1× . . . × τn product type
τ1 + . . . + τn sum type
µα. τ recursive type

Fig. 1. Syntax

of open types. For instance, we will have to consider whether λx : int. x is con-
textually equivalent to λx : int. x− 1 at type α→ int, where the implementation
of abstract type α is int in fact. But this clearly depends on what values of
type α (or, more generally, what values involving type α) exist in the context: for
instance, if the only values of type α are 2 in the left-hand world and 3 in the
right-hand world, then the equivalence does hold; however, if some integers i on
the left and j on the right have type α where i 6= j− 1, then it does not hold.
In order to capture at once all such values in the context involving type α, we
consider the equivalence of multiple pairs of values—annotated with their types—
such as {(2, 3, α), ((λx : int. x), (λx : int. x− 1), α→ int)} and {(i, j, α), ((λx : int.
x), (λx : int. x− 1), α→ int)}; the former should be included in the equivalence
while the latter should not, provided that i 6= j− 1. For this reason, we define a
generalized form of contextual equivalence as follows.

Definition 2.1. A concretion environment ∆ is a finite set of triples of the form
(α, σ, σ′) with σ, σ′ closed types and (α, τ, τ ′) ∈ ∆∧(α, σ, σ′) ∈ ∆ ⇒ τ = σ∧τ ′ = σ′.

The intuition is that, under ∆, abstract type α is implemented by concrete type
σ in the left-hand side and by another concrete type σ′ in the right-hand side (of
an equivalence). For instance, in the example in Section 1, the concrete imple-
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 7

(fix f(x : τ) : σ = M) ⇓ (fix f(x : τ) : σ = M)
(E-Fix)

M ⇓ (fix f(x : τ) : σ = M0) N ⇓ V [V/x][(fix f(x : τ) : σ = M0)/f]M ⇓ W

MN ⇓ W
(E-App)

Λα. M ⇓ Λα. M
(E-TAbs)

M ⇓ Λα. N [τ/α]N ⇓ V

M [τ] ⇓ V
(E-TApp)

M ⇓ V

pack τ, M as ∃α. σ ⇓ pack τ, V as ∃α. σ
(E-Pack)

M ⇓ pack σ, V as ∃α. τ [V/x][σ/α]N ⇓ W

open M as α, x in N ⇓ W
(E-Open)

M1 ⇓ V1 . . . Mn ⇓ Vn

〈M1, . . . , Mn〉 ⇓ 〈V1, . . . , Vn〉 (E-Tuple)
M ⇓ 〈V1, . . . , Vi, . . . , Vn〉

#i(M) ⇓ Vi
(E-Proj)

M ⇓ V

ini(M) ⇓ ini(V)
(E-Inj)

M ⇓ ini(V) [V/xi]Mi ⇓ W

case M of in1(x1) ⇒ M1 [] . . . [] ini(xi) ⇒ Mi [] . . . [] inn(xn) ⇒ Mn ⇓ W
(E-Case)

M ⇓ V

fold(M) ⇓ fold(V)
(E-Fold)

M ⇓ fold(V)

unfold(M) ⇓ V
(E-Unfold)

Fig. 2. Semantics

mentations of abstract type α were int in the left-hand world and bool in the
right-hand world, so ∆ was {(α, int, bool)}. We write dom(∆) for {α1, . . . , αn}
when ∆ = {(α1, σ1, σ

′
1), . . . , (αn, σn, σ′n)} and write ∆1] ∆2 for ∆1 ∪ ∆2 when

dom(∆1) ∩ dom(∆2) = ∅.
Definition 2.2. A typed value relation R is a (either finite or infinite) set of

triples of the form (V, V ′, τ).

The intuition is that R relates value V in the left-hand side and value V ′ in the
right-hand side at type τ .

Definition 2.3. Let ∆ = {(α1, σ1, σ
′
1), . . . , (αm, σm, σ′m)}. We write ∆ ` R if,

for any (V, V ′, τ) ∈ R, we have ` V : [σ/α]τ and ` V ′ : [σ′/α]τ .

Definition 2.4 Typed Value Relation in Context. We write (∆,R)◦ for
the relation

{([U/y][σ/α]D, [U
′
/y][σ′/α]D, τ) |

∆ = {(α1, σ1, σ
′
1), . . . , (αm, σm, σ′m)},

(U1, U
′
1, ρ1), . . . , (Un, U ′

n, ρn) ∈ R,
α1, . . . , αm, y1 : ρ1, . . . , yn : ρn ` D : τ}.

Intuitively, this relation represents contexts D into which values U and U
′
, which

are related by R, have been put.
Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · E. Sumii and B. C. Pierce

(x, τ) ∈ Γ

Γ ` x : τ
(T-Var)

FTV (τ) ⊆ Γ Γ, f : τ →σ, x : τ ` M : σ

Γ ` (fix f(x : τ) : σ = M) : τ →σ
(T-Fix)

Γ ` M : τ →σ Γ ` N : τ

Γ ` MN : σ
(T-App)

Γ, α ` M : τ

Γ ` Λα. M : ∀α. τ
(T-TAbs)

Γ ` M : ∀α. σ FTV (τ) ⊆ Γ

Γ ` M [τ] : [τ/α]σ
(T-TApp)

FTV (τ) ⊆ Γ Γ ` M : [τ/α]σ

Γ ` pack τ, M as ∃α. σ : ∃α. σ
(T-Pack)

Γ ` M : ∃α. τ Γ, α, x : τ ` N : σ α 6∈ FTV (σ)

Γ ` open M as α, x in N : σ
(T-Open)

Γ ` M1 : τ1 . . . Γ ` Mn : τn

Γ ` 〈M1, . . . , Mn〉 : τ1× . . . × τn
(T-Tuple)

Γ ` M : τ1× . . . × τi× . . . × τn

Γ ` #i(M) : τi
(T-Proj)

Γ ` M : τi FTV (τ1) ⊆ Γ . . . FTV (τn) ⊆ Γ

Γ ` ini(M) : τ1 + . . . + τi + . . . + τn
(T-Inj)

Γ ` M : τ1 + . . . + τn Γ, x1 : τ1 ` M1 : τ . . . Γ, xn : τn ` Mn : τ

Γ ` case M of in1(x1) ⇒ M1 [] . . . [] inn(xn) ⇒ Mn : τ
(T-Case)

Γ ` M : [µα. τ/α]τ

Γ ` fold(M) : µα. τ
(T-Fold)

Γ ` M : µα. τ

Γ ` unfold(M) : [µα. τ/α]τ
(T-Unfold)

Fig. 3. Typing Rules

Definition 2.5. Generalized contextual equivalence is the set ≡ of all pairs
(∆,R) such that:

A. ∆ ` R.

B. For any (M,M ′, τ) ∈ (∆,R)◦, we have M ⇓ ⇐⇒ M ′ ⇓.
Note that the standard contextual equivalence—between two closed values of a
closed type—is subsumed by the case where each ∆ is empty and each R is a
singleton. Conversely, the standard contextual equivalence is implied by the gen-
eralized one in the following sense: if (V, V ′, τ) ∈ R for some (∆,R) ∈ ≡ where V ,
V ′, and τ are closed, then it is immediate by definition that K[V] ⇓ ⇐⇒ K[V ′] ⇓
for any context K with a hole [] for terms of type τ . More generally, if (∆,R) ∈ ≡
for ∆ = {(α, σ, σ′)} and R = {(V , V

′
, τ)}, then

pack σ, (V1, . . . , Vn) as ∃α. τ1× . . . × τn

and

pack σ′, (V ′
1 , . . . , V ′

n) as ∃α. τ1× . . . × τn

are contextually equivalent in the standard sense. (A formal proof of this can be
given by observing that the packages above are bisimilar as defined in Section 3.)
See also Section 6 for discussions on non-values and open terms.
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 9

We write

∆ ` V1, V2, . . . ≡ V ′
1 , V ′

2 , . . . : τ1, τ2, . . .

for

(∆, {(V1, V
′
1 , τ1), (V2, V

′
2 , τ2), . . .}) ∈ ≡.

We also write ∆ ` V ≡R V ′ : τ for (V, V ′, τ) ∈ R with (∆,R) ∈ ≡. Intuitively,
this can be read, “values V and V ′ have type τ under concretion environment ∆
and are contextually equivalent under knowledge R.”

The following properties follow immediately from the definition above.

Corollary 2.6 Reflexivity. If ` V1 : [σ/α]τ1, ` V2 : [σ/α]τ2, . . . , then

{(α, σ, σ)} ` V1, V2, . . . ≡ V1, V2, . . . : τ1, τ2,

Corollary 2.7 Symmetry. If

{(α, σ, σ′)} ` V1, V2, . . . ≡ V ′
1 , V ′

2 , . . . : τ1, τ2, . . .

then

{(α, σ′, σ)} ` V ′
1 , V ′

2 , . . . ≡ V1, V2, . . . : τ1, τ2,

Corollary 2.8 Transitivity. If

{(α, σ, σ′)} ` V1, V2, . . . ≡ V ′
1 , V ′

2 , . . . : τ1, τ2, . . .

and

{(α, σ′, σ′′)} ` V ′
1 , V ′

2 , . . . ≡ V ′′
1 , V ′′

2 , . . . : τ1, τ2, . . .

then

{(α, σ, σ′′)} ` V1, V2, . . . ≡ V ′′
1 , V ′′

2 , . . . : τ1, τ2,

Example 2.9. Suppose that our language is extended in the obvious way with
integers and booleans (these are, of course, definable in the language we have al-
ready given, but we prefer not to clutter examples with encodings), and let ∆ =
{(α, int, int)}. Then we shall have:

∆ ` 2, (λx : int. x)
≡ 3, (λx : int. x− 1)
: α, (α→ int)

More generally,

∆ ` i, (λx : int. x)
≡ j, (λx : int. x− 1)
: α, (α→ int)

if and only if i = j− 1. Formal proofs of these equivalences can be given by us-
ing the bisimulation method presented in the following sections. Intuitively, these
equivalences should hold because the only way to use the values of type α is to apply
the functions of type α→ int.

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · E. Sumii and B. C. Pierce

Example 2.10. Let ∆ = {(α, int, bool)}. We have

∆ ` 1, (λx : int. x int= 0)
≡ true, (λx : bool.¬x)
: α, (α→ bool)

∆ ` 1, (λx : int. x int= 0)
≡ false, (λx : bool. x)
: α, (α→ bool)

but

∆ ` 1, (λx : int. x int= 0), 1, (λx : int. x int= 0)
6≡ true, (λx : bool.¬x), false, (λx : bool. x)
: α, (α→ bool), α, (α→ bool).

Again, the first two equivalences can be proved by means of bisimulations, de-
fined in the next section. The last inequivalence can be proved by taking D =
if y4y1 then ⊥ else 0 (or, alternatively, D = if y2y3 then ⊥ else 0) in Def-
inition 2.4 (and 2.5), where ⊥ is any divergent term, e.g., (fix f(x : int) : int =
f x) 0.

The last example shows that, even if (∆,R1) ∈ ≡ and (∆,R2) ∈ ≡, the union
(∆,R1 ∪R2) does not always belong to ≡. In other words, one should not confuse
two different implementations of an abstract type, even if each of them is correct
in itself.

3. BISIMULATION

Contextual equivalence is difficult to prove directly, because it involves a univer-
sal quantification over arbitrary contexts. Fortunately, we can avoid considering
all contexts by observing that only a few “primitive” operations can actually be
performed on the values that contexts have access to: for instance, if a context
is comparing a pair 〈v, w〉 with another pair 〈v′, w′〉, all it can do is to project
the first elements v and v′ or the second elements w and w′ (and add them to
its knowledge for later use). Similarly, in order to compare functions λx.M and
λx.M ′, a context has to apply them to some arguments it can make up from its
knowledge. Intuitively, our bisimulations are sets of relations representing such
contextual knowledge, closed under increase of knowledge via primitive operations
like projection and application.

Based on the ideas above, our bisimulation is defined as follows. More detailed
technical intuitions will be given after the definition.

Definition 3.1 Bisimulation. A bisimulation is a set X of pairs (∆,R) such
that:

(1) ∆ ` R.

(2) For each

(fix f(x : π) : ρ = M, fix f(x : π′) : ρ′ = M ′, τ →σ) ∈ R
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 11

and for any (V, V ′, τ) ∈ (∆,R)◦, we have

(fix f(x :π) : ρ = M)V ⇓
⇐⇒ (fix f(x :π′) : ρ′ = M ′)V ′ ⇓.

Furthermore, if (fix f(x : π) : ρ = M)V ⇓ W and (fix f(x : π′) : ρ′ = M ′)V ′ ⇓
W ′, then

(∆,R∪ {(W,W ′, σ)}) ∈ X.

(3) Let ∆ = {(α1, σ1, σ
′
1), . . . , (αm, σm, σ′m)}. For each

(Λα.M, Λα. M ′, ∀α. τ) ∈ R
and for any ρ with FTV (ρ) ⊆ dom(∆), we have

(Λα. M)[[σ/α]ρ] ⇓ ⇐⇒ (Λα.M ′)[[σ′/α]ρ] ⇓.

Furthermore, if (Λα. M)[[σ/α]ρ] ⇓ W and (Λα. M ′)[[σ′/α]ρ] ⇓ W ′, then

(∆,R∪ {(W,W ′, [ρ/α]τ)}) ∈ X.

(4) For each

(pack σ, V as ∃α. τ, pack σ′, V ′ as ∃α. τ ′, ∃α. τ ′′) ∈ R,

we have either

(∆] {(α, σ, σ′)},R∪ {(V, V ′, τ ′′)}) ∈ X,

or else (β, σ, σ′) ∈ ∆ and (V, V ′, [β/α]τ ′′) ∈ R for some β.
(5) For each (〈V1, . . . , Vn〉, 〈V ′

1 , . . . , V ′
n〉, τ1× . . . × τn) ∈ R and for any 1 ≤ i ≤ n,

we have (∆,R∪ {(Vi, V
′
i , τi)}) ∈ X.

(6) For each (ini(V), inj(V ′), τ1 + . . . + τn) ∈ R, we have i = j and (∆,R ∪
{(V, V ′, τi)}) ∈ X.

(7) For each (fold(V), fold(V ′), µα. τ) ∈ R, we have (∆,R∪{(V, V ′, [µα. τ/α]τ)}) ∈
X.

As usual, bisimilarity, written ∼, is the largest bisimulation (which is the union
of all bisimulations); it exists because the union of any bisimulations is again a
bisimulation.

We write

∆ ` V1, . . . , Vn X V ′
1 , . . . V ′

n : τ1, . . . , τn

for

(∆, {(V1, V
′
1 , τ1), . . . , (Vn, V ′

n, τn)}) ∈ X.

We also write ∆ ` V XR V ′ : τ for (V, V ′, τ) ∈ R with (∆,R) ∈ X. Intuitively, it
can be read: values V and V ′ of type τ with concretion environment ∆ are bisimilar
under knowledge R. (This may be reminiscent of Kripke logical relations [Mitchell
1996, page 590], but our bisimulation is not monotone about R as discussed in the
introduction.)

We now elaborate the intuitions behind the definition of bisimulation. Condi-
tion 1 ensures that bisimilar values V and V ′ are well typed under the concretion

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · E. Sumii and B. C. Pierce

environment ∆. The other conditions require that the bisimulation is closed under
the increase of a context’s knowledge via primitive operations, as explained below.

Condition 2 deals with the case where a context applies two functions it knows
(fix f(x : π) : ρ = M and fix f(x : π′) : ρ′ = M ′) to some arguments V and V ′. To
make up these arguments, the context can make use of any values it already knows
(U and U

′
in Definition 2.4) and assemble them using a term D with free variables

y, where the abstract types α (in Definition 2.4) are kept abstract.
The crucial observation here is that it suffices to consider value arguments only,

i.e., only the cases where the assembled terms [U/y][σ/α]D and [U
′
/y][σ′/α]D′

are values. This simplification is essential for proving the bisimilarity of functions.
Intuitively, it can be understood via the fact that any terms of the form [U/y][σ/α]D
and [U

′
/y][σ′/α]D evaluate to values of the same form, as proved in Lemma 4.3

below.
Then, to avoid exhibiting an observable difference in behaviors, the function

applications should either both diverge or else both converge; in the latter case,
the resulting values become part of the context’s knowledge and can be used for
further experiments.2

Condition 3 is similar to Condition 2, but for type application rather than term
application.

Condition 4 is for packages defining an abstract type α. Essentially, a context
can open the two packages and examine their contents only abstractly, as expressed
in the first half of this condition. However, if the context happens to know another
abstract type β whose implementations coincide with α’s, there is no need for us to
consider them twice. The second half of the condition expresses this simplification.
It is not so crucial as the previous simplification in Condition 2, but it is useful for
proving the bisimulation of packages, keeping X finite in many cases despite the
generativity of open, as we mentioned in the introduction.

Conditions 5, 6, and 7 are for tuples, injected values, and folded values, respec-
tively. They capture the straightforward increase of the context’s knowledge via
projection, case branch, or unfolding.

4. SOUNDNESS AND COMPLETENESS

We prove that bisimilarity coincides with contextual equivalence (in the generalized
form presented in Section 2). That is, two values can be proved to be bisimilar if
and only if they are contextually equivalent.

First, we prove the “if” part, i.e., that contextual equivalence is included in bisim-
ilarity. This direction is easier because our bisimulation is defined co-inductively:
it suffices simply to prove that contextual equivalence is a bisimulation.

Lemma 4.1 Completeness of Bisimulation. ≡ ⊆ ∼.

Proof. By checking that ≡ satisfies each condition of bisimulation. Details can

2Another technical point may deserve mentioning here: instead of (∆,R∪{(W, W ′, σ)}) ∈ X, we
could require (W, W ′, σ) ∈ R to reduce the number of Rs required to be in X by “predicting” the
increase of contexts’ knowledge a priori. We rejected this alternative for the sake of uniformity
with Condition 4, which anyway requires the concretion environment ∆ to be extended. This
decision does not make it difficult to construct a bisimulation, as we will see soon in the examples.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 13

be found in Appendix A.

Next, we show that bisimilarity is included in contextual equivalence. To do so,
we need to consider the question: When we put bisimilar values into a context and
evaluate them, what changes? The answer is: Nothing! I.e., evaluating a pair of
expressions, each consisting of some set of bisimilar values placed in some context,
results again in a pair of expressions that can be described by some set of bisimilar
values placed in some context. Furthermore, this evaluation converges in the left-
hand side if and only if it converges in the right-hand side. Since the proof of the
latter property requires the former property, we formalize the observations above
in the following order.

Definition 4.2 Bisimilarity in Context. We write ∆ ` N ∼◦R N ′ : τ if
(N,N ′, τ) ∈ (∆,R)◦ and (∆,R) ∈ ∼.

The intuition is that ∼◦ relates bisimilar values put in contexts.

Lemma 4.3 Fundamental Property, Part I. Suppose ∆0 ` N ∼◦R0
N ′ : τ .

If N ⇓ W and N ′ ⇓ W ′, then ∆ ` W ∼◦R W ′ : τ for some ∆ ⊇ ∆0 and R ⊇ R0.

Proof. By induction on the derivation of N ⇓ W . Details are found in Ap-
pendix B.

Lemma 4.4 Fundamental Property, Part II. If ∆0 ` N ∼◦R0
N ′ : τ then

N ⇓ ⇐⇒ N ′ ⇓.
Proof. By induction on the derivation of N ⇓ together with Lemma 4.3. Details

are in Appendix C.

Corollary 4.5 Soundness of Bisimilarity. ∼ ⊆ ≡.

Proof. By the definitions of ≡ and ∼◦ together with Lemma 4.4.

Combining soundness and completeness, we obtain the main theorem about our
bisimulation: that bisimilarity coincides with contextual equivalence.

Theorem 4.6. ∼ = ≡.

Proof. By Corollary 4.5 and Lemma 4.1.

Note that these proofs are much simpler than soundness proofs of applicative
bisimulations in previous work [Howe 1996; Gordon 1995a; Gordon and Rees 1996;
Gordon 1995b; Gordon and Rees 1995; Abramsky 1990] thanks to the generalized
condition on functions (Condition 2), which is anyway required in the presence of
existential polymorphism (i.e., we cannot just apply bisimilar functions to identical
arguments).

5. EXAMPLES

We develop several examples illustrating concrete applications of the bisimulation
method. The first three examples involve existential packages, whose equivalence
cannot be proved by other bisimulations for λ-calculi. The fourth example involves
recursive types with negative occurrences, for which traditional logical relations
have difficulties. The last example uses higher-order functions (continuation pass-
ing style) and universal types in place of existential packages. Our bisimulation
technique yields a straightforward proof of equivalence for each of the examples.

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · E. Sumii and B. C. Pierce

5.1 Warm-Up

Consider the following simple packages

U = pack int, 〈1, λx : int. x int= 0〉 as τ

U ′ = pack bool, 〈true, λx : bool.¬x〉 as τ

where τ = ∃α. α× (α→ bool). We aim to prove that U and U ′ are contextually
equivalent at type τ . To this end, let

X = {(∅,R0), (∆,R1), (∆,R2), (∆,R3), (∆,R4), (∆,R5)}
where

∆ = (α, int, bool)
R0 = {(U,U ′, τ)}
R1 = R0 ∪ {(〈1, λx : int. x int= 0〉,

〈true, λx : bool.¬x〉,
α× (α→ bool))}

R2 = R1 ∪ {(1, true, α)}
R3 = R1 ∪ {(λx : int. x int= 0,

λx : bool.¬x,

α→ bool)}
R4 = R2 ∪R3

R5 = R4 ∪ {(false, false, bool)}.
Then, X is a bisimulation. To prove it, we must check each condition in Defini-
tion 3.1 for every (∆,R) ∈ X. Most of the checks are trivial, except the following
cases:

—Condition 4 on (U,U ′, τ) ∈ Ri for i ≥ 1, where the second half of the condition
holds.

—Condition 2 on

(λx : int. x int= 0, λx : bool.¬x, α→ bool) ∈ Ri

for i ≥ 3. Since V and V ′ are values with (V, V ′, α) ∈ (∆,Ri)◦, the D in
Definition 2.4 is either a value or a variable. However, if D is a value, it can
never satisfy the assumption α, y1 : ρ1, . . . , yn : ρn ` D : α (easy case analysis on
the syntax of D). Thus, D must be a variable. Without loss of generality, let
D = y1. Then, by inversion of (T-Var), ρ1 = α. Since (U1, U

′
1, ρ1) ∈ Ri, we have

U1 = 1 and U ′
1 = true. Thus, V = 1 and V ′ = true, from which the rest of this

condition is obvious.

Alternatively, in this particular example, we can just take X = {(∆,R5)} in
the first place and prove it to be a bisimulation by the same arguments as above.
Since (U,U ′, τ) ∈ R5, this still suffices for showing the contextual equivalence of U
and U ′, thanks to the soundness of bisimilarity (Corollary 4.5) and the generalized
definition of contextual equivalence (Definition 2.5). Simplifications like this (i.e.,
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 15

taking the maximum union in the first place) are possible when the example does
not involve generativity (cf. Section 5.3).

5.2 Complex Numbers

Suppose now that we have real numbers and operations in the language. Then the
following two implementations U and U ′ of complex numbers should be contextually
equivalent at type ∃α. τ .

U = pack (real× real), 〈id , id , cmul〉 as ∃α. τ

U ′ = pack (real× real), 〈ctop, ptoc, pmul〉 as ∃α. τ

τ = (real× real→α)× (α→ real× real)× (α→α→α)

id = λc : real× real. c

cmul = λc1 : real× real. λc2 : real× real.

〈#1(c1)×#1(c2)−#2(c1)×#2(c2),
#2(c1)×#1(c2)+ #1(c1)×#2(c2)〉

ctop = λc : real× real.

〈
√

(#1(c))2 +(#2(c))2, atan2(#2(c), #1(c))〉
ptoc = λp : real× real.

〈#1(p)× cos(#2(p)), #1(p)× sin(#2(p))〉
pmul = λp1 : real× real. λp2 : real× real.

〈#1(p1)×#1(p2), #2(p1) +#2(p2)〉
The first functions in these packages make a complex number from its real and
imaginary parts, and the second functions perform the converse conversion. The
third functions multiply complex numbers.

To prove the contextual equivalence of U and U ′, consider X = {(∆,R)} where

∆ = {(α, real× real, real× real)}
R = {(U,U ′, ∃α. τ),

(〈id , id , cmul〉, 〈ctop, ptoc, pmul〉, τ),
(id , ctop, real× real→α),
(id , ptoc, α→ real× real),
(cmul , pmul , α→α→α)}

∪ {(v, w, α) | w = 〈r, t〉,
〈r× cos(t), r× sin(t)〉 ⇓ v,

r ≥ 0}
∪ {(c, c, real× real) | ` c : real× real}
∪ {(r, r, real) | ` r : real}.

Then X is a bisimulation, as can be checked in the same manner as in the previous
example.

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · E. Sumii and B. C. Pierce

5.3 Functions Generating Packages

The following functions U and U ′ generate packages. (I.e., they behave a bit like
functors in ML-style module systems.)

U = λy : real.M
U ′ = λy : real.M ′

M = pack real, 〈y, λx : real. x〉 as τ

M ′ = pack real, 〈y +1.0, λx : real. x− 1.0〉 as τ

τ = ∃α. α× (α→ real)

To prove that U is contextually equivalent to U ′ at type real→ τ , it suffices to
consider the following infinite bisimulation.

X = {(∆,R) |
` ri : real for i = 0, 1, 2, ..., n,

∆ = {(βi, real, real) | i = 0, 1, 2, ..., n},
R ⊆ ∪{R(i, ri) | i = 0, 1, 2, ..., n}}

R(i, r) = {(U,U ′, real→ τ),
([r/y]M, [r/y]M ′, τ),
(〈r, λx : real. x〉, 〈r +1.0, λx : real. x− 1.0〉, βi× (βi→ real)),
(r, r +1.0, βi),
(λx : real. x, λx : real. x− 1.0, βi→ real),
(r, r, real)}

The generativity of U and U ′ is given a simple account by having a different abstract
type βi for each instantiation of U and U ′ with y = ri. Unlike the example in
Section 5.1, we cannot take the union of all R(i, r), because it would require an
uncountably infinite number of type variables in ∆.

The inclusion of all R ⊆ ∪{R(i, ri) | . . .} in the definition of X simplifies the
definition of this bisimulation; although it admits some Rs that are not strictly
relevant to the proof (such as those with only the elements of tuples, but without
the tuples themselves), they are not a problem since they do not violate any of the
conditions of bisimulation. In other words, to prove the contextual equivalence of
two values, one has only to find some bisimulation including the values rather than
the minimal one.

5.4 Recursive Types with Negative Occurrence

Consider the packages C and C ′ implementing counter objects as follows: each
counter is implemented as a pair of its state part (of abstract type st) and its
method part; the latter is implemented as a function that takes a state and returns
the tuple of methods3; in this example, there are two methods in the tuple: one

3This implementation can be viewed as a variant of the so-called recursive existential encoding
of objects (see [Bruce et al. 1999] for details), but our goal here is to illustrate the power of our
bisimulation with existential recursive types, rather than to discuss the object encoding itself.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 17

returns a new counter object with the state incremented (or, in the second imple-
mentation, decremented) by 1, while the other tells whether another counter object
has been incremented (or decremented) the same number of times as the present
one.

τ = ∃st. σ
σ = µself. st× (st→ ρ)
ρ = self× (self→ bool)

C = pack int, fold(〈0,M 〉) as τ

C ′ = pack int, fold(〈0,M ′〉) as τ

M = fix f(s : int) : [int/st][σ/self]ρ =
〈fold(〈s +1, f)〉,
λc : [int/st]σ. (s int= #1(unfold(c)))〉

M ′ = fix f(s : int) : [int/st][σ/self]ρ =
〈fold(〈s− 1, f〉),
λc : [int/st]σ. (s int= #1(unfold(c)))〉

Let us prove the contextual equivalence of C and C ′ at type τ . To do so, we consider
the bisimulation X = {(∆,R)} where:

∆ = {(st, int, int)}
R = {(C, C ′, τ),

(fold(〈n,M〉), fold(〈−n,M ′〉), σ),
(〈n,M〉, 〈−n,M ′〉, st× (st→ [σ/self]ρ)),
(n,−n, st),
(M, M ′, st→ [σ/self]ρ),
(〈fold(〈n +1,M〉),

λc : [int/st]σ. (n int= #1(unfold(c)))〉,
〈fold(〈−n− 1,M ′〉),
λc : [int/st]σ. (−n

int= #1(unfold(c)))〉,
σ× (σ→ bool)),

(λc : [int/st]σ. (n int= #1(unfold(c))),

λc : [int/st]σ. (−n
int= #1(unfold(c))),

σ→ bool),
(true, true, bool),
(false, false, bool) |
n = 0, 1, 2, . . .}

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · E. Sumii and B. C. Pierce

It can indeed be shown to be a bisimulation just as the bisimulations in previous
examples. That is, our bisimulation incurs no difficulty for recursive functions or
recursive types (with negative occurrence).

5.5 Dual of Existential Packages

The following higher-order functions represent the CPS-converted version of the
example in Section 5.1.

U = λk :σ. k[int]〈1, λx : int. x int= 0〉
U ′ = λk :σ. k[bool]〈true, λx : bool.¬x〉
σ = ∀α. α× (α→ bool)→ unit

It is straightforward to prove the contextual equivalence of U and U ′ at type
σ→ unit, i.e.,

[U/x]C ⇓ ⇐⇒ [U ′/x]C ⇓
for any x : σ→ unit ` C : τ . Since

[U/x]C = [1, (λx : int. x int= 0)/y, z][int/β]D0

[U ′/x]C = [true, (λx : bool.¬x)/y, z][bool/β]D0

for D0 = [(λk : σ. k[β]〈y, z〉)/x]C, it suffices to prove

[1, (λx : int. x int= 0)/y, z][int/β]D ⇓
⇐⇒ [true, (λx : bool.¬x)/y, z][bool/β]D ⇓

for every β, y : β, z : β→ bool ` D : τ . (Note that D0 has the same typing as D
thanks to the standard substitution lemma.) However, this follows immediately
from the bisimulation {(∆,R)} where

∆ = {(β, int, bool)}
R = {(1, true, β),

(λx : int. x int= 0, λx : bool.¬x, β→ bool),
(false, false, bool)}

along with the soundness of bisimilarity in the previous section.

6. NON-VALUES AND OPEN TERMS

So far, we have restricted ourselves to the equivalence of closed values for the sake
of simplicity. In this section, we show how our method can be used for proving the
standard contextual equivalence of non-values and open terms as well. (For other
studies on equivalences of open terms, see [Pitts 2000; 2005] for instance.)

A context K in the standard sense is a term with some subterm replaced by a
hole []. Unlike terms, (standard) contexts are not identified up to α-conversion of
bound variables.

K ::= [] | fix f(x : τ) : σ = K | KN | MK | Λα.K | K[τ] | pack τ, K as ∃α. σ |
open K as α, x in N | open M as α, x in K | 〈M1, . . . ,K, . . . , Mn〉 |

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 19

#i(K) | ini(K) | case K of in1(x1) ⇒ M1 [] . . . [] inn(xn) ⇒ Mn |
case M of in1(x1) ⇒ M1 [] . . . [] ini(xi) ⇒ K [] . . . [] inn(xn) ⇒ Mn |
fold(K) | unfold(K)

We write K[M] for the term obtained by substituting the hole in K with M (which
does not apply α-conversion and may capture free variables). Then, the standard
contextual equivalence

α1, . . . , αm, x1 : τ1, . . . , xn : τn ` M
std≡ M ′ : τ

for well-typed terms α, x : τ ` M : τ and α, x : τ ` M ′ : τ can be defined as:
K[M] ⇓ ⇐⇒ K[M ′] ⇓ for every context K with ` K[M] : unit and ` K[M ′] :
unit, where unit is the nullary product type. (In fact, any closed, non-empty type
works in place of unit.)

We will show that the standard contextual equivalence above holds if and only if
the closed values V = Λα. λx : τ . M and V ′ = Λα. λx : τ . M ′ are bisimilar, i.e.,

∅ ` Λα1. . . . Λαm. λx1 : τ1. . . . λxn : τn.M

∼ Λα1. . . . Λαm. λx1 : τ1. . . . λxn : τn.M ′

: ∀α1. . . . ∀αm. τ1→ . . . → τn→ τ.

(If M and M ′ have no free term/type variables at all, it suffices just to take V = Λα.
M and V ′ = Λα. M ′ for any type variable α.) The “only if” direction is obvious
from the definitions of contextual equivalences—both the standard one above and
the generalized one in Section 2—and from the completeness of bisimulation. To
prove the “if” direction, suppose ∅ ` V ∼ V ′ : ∀α. τ → τ . By the soundness of
bisimulation, we have ∅ ` V ≡ V ′ : ∀α. τ → τ . Given any K with ` K[M] : unit
and ` K[M ′] : unit, take C = K[z[α1] . . . [αm]x1 . . . xn] for fresh z. Then, it suffices
to prove K[M] ⇓ ⇐⇒ [V/z]C ⇓ and K[M ′] ⇓ ⇐⇒ [V ′/z]C ⇓.

To this end, we prove the more general lemma below in order for induction to
work. The intuition is that a term M and its β-expanded version (Λα. λx : τ . M)[α]x
should behave equivalently under any context. Since the free type/term variables
α and x are to be substituted by some types/values during evaluation under a
context, this “β-expansion” relation needs to be generalized to allow nesting. Thus,
we define:

Definition 6.1 β-Expansion. Γ ` M ¹ M ′ : τ is the smallest (typed and
substitution-closed) congruence relation between λ-terms that satisfies:

Γ ` M ¹ M ′ : ρ {α} ⊆ dom(Γ) Γ ` x : τ

Γ ` M ¹ (Λα. λx : τ .M ′)[α]x : ρ
(B-Exp)

Then, we can prove:

Lemma 6.2. For any

α1, . . . , αm, x1 : τ1, . . . , xn : τn ` M ¹ M ′ : τ,

for any closed σ1, . . . , σm, and for any (` V1 ¹ V ′
1 : [σ/α]τ1) ∧ . . . ∧ (` Vn ¹ V ′

n :
[σ/α]τn), we have

[V /x][σ/α]M ⇓ ⇐⇒ [V
′
/x][σ/α]M ′ ⇓.

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · E. Sumii and B. C. Pierce

Furthermore, if [V /x][σ/α]M ⇓ W and [V
′
/x][σ/α]M ′ ⇓ W ′, then ` W ¹ W ′ :

[σ/α]τ .

Proof. By induction on the derivations of α, x : τ ` M ¹ M ′ : τ and [V /x][σ/α]M ⇓
W (or [V

′
/x][σ/α]M ′ ⇓ W ′).

Lemma 6.3. For any Γ ` M : τ ,

(1) Γ ` M ¹ M : τ ,

(2) Γ ` M ¹ (Λα. λx.M)[α]x : τ , and

(3) ` K[M] ¹ K[(Λα. λx.M)[α]x] : unit for any K with ` K[M] : unit.

Proof. Immediate from Definition 6.1.

Theorem 6.4. For any α, x : τ ` M : τ and α, x : τ ` M ′ : τ , if ` Λα. λx : τ .

M ∼ Λα. λx : τ . M ′ : ∀α. τ → τ , then α, x : τ ` M
std≡ M ′ : τ .

Proof. By the soundness of bisimulation, we have [(Λα. λx : τ . M)/z]C ⇓ ⇐⇒
[(Λα. λx : τ . M ′)/z]C for any well-typed C. Thus, given K, take C = K[z[α]x] and
we get K[(Λα. λx : τ . M)[α]x] ⇓ ⇐⇒ K[(Λα. λx : τ . M ′)[α]x] ⇓. Meanwhile, by
Lemma 6.3 (3), we have ` K[M] ¹ K[(Λα. λx : τ . M)[α]x] : unit and ` K[M ′] ¹
K[(Λα. λx : τ . M ′)[α]x] : unit. By Lemma 6.2, we obtain K[M] ⇓ ⇐⇒ K[(Λα.
λx : τ . M)[α]x] ⇓ and K[M ′] ⇓ ⇐⇒ K[(Λα. λx : τ .M ′)[α]x] ⇓. Hence K[M] ⇓ ⇐⇒
K[M ′] ⇓.

Example 6.5. We have x : int ` x +1
std≡ 1+ x : int. That is, x+1 and 1+ x

are contextually equivalent (in the standard sense above) at type int provided that
x has type int. To show this, it suffices to prove ∅ ` λx : int. x+ 1 ∼ λx : int.
1+ x : int→ int, which is trivial.

Example 6.6. The packages

M = pack real, 〈y, λx : real. x〉 as τ

M ′ = pack real, 〈y +1.0, λx : real. x− 1.0〉 as τ

are contextually equivalent (again in the standard sense above) at type

τ = ∃α. α× (α→ real)

provided that y has type real. This follows from the bisimilarity of λy : real.M
and λy : real.M ′, shown in Section 5.3.

Although these examples are trivial, other examples of open terms can be treated
in the same way, i.e., by means of closing abstractions.

7. EXTENSION FOR HIGHER-ORDER FUNCTIONS AND “UP-TO CONTEXT”

Although the contextual equivalence proof of higher-order functions in Section 5.5
was particularly simple, the trick used there (i.e., factoring out the common part
λk : σ. k[β]〈y, z〉 of the two terms U , U ′ into context D) does not apply in general.
For example, consider the following implementations of integer multisets with a
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 21

higher-order function to compute a weighed sum of all elements. (We assume
standard definitions of lists and binary trees.)

IntSet = pack intList, (Nil, add, weigh) as ∃α. τ

IntSet′ = pack intTree, (Leaf, add′, weigh′) as ∃α. τ

τ = α× (int→α→α)× ((int→ real)→α→ real)
add = λi : int. λs : intList. Cons(i, s)
add′ = λi : int. fix f(s : intTree) : intTree =

case s of Leaf⇒ Node(i, Leaf, Leaf)
[] Node(j, s1, s2) ⇒ if i < j then Node(j, fs1, s2)

else Node(j, s1, fs2)
weigh = λg : int→ real. fix f(s : intList) : real =

case s of Nil⇒ 0 [] Cons(j, s0) ⇒ gj + fs0

weigh′ = λg : int→ real. fix f(s : intTree) : real =
case s of Leaf⇒ 0 [] Node(j, s1, s2) ⇒ gj + fs1 + fs2

Unlike the previous example, these implementations have no syntactic similarity,
which disables the simple proof. Instead, we have to put the whole packages into the
bisimulation along with their elements. Then, by Condition 2 of bisimulation, we
need at least to prove weigh V W ⇓ ⇐⇒ weigh′ V ′ W ′ ⇓ for a certain class of V ,
W , V ′, and W ′. In particular, V and V ′ can be of the forms λz : int. [IntSet/y]D
and λz : int. [IntSet′/y]D for any D of appropriate type. Thus, because of the
function application gj in weigh and weigh′, we must prove

[IntSet, j/y, z]D ⇓ ⇐⇒ [IntSet′, j/y, z]D ⇓
for every D (and j). We are stuck, however, since this subsumes the definition of
IntSet ≡ IntSet′ and is harder to prove!

Resolving this problem requires weakening Condition 2. Recall that the fun-
damental properties of our bisimulations—that evaluation preserves ∼◦ and that
∼◦ respects convergence—were proved by structural induction on the evaluation
derivations. Specifically, Condition 2 was used in sub-case M4 = x1i of case E-App
in the proof of Lemma 4.3 (and 4.4). By further exploiting the induction hypothesis
in this proof, we obtain the following weaker yet sound condition. (Difference from
Condition 2 is shown in bold.)

(2′) Take any

(fix f(x : π) : ρ = M, fix f(x :π′) : ρ′ = M ′, τ →σ) ∈ R
and any (V, V ′, τ) ∈ (∆,R)◦. Assume that, for any

N < (fix f(x : π) : ρ = M)V
N ′ < (fix f(x : π′) : ρ′ = M ′)V ′

with (N, N ′, σ) ∈ (∆0,R0)◦ and (∆0,R0) ∈ X, we have N ⇓ ⇐⇒ N ′ ⇓.
Assume furthermore that, if N ⇓ U and N ′ ⇓ U ′, then (U,U ′, σ) ∈
(∆1,R1)◦ for some ∆1 ⊇ ∆0 and R1 ⊇ R0 with (∆1,R1) ∈ X. Then, we

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 · E. Sumii and B. C. Pierce

have

(fix f(x : π) : ρ = M)V ⇓
⇐⇒ (fix f(x : π′) : ρ′ = M ′)V ′ ⇓.

Furthermore, if (fix f(x : π) : ρ = M)V ⇓ W and (fix f(x : π′) : ρ′ = M ′)V ⇓
W ′, then (W,W ′, σ) ∈ (∆2,R2)◦ for some ∆2 ⊇ ∆ and R2 ⊇ R with
(∆2,R2) ∈ X.

Here, N1 < N2 means that, if N2 ⇓, then N1 ⇓ and the evaluation derivation for
N2 is strictly taller than that for N1. (This is reminiscent of indexed models and
indexed logical relations [Appel and McAllester 2001; Ahmed et al. 2003; Ahmed
2006]. However, we consider the height of derivation only in the case of higher-
order functions, while they carry indices throughout the definitions—in particular
for recursive types—and proofs.)

This generalization seems quite powerful: for instance, it allows us to conclude
that gj in weigh and weigh′ gives the same result when g is substituted by V or
V ′. Although the condition above has X in a negative position ((∆1,R1) ∈ X)
and breaks the monotonicity property (the union of two bisimulations may no
longer be a bisimulation), we still have soundness4 and completeness (≡ is still a
bisimulation because Condition 2′ is weaker than Condition 2). In fact, thanks to
these soundness and completeness properties, ≡ is the largest bisimulation.

Coincidentally, the last part of Condition 2′—that is, (W,W ′, σ) ∈ (∆2,R2)◦

with (∆2,R2) ∈ X, in place of (∆,R ∪ {(W,W ′, σ)}) ∈ X—also simplifies some
bisimulation proofs for first-order functions. Intuitively, this is an “up-to context”
technique: instead of (W,W ′, σ) ∈ R2 for some (∆2,R2) ∈ X, one only needs
to prove (W,W ′, σ) ∈ (∆2,R2)◦, which reduces the size of X as in the following
example:

Example 7.1. Let τ = µα. unit+ int×α. Then the function

M = fix f(x : τ) : τ =
case unfold(x) of in1() ⇒ fold(in1(〈〉))
[] in2(y) ⇒ fold(in2(#1(y), f(#2(y))))

is bisimilar to the identity M ′ = λx : τ. x at type τ → τ . To prove this, take X =
{(∅,R)} with R = {(M, M ′, τ → τ)}. To prove Condition 2′ (other conditions
are trivial), let (V, V ′, τ) ∈ (∅,R)◦, i.e., V = [M/z]D and V ′ = [M ′/z]D for
z : τ → τ ` D : τ . By easy induction on the syntax of D, we have that D has no free
variable, so V = V ′ = D with ` D : τ in fact. Again by straightforward induction
on the syntax of V , we have MV ⇓ V for any ` V : τ . This concludes the proof
since (V, V, τ) ∈ (∅,R)◦ by Definition 2.4.

If the up-to context technique were not available, we would have to include in R the
identity relation at type τ , because of the original requirement in Condition 2 that

4The proofs of Lemma 4.3 and 4.4 remain valid just by replacing the phrase “by induction on the
derivation” with “by induction on the height of the derivation.” In fact, as stated above, Condi-
tion 2′ is derived by analyzing these proofs, so that it is sound by construction. See also Koutavas
and Wand [2006b] for a more detailed presentation of this derivation.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 23

(V, V, τ) ∈ R. Worse, we would also have to include identities at unit+ int× τ ,
int× τ , int and unit because of other conditions of bisimulation for values of
recursive, product, sum, and primitive types. “Up-to context” liberates us from
these (easy but boring) burdens.

The following examples are similar to Example 7.1 in essence, but more non-
trivial.

Example 7.2. Let τ = µα. unit→ int×α and

ones = fold(fix f(: unit) : int× τ = 〈1, fold(f)〉)
twos = fold(fix f(: unit) : int× τ = 〈2, fold(f)〉)
succ = fix f(s : τ) : τ =

let c : int× τ = unfold(s)〈〉 in
fold(λ : unit. 〈1 + #1(c), f(#2(c))〉).

Then twos is bisimilar to twos′ for succ ones ⇓ twos′. To prove this, take X =
{(∅,R)} for R = {(twos, twos′, τ), (M,M ′, unit→ int× τ)} with

M = fix f(: unit) : int× τ = 〈2, fold(f)〉
M ′ = λ : unit. 〈1 + #1(〈1, ones〉), succ(#2(〈1, ones〉))〉.

Condition 7 (bisimulation for values of recursive types) is immediate from the def-
inition of R. For Condition 2′, we apply M and M’ to 〈〉, obtaining 〈2, twos〉
and 〈2, twos′〉, respectively. These values are again in (∅,R)◦, which concludes the
proof.

Example 7.3. Let τ = µα. unit+(α→α) and

M = fix f(x : τ) : τ =
case unfold(x) of in1() ⇒ fold(in1(〈〉))

[] in2(g) ⇒ fold(in2(λy : τ. f(g(fy)))).

We prove that M is bisimilar to an identify function M ′ = λx : τ. x. Let X =
{(∅,R)}, where R is the smallest set such that (M,M ′, τ → τ) ∈ R and (λy : τ.
M(U(My)), U ′, τ → τ) ∈ R for any (U,U ′, τ → τ) ∈ (∅,R)◦.

First, by Condition 2′, we must apply M and M ′ to V and V ′, respectively, for
any (V, V ′, τ) ∈ (∅,R)◦. By an easy case analysis as in Example 7.1, we have either
V = V ′ = fold(in1(〈〉)), or else V = fold(in2(U)) and V ′ = fold(in2(U ′)) for
(U,U ′, τ → τ) ∈ (∅,R)◦. The former case is trivial. In the latter case, MV and
M ′V ′ evaluate to fold(in2(λy : τ. M(U(My)))) and fold(in2(U ′)), respectively.
We are done since these values are already in (∅,R)◦.

Second, again by Condition 2′, we must apply λy : τ. M(U(My)) and U ′ to V and
V ′, respectively, for any (U,U ′, τ → τ), (V, V ′, τ) ∈ (∅,R)◦. Again, the non-trivial
case is when V = fold(in2(W)) and V ′ = fold(in2(W ′)) for (W,W ′, τ → τ) ∈
(∅,R)◦. Then, MV ⇓ fold(in2(λy : τ.M(W (My)))). Let this value be V ′′. Let
furthermore U = λx : τ.N and U ′ = λx : τ. N ′. Then, (V ′′, V ′, τ), (N,N ′, τ) ∈
(∅,R)◦, so [V ′′/x]N and [V ′/x]N ′ are also in (∅,R)◦. Thus, by the assumption of
Condition 2′, we have [V ′′/x]N ⇓ V0 and [V ′/x]N ′ ⇓ V ′

0 with (V0, V
′
0 , τ) ∈ (∅,R)◦

(or both evaluations diverge). The rest of the proof—that MV0 and V ′
0 evaluate to

values in (∅,R)◦—is the same as the first case above.
Journal of the ACM, Vol. V, No. N, Month 20YY.

24 · E. Sumii and B. C. Pierce

8. RELATED WORK

Variants of our bisimulation. Recently, Koutavas and Wand adapted our bisimu-
lation to λ-calculus with ML-like references and store [Koutavas and Wand 2006b].
In addition, they gave a clearer account of our condition for higher-order functions
in Section 7. They furthermore applied this approach to an untyped imperative
object calculus [Koutavas and Wand 2006a] and a Java-like language with private
members [Koutavas and Wand 2007]. These results give a new solution to the
classical problem of proving contextual equivalence in such languages [Meyer and
Sieber 1988; Pitts and Stark 1993; 1998]. They also showed that our bisimulation
can be adapted for languages with small-step semantics [Koutavas and Wand 2007].

Sangiorgi, Kobayashi and Sumii [2007] developed various up-to techniques for
our style of bisimulations (e.g., bisimulations that apply bisimilar functions to ar-
guments of the forms C[V] and C[V

′
] for bisimilar V and V

′
), which simplifies

contextual equivalence proofs of higher-order functions as well. They applied those
techniques to pure call-by-name λ-calculus, imperative call-by-value λ-calculus, and
pure higher-order π-calculus. Although their languages are untyped, it would be
straightforward to combine their techniques into typed languages like ours, as their
developments do not depend on the type system (or lack of it).

Semantic logical relations. Originally, logical relations were devised in denota-
tional semantics for relating models of λ-calculus. Although they are indeed useful
for this purpose (e.g., relating CPS semantics and direct-style semantics), they
are not as useful for proving contextual equivalence or abstraction properties, for
the following reasons. First, denotational semantics tend to require more complex
mathematics (such as CPOs and categories) than operational semantics. Second, it
is hard—though not impossible [Hughes 1997]—to define a model of polymorphic
λ-calculus that preserves equivalence.

Logical relations for polymorphic λ-calculus are also useful for proving para-
metricity properties [Wadler 1989], e.g., that all functions of type ∀α. α→α be-
have like the polymorphic identity function (or diverge, if there is recursion in the
language). Our bisimulation can also derive such properties for existential types.
For example, any package p = pack σ, v as τ of type τ = ∃α. α can be proved con-
textually equivalent to p′ = pack unit, 〈〉 as τ , by taking X = {(∅,R1), (∆,R2)}
where R1 = {(p, p′, τ)}, ∆ = {(α, σ, unit)} and R2 = R1 ∪ {(v, 〈〉, α)}. However,
for universal types, we would have to change Condition 3 to something like

(3′) Let ∆ = {(α1, σ1, σ
′
1), . . . , (αm, σm, σ′m)}. For each

(Λα.M, Λα. M ′, ∀α. τ) ∈ R
and for any ρ and ρ′ with FTV (ρ) ⊆ dom(∆) and FTV (ρ′) ⊆ dom(∆), we
have

(Λα. M)[[σ/α]ρ] ⇓ ⇐⇒ (Λα. M ′)[[σ′/α]ρ′] ⇓.

Furthermore, if (Λα.M)[[σ/α]ρ] ⇓ W and (Λα. M ′)[[σ′/α]ρ′] ⇓ W ′, then

(∆ ∪ {(α, [σ/α]ρ, [σ′/α]ρ′)},R∪R1 ∪ {(W,W ′, τ)}) ∈ X

for any R1 ⊆ {([σ/α]W1, [σ′/α]W ′
1, α) | α ` W1 : ρ ∧ α ` W ′

1 : ρ′}.
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 25

in order to keep track of all the values of type α, as in logical relations for universal
types. We conjecture that soundness (and completeness) of such a condition would
be just as difficult to establish as those for logical relations. In particular, reflexivity
would be a main challenge (like the fundamental theorem for logical relations).

Syntactic logical relations. Pitts [2000] proposed syntactic logical relations, which
use only the term model of polymorphic λ-calculus to prove contextual equivalence.
He introduced the notion of >>-closure—based on a Galois connection between
terms and contexts (for a term relation r, stack relation r> denotes the set of
pairs of stacks that behave equivalently for all the pairs of terms in r, and for a
stack relation s, term relation s> denotes the set of pairs of terms that behave
equivalently for all the pairs of stacks in s)—in order to treat recursive functions
without using denotational semantics. He proved that his syntactic logical relations
are complete with respect to contextual equivalence in call-by-name polymorphic
λ-calculus with recursive functions and universal types (and lists).

Pitts [2005] also proposed syntactic logical relations for call-by-value λ-calculus
with recursive functions, universal types, and existential types. Although he showed
(by a counter-example) that his proof principles based on logical relations are incom-
plete [Pitts 2005, Remark 7.7.4] and attributed the incompleteness to the presence
of divergence, we have shown that a similar counter-example can be given with-
out using divergence [Pitts 2005, Remark 7.7.7]. Recently, Derek Dreyer [personal
communication, February 2006] suggested yet another counter-example

` (pack bool, λf. f true ∧ ¬(f false) as τ)
?≡ (pack int, λf. f 1 int= 1 ∧ f 2 int= 2 ∧ f 3 int= 3 as τ) : τ

where τ = ∃α. (α→α)→ bool. The contextual equivalences in these examples are
hard to prove, either with logical relations or with our bisimulations. Pitts gave
a “brute force” proof of contextual equivalence for the first example [Pitts 2005,
page 283, line 23], while no formal proof has been published for the other examples.
(Although our bisimulations are complete in the sense that the bisimilarity coincides
with generalized contextual equivalence, this does not mean an automatic proof for
every instance of contextual equivalence, which is an undecidable problem.)

Birkedal and Harper [1999] and Crary and Harper [2007] extended syntactic
logical relations with recursive types by proving certain unwinding properties. The
latter work treated existential types via encoding into universal types (though this
treatment is still incomplete and cannot prove the examples above [Crary and
Harper 2007, Section 6.4]).

Melliés and Vouillon [2005] developed an operational model of λ-calculus with
(semantic versions of) universal, existential, and recursive types, using a form of
>>-closure (biorthogonality) and interpreting types as the limits of converging se-
quences of partial types (interval types). They also outlined relational versions
of the model, which characterizes contextual equivalence of (syntactically) typed
λ-terms. They leave state and concurrency to future work.

Applicative bisimulations. Abramsky [1990] proposed applicative bisimulations
for proving contextual equivalence of untyped λ-terms. Gordon [1995a; 1995b] and
Gordon and Rees [1996; 1995] adapted applicative bisimulations to calculi with

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 · E. Sumii and B. C. Pierce

objects, subtyping, universal polymorphism, and recursive types. As discussed in
Section 1, however, these results do not apply to type abstraction using existential
types. We solved this issue by considering sets of relations as bisimulations.

As a byproduct, it has become much easier to prove the soundness of our bisim-
ulation (than the standard method for proving the soundness of applicative bisim-
ulations [Howe 1996]). Technically, this simplification is due to the generalization
for functions (Condition 2 in Definition 3.1), where we allow different arguments
C[V] and C[V

′
] while applicative bisimulation requires them to be the same.

Bisimulations for polymorphic π-calculi. Pierce and Sangiorgi [2000] developed a
bisimulation proof technique for polymorphic π-calculus, using a separate environ-
ment for representing contexts’ knowledge. In a sense, our bisimulation unifies the
environmental knowledge with the bisimulation itself by generalizing the latter as a
set of relations. Because of the imperative nature of π-calculus, their bisimulation
is far from complete—in particular, aliasing of names is problematic.

Berger et al. [2003] defined two equivalence proof methods for linear π-calculi, one
based on the syntactic logical relations of Pitts [2005; 2000] and the other based on
the bisimulations of Pierce and Sangiorgi [2000]. Their main goal is to give a generic
account for various features such as functions, state and concurrency by encoding
them into appropriate versions of linear π-calculi. They proved soundness and
completeness of their logical relations for one of the linear π-calculi, which directly
corresponds to polymorphic λ-calculus (without recursion). They also proved full
abstraction of the call-by-value and call-by-name encodings of the polymorphic λ-
calculus to this version of linear π-calculus. However, for the other settings (e.g.,
with recursive functions or types), full abstraction of encodings and completeness
of their logical relations are unclear. Completeness of their bisimulations is not
discussed either. In addition, their developments are much heavier than ours for
the purpose of just proving the equivalence of typed λ-terms.

Bisimulations for cryptographic calculi. Various bisimulations [Abadi and Gor-
don 1998; Abadi and Fournet 2001; Boreale et al. 2002; Borgström and Nestmann
2002] have been proposed for extensions of π-calculus with cryptographic primi-
tives [Abadi and Gordon 1999; Abadi and Fournet 2001]. Their main idea is simi-
lar to Pierce and Sangiorgi’s: using a separate environment to represent attackers’
knowledge. In previous work [Sumii and Pierce 2004], we have applied our idea of
using sets of relations as bisimulations to an extension of λ-calculus with perfect
encryption (also known as dynamic sealing) and obtained a sound and complete
characterization of contextual equivalence in this setting. Although this extension
was untyped, it is straightforward to combine the present work with the previous
one and obtain a bisimulation for typed λ-calculus with perfect encryption. The
fact that our idea applies to such apparently different forms of information hiding
as encryption and type abstraction might suggest that it is successful in capturing
the essence of “information hiding” in programming languages and computation
models.
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 27

9. CONCLUSION

We have presented a (characterization and) proof method for contextual equivalence
of existential packages in λ-calculus with full recursive types, based on bisimulations
generalized as sets of relations.

Although full automation is impossible because equivalence of λ-terms (with
recursion) is undecidable, some mechanical support would be useful.

Another direction of future work is to extend the calculus with more complex
features such as state (cf. [Pitts and Stark 1998; Bierman et al. 2000; Koutavas
and Wand 2006b]). For example, it would be possible to treat state by passing
around the state throughout the evaluation of terms and their bisimulation. More
ambitiously, one could imagine generalizing this state-passing approach to more
general “monadic bisimulation” by formalizing effects via monads [Moggi 1991].

Yet another possibility is to adopt our idea of “sets of relations as bisimu-
lations” to other higher-order calculi with information hiding—such as higher-
order π-calculus [Sangiorgi 1992], where restriction hides names and complicates
equivalence—and compare the outcome with context bisimulation. Sangiorgi et al.
[2007] gives a first result in this course.

Finally, as suggested in the previous section, the idea of considering sets of rela-
tions as bisimulations may be useful for other forms of information hiding such as
secrecy typing [Heintze and Riecke 1998]. It would be interesting to see whether
such an adaptation is indeed possible and, furthermore, to consider if these varia-
tions can be generalized into a unified theory of information hiding.

APPENDIX

A. PROOF OF LEMMA 4.1

The lemma to prove was: ≡ ⊆ ∼.
Since ∼ is the greatest bisimulation, it suffices to check that ≡ is a bisimu-

lation by checking each condition of bisimulation. Take any (∆,R) ∈ ≡ with
∆ = {(α, σ, σ′)}. Then, from the definition of ≡, we have:

A0. ` V0 : [σ/α]τ0 and ` V ′
0 : [σ′/α]τ0 for any (V0, V

′
0 , τ0) ∈ R, and

B0. [V 0/x0][σ/α]C0 ⇓ ⇐⇒ [V
′
0/x0][σ′/α]C0 ⇓ for any (V 0, V

′
0, τ0) ∈ R and for

any α, x0 : τ0 ` C0 : τ0.

We now check the conditions in the definition of bisimulation.
Condition 1: Immediate, since it is just the same as A0.
Condition 2: Suppose that

((fix f(x :π) : ρ = M), (fix f(x : π′) : ρ′ = M ′), τ →σ) ∈ R
and that V = [U/y][σ/α]D and V ′ = [U

′
/y][σ′/α]D with (U,U

′
, ρ) ∈ R and

α, y : ρ ` D : τ . Then,

(fix f(x : π) : ρ = M)V ⇓ ⇐⇒ (fix f(x : π′) : ρ′ = M ′)V ′ ⇓
follows from B0 by taking (for fresh g):

C0 = gD

x0 = g, y

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 · E. Sumii and B. C. Pierce

τ0 = τ →σ, ρ

V 0 = (fix f(x :π) : ρ = M), U

V
′
0 = (fix f(x :π′) : ρ′ = M ′), U

′

Suppose furthermore that (fix f(x : π) : ρ = M)V ⇓ W and (fix f(x : π′) : ρ′ =
M ′)V ′ ⇓ W ′. Then

(∆,R∪ {(W,W ′, σ)}) ∈ ≡
will follow from the definition of ≡ if we can prove:

A2. ` V2 : [σ/α]τ2 and ` V ′
2 : [σ′/α]τ2 for any (V2, V

′
2 , τ2) ∈ R ∪ {(W,W ′, σ)}, and

B2. [V 2/x2][σ/α]C2 ⇓ ⇐⇒ [V
′
2/x2][σ′/α]C2 ⇓ for any (V 2, V

′
2, τ2) ∈ R∪{(W,W ′, σ)}

and for any α, x2 : τ2 ` C2 : τ2.

But A2 follows from A0 in the case where (V2, V
′
2 , τ2) is drawn from R and from

type preservation in the case where (V2, V
′
2 , τ2) = (W,W ′, σ). B2 holds as follows:

without loss of generality, let (V21 , V
′
21

, τ21) = (W,W ′, σ) and (V2i
, V ′

2i
, τ2i

) ∈ R for
2 ≤ i ≤ n; then, it suffices to take in B0 (for fresh g)

C0 = let x21 = gD in C2

x0 = g, y, x22 , . . . , x2n

τ0 = τ →σ, ρ, τ22 , . . . , τ2n

V 0 = (fix f(x : π) : ρ = M), U, V22 , . . . , V2n

V
′
0 = (fix f(x : π′) : ρ′ = M ′), U

′
, V ′

22
, . . . , V ′

2n

so that the evaluations of [V 0/x0][σ/α]C0 and [V
′
0/x0][σ′/α]C0 amount to the eval-

uations of [V 2/x2][σ/α]C2 and [V
′
2/x2][σ′/α]C2 as below.

[(fix f(x : π) : ρ = M), U/g, y][σ/α](gD) ⇓ W
[W,V22 , . . . , V2n/x21 , x22 , . . . , x2n][σ/α]C2 ⇓

[(fix f(x : π) : ρ = M), U, V22 , . . . , V2n/g, y, x22 , . . . , x2n][σ/α](let x21 = gD in C2) ⇓

[(fix f(x : π′) : ρ′ = M ′), U
′
/g, y][σ′/α](gD) ⇓ W ′

[W ′, V ′
22

, . . . , V ′
2n

/x21 , x22 , . . . , x2n][σ′/α]C2 ⇓
[(fix f(x : π′) : ρ′ = M ′), U

′
, V ′

22
, . . . , V ′

2n
/g, y, x22 , . . . , x2n][σ′/α](let x21 = gD in C2) ⇓

Condition 3: Suppose that

(Λα. M, Λα. M ′,∀α. τ) ∈ R
and that FTV (ρ) ⊆ dom(∆). Then

(Λα.M)[[σ/α]ρ] ⇓ ⇐⇒ (Λα. M ′)[[σ′/α]ρ] ⇓
follows from B0 by taking (for fresh g):

C0 = g[ρ]
x0 = g

τ0 = ∀α. τ

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 29

V 0 = Λα. M

V
′
0 = Λα. M ′

Suppose furthermore that (Λα. M)[[σ/α]ρ] ⇓ W and (Λα.M ′)[[σ′/α]ρ] ⇓ W ′. Then

(∆,R∪ {(W,W ′, [ρ/α]τ)}) ∈ ≡
will follow from the definition of ≡ if we can prove:

A3. ` V3 : [σ/α]τ3 and ` V ′
3 : [σ′/α]τ3 for any (V3, V

′
3 , τ3) ∈ R∪ {(W,W ′, [ρ/α]τ)},

and
B3. [V 3/x3][σ/α]C3 ⇓ ⇐⇒ [V

′
3/x3][σ′/α]C3 ⇓ for any (V 3, V

′
3, τ3) ∈ R∪{(W,W ′, [ρ/α]τ)}

and for any α, x3 : τ3 ` C3 : τ3.

But A3 follows from A0 in the case where (V3, V
′
3 , τ3) is drawn fromR and from type

preservation in the case where (V3, V
′
3 , τ3) = (W,W ′, [ρ/α]τ). B3 holds as follows:

without loss of generality, let (V31 , V
′
31

, τ31) = (W,W ′, [ρ/α]τ) and (V3i
, V ′

3i
, τ3i

) ∈
R for 2 ≤ i ≤ n; then, it suffices to take in B0 (for fresh g)

C0 = let x31 = g[ρ] in C3

x0 = g, x32 , . . . , x3n

τ0 = ∀α. τ, τ32 , . . . , τ3n

V 0 = Λα.M, V32 , . . . , V3n

V
′
0 = Λα.M ′, V ′

32
, . . . , V ′

3n

so that the evaluations of [V 0/x0][σ/α]C0 and [V
′
0/x0][σ′/α]C0 amount to the eval-

uations of [V 3/x3][σ/α]C3 and [V
′
3/x3][σ′/α]C3 as below.

[Λα. M/g][σ/α](g[ρ]) ⇓ W
[W,V32 , . . . , V3n/x31 , x32 , . . . , x3n][σ/α]C3 ⇓

[Λα. M, V32 , . . . , V3n/g, x32 , . . . , x3n][σ/α](let x31 = g[ρ] in C3) ⇓

[Λα.M ′/g][σ′/α](g[ρ]) ⇓ W ′

[W ′, V ′
32

, . . . , V ′
3n

/x31 , x32 , . . . , x3n][σ′/α]C3 ⇓
[Λα. M ′, V ′

32
, . . . , V ′

3n
/g, x32 , . . . , x3n][σ′/α](let x31 = g[ρ] in C3) ⇓

Condition 4: Suppose that

((pack σ, V as ∃α. τ), (pack σ′, V ′ as ∃α. τ ′), ∃α. τ ′′) ∈ R.

Then,

(∆] {(α, σ, σ′)},R∪ {(V, V ′, τ ′′)}) ∈ ≡
follows from the definition of ≡ if we prove:

A4. ` V4 : [σ, σ/α, α]τ4 and ` V ′
4 : [σ′, σ′/α, α]τ4 for any (V4, V

′
4 , τ4) ∈ R ∪

{(V, V ′, τ ′′)}, and

B4. [V 4/x4][σ, σ/α, α]C4 ⇓ ⇐⇒ [V
′
4/x4][σ′, σ/α, α]C4 ⇓ for any (V 4, V

′
4, τ4) ∈

R ∪ {(V, V ′, τ ′′)} and for any α, α, x4 : τ4 ` C4 : τ4.
Journal of the ACM, Vol. V, No. N, Month 20YY.

30 · E. Sumii and B. C. Pierce

But A4 follows from A0 in the case where (V4, V
′
4 , τ4) is drawn from R and, in the

case where (V4, V
′
4 , τ4) = (V, V ′, τ ′′), by inversion of (T-Pack) with

` pack σ, V as ∃α. τ : [σ/α](∃α. τ ′′)

and

` pack σ′, V ′ as ∃α. τ ′ : [σ′/α](∃α. τ ′′),

which follow from A0 with

((pack σ, V as ∃α. τ), (pack σ′, V ′ as ∃α. τ ′), ∃α. τ ′′) ∈ R.

B4 holds as follows: without loss of generality, let (V41 , V
′
41

, τ41) = (V, V ′, τ ′′) and
(V4i , V

′
4i

, τ4i) ∈ R for 2 ≤ i ≤ n; then, it suffices to take in B0 (for fresh p)

C0 = open p as α, x41 in C4

x0 = p, x42 , . . . , x4n

τ0 = ∃α. τ ′′, τ42 , . . . , τ4n

V 0 = pack σ, V as ∃α. τ, V42 , . . . , V4n

V
′
0 = pack σ′, V ′ as ∃α. τ ′, V ′

42
, . . . , V ′

4n

so that the evaluations of [V 0/x0][σ/α]C0 and [V
′
0/x0][σ′/α]C0 amount to the eval-

uations of [V 4/x4][σ, σ/α, α]C4 and [V
′
4/x4][σ′, σ′/α, α]C4 as below.

[V, V42 , . . . , V4n/x41 , x42 , . . . , x4n][σ, σ/α, α]C4 ⇓
[pack σ, V as ∃α. τ, V42 , . . . , V4n/p, x42 , . . . , x4n][σ/α](open p as α, x41 in C4) ⇓

[V ′, V ′
42

, . . . , V ′
4n

/x41 , x42 , . . . , x4n][σ′, σ′/α, α]C4 ⇓
[pack σ′, V ′ as ∃α. τ, V ′

42
, . . . , V ′

4n
/p, x42 , . . . , x4n][σ′/α](open p as α, x41 in C4) ⇓

Proofs of the other conditions are similar. 2

B. PROOF OF LEMMA 4.3

The lemma to prove was: Suppose ∆0 ` N ∼◦R0
N ′ : τ . If N ⇓ W and N ′ ⇓ W ′,

then ∆ ` W ∼◦R W ′ : τ for some ∆ ⊇ ∆0 and R ⊇ R0.
The proof is by induction on the derivation of N ⇓ W .
By the definition of ∼◦, we have

N = [V 0/x0][σ0/α0]M0

and

N ′ = [V
′
0/x0][σ′0/α0]M0

for some

∆0 ` V 0 ∼R0 V
′
0 : τ0

and

α0, x0 : τ0 ` M0 : τ

with ∆0 = {(α0, σ0, σ
′
0)}. If N is a value, then N ′ is also a value (easy case analysis

on the syntax of M0) and the result is immediate, because every value evaluates
Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 31

only to itself. We consider the remaining possibilities—where M0 is neither a value
nor a variable—in detail; there is one case for each of the non-value evaluation rules.

Case (E-Open). Then M0 has the form

M0 = open M1 as α, y in M2

and the given evaluation derivations have the forms:

[V 0/x0][σ0/α0]M1 ⇓ pack ρ1,W1 as ∃α. ρ2

[W1/y][ρ1/α][V 0/x0][σ0/α0]M2 ⇓ W

[V 0/x0][σ0/α0](open M1 as α, y in M2) ⇓ W

[V
′
0/x0][σ′0/α0]M1 ⇓ pack ρ′1,W

′
1 as ∃α. ρ′2

[W ′
1/y][ρ′1/α][V

′
0/x0][σ′0/α0]M2 ⇓ W ′

[V
′
0/x0][σ′0/α0](open M1 as α, y in M2) ⇓ W ′

By inversion of (T-Open), we have

α0, x0 : τ0 ` M1 : ∃α. ρ′′2

and

α0, x0 : τ0, α, y : ρ′′2 ` M2 : τ

with α 6∈ FTV (τ). Thus, by the definition of ∼◦, we have

∆0 ` [V 0/x0][σ0/α]M1 ∼◦R0
[V
′
0/x0][σ′0/α]M1 : ∃α. ρ′′2 .

Therefore, by the induction hypothesis, we have

∆1 ` pack ρ1,W1 as ∃α. ρ2 ∼◦R1
pack ρ′1,W

′
1 as ∃α. ρ′2 : ∃α. ρ′′2

for some ∆1 ⊇ ∆0 and R1 ⊇ R0. Then, by the definition of ∼◦, we have

pack ρ1,W1 as ∃α. ρ2 = [V 1/x1][σ1/α1]M3

and

pack ρ′1,W
′
1 as ∃α. ρ′2 = [V

′
1/x1][σ′1/α1]M3

for some

∆1 ` V 1 ∼R1 V
′
1 : τ1

and

α1, x1 : τ1 ` M3 : ∃α. ρ′′2
with ∆1 = {(α1, σ1, σ

′
1)}.

Sub-case M3 = (pack ρ′′1 , M4 as ∃α. ρ′′2). Then

W1 = [V 1/x1][σ1/α1]M4

W ′
1 = [V

′
1/x1][σ′1/α1]M4

and

ρ1 = [σ1/α1]ρ′′1
ρ′1 = [σ′1/α1]ρ′′1 .

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 · E. Sumii and B. C. Pierce

Since we have

α1, x1 : τ1 ` M4 : [ρ′′1/α]ρ′′2

by inversion of (T-Pack), we have

α1, x0 : τ0, x1 : τ1 ` [M4/y][ρ′′1/α]M2 : τ

by weakening and the substitution lemmas for types and terms. Therefore, by the
definition of ∼◦, we have

∆1 ` [V 0, V 1/x0, x1][σ1/α1][M4/y][ρ′′1/α]M2 ∼◦R1
[V
′
0, V 1/x0, x1][σ′1/α1][M4/y][ρ′′1/α]M2 : τ.

Since

[V 0, V 1/x0, x1][σ1/α1][M4/y][ρ′′1/α]M2

= [([V 1/x1][σ1/α1]M4)/y][([σ1/α1]ρ′′1)/α][V 0/x0][σ0/α0]M2

= [W1/y][ρ1/α][V 0/x0][σ0/α0]M2

and

[V
′
0, V

′
1/x0, x1][σ′1/α1][M4/y][ρ′′1/α]M2

= [([V
′
1/x1][σ′1/α1]M4)/y][([σ′1/α1]ρ′′1)/α][V

′
0/x0][σ′0/α0]M2

= [W ′
1/y][ρ′1/α][V

′
0/x0][σ′0/α0]M2,

we have

∆2 ` W ∼◦R2
W ′ : τ

for some ∆2 ⊇ ∆1 and R2 ⊇ R1 by the induction hypothesis.

Sub-case M3 = x1i . Then

V1i = pack ρ1, W1 as ∃α. ρ2

V ′
1i

= pack ρ′1, W
′
1 as ∃α. ρ′2.

Since

∆1 ` V1i ∼R1 V ′
1i

: τ1i ,

we have the following two possibilities by Condition 4 of bisimulation.

Sub-sub-case (β, ρ1, ρ
′
1) ∈ ∆1 and (W1,W

′
1, [β/α]ρ′′2) ∈ R1. Since we have

α0, x0 : τ0, α, y : ρ′′2 ` M2 : τ

with α 6∈ FTV (τ), we have

α0, x0 : τ0, β, y : [β/α]ρ′′2 ` [β/α]M2 : τ.

Then, we have

∆1 ` [V 0,W1/x0, y][σ1/α1][β/α]M2 ∼◦R1
[V
′
0,W

′
1/x0, y][σ′1/α1][β/α]M2 : τ

by the definition of ∼◦. Since we have β = α1i with ρ1 = σ1i and ρ′1 = σ′1i
for some

i, we have

[V 0,W1/x0, y][σ1/α1][β/α]M2 = [W1/y][ρ1/α][V 0/x0][σ0/α0]M2

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 33

and

[V
′
0, W

′
1/x0, y][σ′1/α1][β/α]M2 = [W ′

1/y][ρ′1/α][V
′
0/x0][σ′0/α0]M2,

so we have

∆2 ` W ∼◦R2
W ′ : τ

for some ∆2 ⊇ ∆1 and R2 ⊇ R1 by the induction hypothesis.

Sub-sub-case (∆1] {(α, ρ1, ρ
′
1)},R1 ∪ {(W1,W

′
1, ρ

′′
2)}) ∈ ∼. Then we have

∆2 ` [V 0,W1/x0, y][σ0, ρ1/α0, α]M2 ∼◦R2
[V
′
0,W

′
1/x0, y][σ′0, ρ

′
1/α0, α]M2 : τ

for ∆2 = ∆1 ∪ {(α, ρ1, ρ
′
1)} and R2 = R1 ∪ {(W1,W

′
1, ρ

′′
2)} by the definition of ∼◦.

Since we have

[V 0,W1/x0, y][σ0, ρ1/α0, α]M2 = [W1/y][ρ1/α][V 0/x0][σ0/α0]M2

and

[V
′
0,W

′
1/x0, y][σ′0, ρ

′
1/α0, α]M2 = [W ′

1/y][ρ′1/α][V
′
0/x0][σ′0/α0]M2,

we have

∆3 ` W ∼◦R3
W ′ : τ

for some ∆3 ⊇ ∆2 and R3 ⊇ R2 by the induction hypothesis.

Case (E-Pack). Then M0 has the form

M0 = pack ρ1,M1 as ∃α. ρ2

and the given evaluation derivations have the forms

[V 0/x0][σ0/α0]M1 ⇓ W1

[V 0/x0][σ0/α0](pack ρ1,M1 as ∃α. ρ2) ⇓ pack [σ0/α0]ρ1,W1 as [σ0/α0](∃α. ρ2)

[V
′
0/x0][σ′0/α0]M1 ⇓ W ′

1

[V
′
0/x0][σ′0/α0](pack ρ1,M1 as ∃α. ρ2) ⇓ pack [σ′0/α0]ρ1,W

′
1 as [σ′0/α0](∃α. ρ2)

where

W = pack [σ0/α0]ρ1,W1 as [σ0/α0](∃α. ρ2)

and

W ′ = pack [σ′0/α0]ρ1,W
′
1 as [σ′0/α0](∃α. ρ2).

By inversion of (T-Pack), we have

α0, x0 : τ0 ` M1 : [ρ1/α]ρ2

with τ = ∃α. ρ2. Thus, by the definition of ∼◦, we have

∆0 ` [V 0/x0][σ0/α0]M1 ∼◦R0
[V
′
0/x0][σ′0/α0]M1 : [ρ1/α]ρ2.

Then, by the induction hypothesis, we have

∆1 ` W1 ∼◦R1
W ′

1 : [ρ1/α]ρ2

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 · E. Sumii and B. C. Pierce

for some ∆1 ⊇ ∆0 and R1 ⊇ R0. Therefore, by the definition of ∼◦, we have

W1 = [V 1/x1][σ1/α1]M2

W ′
1 = [V

′
1/x1][σ′1/α1]M2

for some

∆1 ` V 1 ∼R1 V
′
1 : τ1

and

α1, x1 : τ1 ` M2 : [ρ1/α]ρ2

with ∆1 = {(α1, σ1, σ
′
1)}. Thus, by (T-Pack), we have

α1, x1 : τ1 ` M3 : ∃α. ρ2

for

M3 = pack ρ1, M2 as ∃α. ρ2.

Then, by the definition of ∼◦, we have

∆1 ` [V 1/x1][σ1/α1]M3 ∼◦R1
[V
′
1/x1][σ′1/α1]M3 : ∃α. ρ2,

i.e.,

∆1 ` W ∼◦R1
W ′ : τ.

Case (E-TApp). Then M0 has the form

M0 = M1[ρ1]

and the given evaluation derivations have the forms:

[V 0/x0][σ0/α0]M1 ⇓ Λα. M2

[([σ0/α0]ρ1)/α]M2 ⇓ W

[V 0/x0][σ0/α0](M1[ρ1]) ⇓ W

[V
′
0/x0][σ′0/α0]M1 ⇓ Λα. M ′

2

[([σ′0/α0]ρ1)/α]M ′
2 ⇓ W ′

[V
′
0/x0][σ′0/α0](M1[ρ1]) ⇓ W ′

By inversion of (T-TApp), we have

α0, x0 : τ0 ` M1 : ∀α. ρ2

with τ = [ρ1/α]ρ2. Thus, by the definition of ∼◦, we have

∆0 ` [V 0/x0][σ0/α0]M1 ∼◦R0
[V
′
0/x0][σ′0/α0]M1 : ∀α. ρ2.

Then, by the induction hypothesis, we have

∆1 ` Λα.M2 ∼◦R1
Λα.M ′

2 : ∀α. ρ2

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 35

for some ∆1 ⊇ ∆0 and R1 ⊇ R0. Therefore, by the definition of ∼◦, we have

Λα.M2 = [V 1/x1][σ1/α1]M3

Λα.M ′
2 = [V

′
1/x1][σ′1/α1]M3

for some

∆1 ` V 1 ∼R1 V
′
1 : τ1

and

α1, x1 : τ1 ` M3 : ∀α. ρ2

with ∆1 = {(α1, σ1, σ
′
1)}.

Sub-case M3 = Λα.M ′′
2 . Then, by inversion of (T-TAbs), we have

α1, x1 : τ1, α ` M ′′
2 : ρ2.

By the substitution lemma for types, we have

α1, x1 : τ1 ` [ρ1/α]M ′′
2 : [ρ1/α]ρ2.

By the definition of ∼◦, we have

∆1 ` [V 1/x1][σ1/α1][ρ1/α]M ′′
2 ∼◦R1

[V
′
1/x1][σ′1/α1][ρ1/α]M ′′

2 : [ρ1/α]ρ2,

i.e.,

∆1 ` [([σ0/α0]ρ1)/α]M2 ∼◦R1
[([σ′0/α0]ρ1)/α]M ′

2 : τ.

(Recall FTV (ρ1) ⊆ {α0} and ∆1 = {(α1, σ1, σ
′
1)} ⊇ ∆0 = {(α0, σ0, σ

′
0)}.) Again

by the induction hypothesis, we have

∆2 ` W ∼◦R2
W ′ : τ

for some ∆2 ⊇ ∆1 and R2 ⊇ R1.

Sub-case M3 = x1i . Then

V1i = Λα. M2

V ′
1i

= Λα. M ′
2

and τ1i = ∀α. ρ2. Since we have

(Λα. M2)[[σ1/α1]ρ1] ⇓ W

and

(Λα.M ′
2)[[σ

′
1/α1]ρ1] ⇓ W ′

with

∆1 ` Λα. M2 ∼R1 Λα.M ′
2 : ∀α. ρ2,

we have

(∆1,R1 ∪ {(W,W ′, τ)}) ∈ ∼
by Condition 3 of bisimulation. (Recall τ = [ρ1/α]ρ2.) Thus, we have

∆1 ` W ∼◦R2
W ′ : τ

for R2 = R1 ∪ {(W,W ′, τ)} by the definition of ∼◦.
Journal of the ACM, Vol. V, No. N, Month 20YY.

36 · E. Sumii and B. C. Pierce

Case (E-App). Then M0 has the form

M0 = M1M2

and the given evaluation derivations have the forms:

[V 0/x0][σ0/α0]M1 ⇓ (fix f(x : π) : ρ = M3)
[V 0/x0][σ0/α0]M2 ⇓ W1

[W1/x][(fix f(x : π) : ρ = M3)/f]M3 ⇓ W

[V 0/x0][σ0/α0](M1M2) ⇓ W

[V
′
0/x0][σ′0/α0]M1 ⇓ (fix f(x : π′) : ρ′ = M ′

3)
[V
′
0/x0][σ′0/α0]M2 ⇓ W ′

1

[W ′
1/x][(fix f(x :π′) : ρ′ = M ′

3)/f]M ′
3 ⇓ W ′

[V
′
0/x0][σ′0/α0](M1M2) ⇓ W ′

By inversion of (T-App), we have

α0, x0 : τ0 ` M1 : σ→ τ

and

α0, x0 : τ0 ` M2 : σ

for some σ. Thus, by the definition of ∼◦, we have

∆0 ` [V 0/x0][σ0/α0]M1 ∼◦R0
[V
′
0/x0][σ′0/α0]M1 : σ→ τ.

Then, by the induction hypothesis, we have

∆1 ` fix f(x : π) : ρ = M3 ∼◦R1
fix f(x : π′) : ρ′ = M ′

3 : σ→ τ

for some ∆1 ⊇ ∆0 and R1 ⊇ R0. Therefore, by the definition of ∼◦, we have

fix f(x : π) : ρ = M3 = [V 1/x1][σ1/α1]M4

fix f(x : π′) : ρ′ = M ′
3 = [V

′
1/x1][σ′1/α1]M4

for some

∆1 ` V 1 ∼R1 V
′
1 : τ1

and

α1, x1 : τ1 ` M4 : σ→ τ

with ∆1 = {(α1, σ1, σ
′
1)}.

Meanwhile, by weakening, we have

α1, x0 : τ0 ` M2 : σ.

Thus, by the definition of ∼◦, we have

∆1 ` [V 0/x0][σ0/α0]M2 ∼◦R1
[V
′
0/x0][σ′0/α0]M2 : σ

since ∆1 ⊇ ∆0 and R1 ⊇ R0. Then, by the induction hypothesis, we have

∆2 ` W1 ∼◦R2
W ′

1 : σ

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 37

for some ∆2 ⊇ ∆1 and R2 ⊇ R1. Therefore, by the definition of ∼◦, we have

W1 = [V 2/x2][σ2/α2]M5

W ′
1 = [V

′
2/x2][σ′2/α2]M5

for some

∆2 ` V 2 ∼R2 V
′
2 : τ2

and

α2, x2 : τ2 ` M5 : σ

with ∆2 = {(α2, σ2, σ
′
2)}.

Sub-case M4 = (fix f(x : σ) : τ = M ′′
3). By inversion of (T-Fix), we have

α1, x1 : τ1, f :σ→ τ, x : σ ` M ′′
3 : τ.

Thus, by weakening and the substitution lemma for values, we have

α2, x1 : τ1, x2 : τ2 ` [(fix f(x :σ) : τ = M ′′
3)/f][M5/x]M ′′

3 : τ.

Then, by the definition of ∼◦, we have

∆2 ` [V 1, V 2/x1, x2][σ2/α2][(fix f(x : σ) : τ = M ′′
3)/f][M5/x]M ′′

3

∼◦R2
[V
′
1, V

′
2/x1, x2][σ′2/α2][(fix f(x : σ) : τ = M ′′

3)/f][M5/x]M ′′
3 : τ,

i.e.,

∆2 ` [W1/x][(fix f(x : π) : ρ = M3)/f]M3 ∼◦R2
[W ′

1/x][(fix f(x : π′) : ρ′ = M ′
3)/f]M ′

3 : τ.

Again by the induction hypothesis, we obtain

∆3 ` W ∼◦R3
W ′ : τ

for some ∆3 ⊇ ∆2 and R3 ⊇ R2.

Sub-case M4 = x1i . Then

V1i = fix f(x :π) : ρ = M3

V ′
1i

= fix f(x :π′) : ρ′ = M ′
3

and τ1i = σ→ τ . Since we have

(fix f(x : π) : ρ = M3)([V 2/x2][σ2/α2]M5) ⇓ W

and

(fix f(x : π′) : ρ′ = M ′
3)([V

′
2/x2][σ′2/α2]M5) ⇓ W ′

with

∆2 ` fix f(x : π) : ρ = M3 ∼R2 fix f(x :π′) : ρ′ = M ′
3 : σ→ τ,

we have

(∆2,R2 ∪ {(W,W ′, τ)}) ∈ ∼
by Condition 2 of bisimulation. Thus, we have

∆2 ` W ∼◦R3
W ′ : τ

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 · E. Sumii and B. C. Pierce

for R3 = R2 ∪ {(W,W ′, τ)} by the definition of ∼◦.
Proofs of the other cases are similar. 2

C. PROOF OF LEMMA 4.4

The lemma to prove was: If ∆0 ` N ∼◦R0
N ′ : τ then N ⇓ ⇐⇒ N ′ ⇓.

We assume N ⇓ W and prove N ′ ⇓ by induction on the derivation of N ⇓ W .
(The other direction follows by symmetry.) The argument is similar to the proof
of Lemma 4.3, except that we are proving the existence of an evaluation derivation
for N ′ by using the given evaluation derivation for N , instead of proving a property
of given evaluation derivations for N and N ′. We show just the most interesting
case: the one for (E-Open).

By the definition of ∼◦, we have

N = [V 0/x0][σ0/α0]M0

and

N ′ = [V
′
0/x0][σ′0/α0]M0

for some

∆0 ` V 0 ∼R0 V
′
0 : τ0

and

α0, x0 : τ0 ` M0 : τ

with ∆0 = {(α0, σ0, σ
′
0)}. In the case of (E-Open), M0 has the form

M0 = open M1 as α, y in M2

and the given evaluation derivation for N has the following form:

[V 0/x0][σ0/α0]M1 ⇓ pack ρ1,W1 as ∃α. ρ2

[W1/y][ρ1/α][V 0/x0][σ0/α0]M2 ⇓
[V 0/x0][σ0/α0](open M1 as α, y in M2) ⇓

We aim to derive an evaluation of N ′ of a similar form:

[V
′
0/x0][σ′0/α0]M1 ⇓ pack ρ′1,W

′
1 as ∃α. ρ′2

[W ′
1/y][ρ′1/α][V

′
0/x0][σ′0/α0]M2 ⇓

[V
′
0/x0][σ′0/α0](open M1 as α, y in M2) ⇓

By inversion of (T-Open), we have

α0, x0 : τ0 ` M1 : ∃α. ρ′′2

and

α0, x0 : τ0, α, y : ρ′′2 ` M2 : τ

with α 6∈ FTV (τ). Thus, by the definition of ∼◦, we have

∆0 ` [V 0/x0][σ0/α]M1 ∼◦R0
[V
′
0/x0][σ′0/α]M1 : ∃α. ρ′′2 .

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 39

Therefore, by the induction hypothesis and Lemma 4.3, we have

[V
′
0/x0][σ′0/α0]M1 ⇓ W ′

2

for some

∆1 ` pack ρ1, W1 as ∃α. ρ2 ∼◦R1
W ′

2 : ∃α. ρ′′2

with ∆1 ⊇ ∆0 and R1 ⊇ R0. Then, by the definition of ∼◦, we have

pack ρ1,W1 as ∃α. ρ2 = [V 1/x1][σ1/α1]M3

and

W ′
2 = [V

′
1/x1][σ′1/α1]M3

for some

∆1 ` V 1 ∼R1 V
′
1 : τ1

and

α1, x1 : τ1 ` M3 : ∃α. ρ′′2

with ∆1 = {(α1, σ1, σ
′
1)}.

Sub-case M3 = (pack ρ′′1 , M4 as ∃α. ρ′′2). Then W ′
2 has the form

W ′
2 = pack ρ′1,W

′
1 as ∃α. ρ′2

where

W1 = [V 1/x1][σ1/α1]M4

W ′
1 = [V

′
1/x1][σ′1/α1]M4

and

ρ1 = [σ1/α1]ρ′′1
ρ′1 = [σ′1/α1]ρ′′1 .

Since we have

α1, x1 : τ1 ` M4 : [ρ′′1/α]ρ′′2

by inversion of (T-Pack), we have

α1, x0 : τ0, x1 : τ1 ` [M4/y][ρ′′1/α]M2 : τ

by weakening and the substitution lemmas for types and terms. Therefore, by the
definition of ∼◦, we have

∆1 ` [V 0, V 1/x0, x1][σ1/α1][M4/y][ρ′′1/α]M2 ∼◦R1
[V
′
0, V 1/x0, x1][σ′1/α1][M4/y][ρ′′1/α]M2 : τ.

Since

[V 0, V 1/x0, x1][σ1/α1][M4/y][ρ′′1/α]M2

= [([V 1/x1][σ1/α1]M4)/y][([σ1/α1]ρ′′1)/α][V 0/x0][σ0/α0]M2

= [W1/y][ρ1/α][V 0/x0][σ0/α0]M2

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 · E. Sumii and B. C. Pierce

and

[V
′
0, V

′
1/x0, x1][σ′1/α1][M4/y][ρ′′1/α]M2

= [([V
′
1/x1][σ′1/α1]M4)/y][([σ′1/α1]ρ′′1)/α][V

′
0/x0][σ′0/α0]M2

= [W ′
1/y][ρ′1/α][V

′
0/x0][σ′0/α0]M2,

we have

[W ′
1/y][ρ′1/α][V

′
0/x0][σ′0/α0]M2 ⇓

by the induction hypothesis, i.e., N ′ ⇓.

Sub-case M3 = x1i
. Then W ′

2 = V ′
1i

where

V1i = pack ρ1,W1 as ∃α. ρ2

and τ1i
= ∃α. ρ′′2 . By Condition 1 of bisimulation, V ′

1i
is a value of the existential

type [σ′1/α1]τ1i = ∃α. ([σ′1/α1]ρ′′2), so it has the form

V ′
1i

= pack ρ′1, W
′
1 as ∃α. ρ′2.

Since

∆1 ` V1i ∼R1 V ′
1i

: τ1i ,

we have the following two possibilities by Condition 4 of bisimulation.

Sub-sub-case (β, ρ1, ρ
′
1) ∈ ∆1 and (W1,W

′
1, [β/α]ρ′′2) ∈ R1. Since we have

α0, x0 : τ0, α, y : ρ′′2 ` M2 : τ

with α 6∈ FTV (τ), we have

α0, x0 : τ0, β, y : [β/α]ρ′′2 ` [β/α]M2 : τ.

Then, we have

∆1 ` [V 0,W1/x0, y][σ1/α1][β/α]M2 ∼◦R1
[V
′
0,W

′
1/x0, y][σ′1/α1][β/α]M2 : τ

by the definition of ∼◦. Since we have β = α1i with ρ1 = σ1i and ρ′1 = σ′1i
for some

i, we have

[V 0,W1/x0, y][σ1/α1][β/α]M2 = [W1/y][ρ1/α][V 0/x0][σ0/α0]M2

and

[V
′
0, W

′
1/x0, y][σ′1/α1][β/α]M2 = [W ′

1/y][ρ′1/α][V
′
0/x0][σ′0/α0]M2,

so we have

[W ′
1/y][ρ′1/α][V

′
0/x0][σ′0/α0]M2 ⇓

by the induction hypothesis, i.e., N ′ ⇓.

Sub-sub-case (∆1] {(α, ρ1, ρ
′
1)},R1 ∪ {(W1,W

′
1, ρ

′′
2)}) ∈ ∼. Then we have

∆2 ` [V 0,W1/x0, y][σ0, ρ1/α0, α]M2 ∼◦R2
[V
′
0,W

′
1/x0, y][σ′0, ρ

′
1/α0, α]M2 : τ

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 41

for ∆2 = ∆1 ∪ {(α, ρ1, ρ
′
1)} and R2 = R1 ∪ {(W1,W

′
1, ρ

′′
2)} by the definition of ∼◦.

Since we have

[V 0,W1/x0, y][σ0, ρ1/α0, α]M2 = [W1/y][ρ1/α][V 0/x0][σ0/α0]M2

and

[V
′
0,W

′
1/x0, y][σ′0, ρ

′
1/α0, α]M2 = [W ′

1/y][ρ′1/α][V
′
0/x0][σ′0/α0]M2,

we have

[W ′
1/y][ρ′1/α][V

′
0/x0][σ′0/α0]M2 ⇓

by the induction hypothesis, i.e., N ′ ⇓. 2

ACKNOWLEDGMENTS

We would like to thank Karl Crary, Andy Gordon, Bob Harper, Vassileios Koutavas,
and Andrew Pitts for information and discussions on their work and its relationship
to ours. Comments from anonymous reviewers, the members of the PL Club at
the University of Pennsylvania, and Naoki Kobayashi helped us to sharpen the
presentation. Reviewer 2 of JACM suggested the examples in Section 7.

REFERENCES

Abadi, M. and Fournet, C. 2001. Mobile values, new names, and secure communication. In
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 104–115.

Abadi, M. and Gordon, A. D. 1998. A bisimulation method for cryptographic protocols. Nordic
Journal of Computing 5, 267–303. Preliminary version appeared in 7th European Symposium
on Programming, Lecture Notes in Computer Science, Springer-Verlag, vol. 1381, pp. 12–26,
1998.

Abadi, M. and Gordon, A. D. 1999. A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148, 1, 1–70. Preliminary version appeared in Proceedings of
the 4th ACM Conference on Computer and Communications Security, pp. 36–47, 1997.

Abramsky, S. 1990. The lazy lambda calculus. In Research Topics in Functional Programming,
D. A. Turner, Ed. Addison-Wesley, 65–117.

Ahmed, A. 2006. Step-indexed syntactic logical relations for recursive and quantified types. In
15th European Symposium on Programming. 69–83.

Ahmed, A., Appel, A. W., and Virga, R. 2003. An indexed model of impredicative polymor-
phism and mutable references. http://www.cs.princeton.edu/~amal/papers/impred.pdf.

Appel, A. W. and McAllester, D. 2001. An indexed model of recursive types for foundational
proof-carrying code. ACM Transactions on Programming Languages and Systems 23, 5, 657–
683.

Berger, M., Honda, K., and Yoshida, N. 2003. Genericity and the pi-calculus. In Foundations
of Software Science and Computation Structures. Lecture Notes in Computer Science, vol.
2620. Springer-Verlag, 103–119.

Bierman, G. M., Pitts, A. M., and Russo, C. V. 2000. Operational properties of Lily, a
polymorphic linear lambda calculus with recursion. In Higher Order Operational Techniques
in Semantics. Electronic Notes in Theoretical Computer Science, vol. 41. Elsevier Science.

Birkedal, L. and Harper, R. 1999. Relational interpretations of recursive types in an operational
setting. Information and Computation 155, 1–2, 3–63. Summary appeared in Theoretical
Aspects of Computer Software, Lecture Notes in Computer Science, Springer-Verlag, vol. 1281,
pp. 458–490, 1997.

Journal of the ACM, Vol. V, No. N, Month 20YY.

42 · E. Sumii and B. C. Pierce

Boreale, M., De Nicola, R., and Pugliese, R. 2002. Proof techniques for cryptographic
processes. SIAM Journal on Computing 31, 3, 947–986. Preliminary version appeared in 14th
Annual IEEE Symposium on Logic in Computer Science, pp. 157–166, 1999.

Borgström, J. and Nestmann, U. 2002. On bisimulations for the spi calculus. In 9th In-
ternational Conference on Algebraic Methodology and Software Technology. Lecture Notes in
Computer Science, vol. 2422. Springer-Verlag, 287–303.

Bruce, K. B., Cardelli, L., and Pierce, B. C. 1999. Comparing object encodings. Information
and Computation 155, 1–2, 108–133. Extended abstract appeared in Theoretical Aspects of
Computer Software, Springer-Verlag, vol. 1281, pp. 415–338, 1997.

Crary, K. and Harper, R. 2007. Syntactic logical relations for polymorphic and recursive types.
In Computation, Meaning, and Logic: Articles dedicated to Gordon Plotkin. Electronic Notes
in Theoretical Computer Science, vol. 172. Elsevier Science, 259–299.

Gordon, A. D. 1995a. Bisimilarity as a theory of functional programming. mini-course. http:

//research.microsoft.com/~adg/Publications/BRICS-NS-95-3.dvi.gz.

Gordon, A. D. 1995b. Operational equivalences for untyped and polymorphic object calculi. In
Higher Order Operational Techniques in Semantics. Cambridge University Press, 9–54.

Gordon, A. D. and Rees, G. D. 1995. Bisimilarity for F<:. Draft.

Gordon, A. D. and Rees, G. D. 1996. Bisimilarity for a first-order calculus of objects with
subtyping. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 386–395.

Heintze, N. and Riecke, J. G. 1998. The SLam calculus: Programming with secrecy and in-
tegrity. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages.

Howe, D. J. 1996. Proving congruence of bisimulation in functional programming languages.
Information and Computation 124, 2, 103–112.

Hughes, D. J. 1997. Games and definability for System F. In Twelfth Annual IEEE Symposium
on Logic in Computer Science. 76–86.

Koutavas, V. and Wand, M. 2006a. Bisimulations for untyped imperative objects. In 15th
European Symposium on Programming. 146–161.

Koutavas, V. and Wand, M. 2006b. Small bisimulations for reasoning about higher-order imper-
ative programs. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. 141–152.

Koutavas, V. and Wand, M. 2007. Reasoning about class behavior. In 2007 International Work-
shop on Foundations and Developments of Object-Oriented Languages. http://foolwood07.

cs.uchicago.edu/program/koutavas.pdf.

Melliés, P.-A. and Vouillon, J. 2005. Recursive polymorphic types and parametricity in an
operational framework. In 20th Annual IEEE Symposium on Logic in Computer Science. 82–91.

Meyer, A. R. and Sieber, K. 1988. Towards fully abstract semantics for local variables: Prelim-
inary report. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. 191–203.

Milner, R. 1980. A Calculus of Communicating Systems. Number 92 in Lecture Notes in
Computer Science. Springer-Verlag.

Milner, R. 1989. Communication and Concurrency. Prentice Hall.

Milner, R. 1999. Communicating and Mobile Systems: The π-Calculus. Cambridge University
Press.

Mitchell, J. C. 1996. Foundations for Programming Languages. MIT Press.

Moggi, E. 1991. Notions of computation and monads. Information and Computation 93, 1,
55–92.

Morris, Jr., J. H. 1973a. Protection in programming languages. Communications of the
ACM 16, 1, 15–21.

Morris, Jr., J. H. 1973b. Types are not sets. In Proceedings of the 1st Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. 120–124.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Bisimulation for Type Abstraction and Recursion · 43

Pierce, B. C. and Sangiorgi, D. 2000. Behavioral equivalence in the polymorphic pi-calculus.
Journal of the ACM 47, 3, 531–586. Extended abstract appeared in Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1997,
pp. 531–584.

Pitts, A. 2005. Typed operational reasoning. In Advanced Topics in Types and Programming
Languages, B. C. Pierce, Ed. MIT Press, Chapter 7, 245–289. Preliminary version appeared as
Existential Types: Logical Relations and Operational Equivalence in Automata, Languages and
Programming, Lecture Notes in Computer Science, Springer-Verlag, vol. 1443, pp. 309–326,
1998.

Pitts, A. M. 2000. Parametric polymorphism and operational equivalence. Mathematical Struc-
tures in Computer Science 10, 321–359. Preliminary version appeared in HOOTS II Second
Workshop on Higher-Order Operational Techniques in Semantics, Electronic Notes in Theo-
retical Computer Science, vol. 10, 1998.

Pitts, A. M. and Stark, I. 1993. Observable properties of higher order functions that dynami-
cally create local names, or: what’s new? In Mathematical Foundations of Computer Science.
Lecture Notes in Computer Science, vol. 711. Springer-Verlag, 122–141.

Pitts, A. M. and Stark, I. 1998. Operational reasoning for functions with local state. In Higher
Order Operational Techniques in Semantics. Cambridge University Press, 227–273.

Sangiorgi, D. 1992. Expressing mobility in process algebras: First-order and higher-order
paradigm. Ph.D. thesis, University of Edinburgh.

Sangiorgi, D., Kobayashi, N., and Sumii, E. 2007. Environmental bisimulations for higher-
order languages. In Twenty-Second Annual IEEE Symposium on Logic in Computer Science.
293–302.

Sumii, E. and Pierce, B. C. 2004. A bisimulation for dynamic sealing. In Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 161–172.

Wadler, P. 1989. Theorems for free! In Proceedings of the Fourth ACM SIGPLAN International
Conference on Functional Programming Languages and Computer Architecture. ACM, 347–
359.

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, Month 20YY.

