
Representa t ions i a d e p e ~ d e ~ ¢ e a n d d a t a a b ~ t ~ a e f l ~
{preliminary v e ~ i ~)

Jvhn C. Mitchell

AT&T BeU Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

One purpose of type checking in programming languages is to guarantee a degree of
"representation independence:" programs should not depend on the way stacks are
represented, only on the behavior of stacks with respect to push and pop operations.
In languages with abstract data type declarations, representation independence should
hold for user-defined types as well as butt-in types. We study the representation
independence properties of a typed functional language (second-order lambda cal~
culus) with polyrnorphic functions and abstract data type dedarations in which data
type implementations (packages) may be passed as function parameters and returned
as results. The type checking rules of the language guarantee that two data type
implementations P and Q are equivalence whenever there is a correspondence
between the behavior of the operations of P and the behavior of the operations of Q.

1, ~trodue~ion
The second-order (polymorphic) lambda calculus, discovered independently by Girard and Rey-

nolds [Girard 71, Reynolds 74], was proposed by Reynolds as language which captures the essence of
type declarations and polymorphic functions. In [Mitchell and Plotkin 85], St was argued that this
language could be extended to provide a flexible form of abstract data type declaration. The SOL

ab~3pe dedarafion described in [MAtchell and Plo~kin 85] is more flexibte than the abs~act data type
dedarations provided by many languages in that data type implementations may be passed as parame-
ters and returned as the results of function calls. However, it is not dear a priori whether type check-
bag is "secure" in any semantic sense. Furthermore, recent language designs such as Pebble [Burstall
and Lampson 84] and Standard ML [MacQueen 85, Mflner 85] propose more complex type checking
rules that seem more lenient than SOL; it is conceivable that these languages may be less "type secure."
The goal of this paper 'is to understand the semantic properties of type checking in sol well enough to
allow sensible comparisons with other languages. In addition, it is also hoped that this study wilI be
useful in further investigation of related languages, The main technical result is a characterization of
when two user-supplied data type implementations are equivalent for all intents and purposes.

SOL, abstract data type declarations have the form

abstype t with x1:¢ l xkxr k is M in N,

where t is the type name; x~ x~ are operations on t of types cr I crk; and M implements the type.
The scope of the declaration is hhe body N. For example, an expression declaring complex numbers
looks like

Permissions to copy without fee all or part of this material is ganted provided that the copies are not

fion and its date appear, and notice is ~ven that copying m D y pervmssmn o!~ne A~SOQanon mr ~omp
~g MachL~ery, To copy otherwise, c¢ to repubhsh, req~es a ~ee anocor spemac perwasmon.

© 1986 ACMq)-89791-175-X-1/864)263 $~),75
268

abs~pe complex wl~h create: real~real~cornplex,
plus; complex~complex-*comptex,
re: complex~ceal, inn: esmptex~real

is M
knN,

where N uses complex numbers via the operations ~rreate, p~us, re and ira. Abstract data types are
implemented by expressions of the form

M ::= rep • M~ o.. M~,,

where ~ is a type and M 1 M k implement operations on that type. (The keyword rep is short for
rcprese~tstion, and is taken from CLU [Liskov e t aL 8110 In SOL, an implementation has a axistent:&I type
~t.¢, wl'fich may be thought of as the signature of the data type,

There are three type checking rules for abs~pe expressions. The first, (AB.I) requires that the
implementation M match the declaration x~:% xk:¢ k of operations: M must provide implementa-
tions for exactly k operations and the implementation of each operation must have the correct type.
The second type checking vie, (AB.2), stipulates that the type name t must not appear in the types of
free identLqers in N other than x 1 x k. This prevents f~anctions other than x 1 x k from masquerad-
ing as operations on the abstract type. The third rule, (A3.3), is that t cannot be free in the type of N.
In par~oalar, N cannot have type t, or be one of the opemtlons x 1 x k. Intuitively, this rule
prevents the representation of t from being exported ontslde the scope of the declaration.

The most controversial rule is (AB.3}. This rule is considered briefly in Section 4 of [Reynolds 83]
and adopted in Edinburgh ML [Gordon, et. aL 79], but rejected to varying degrees in Pebble IBurstall
and Lampson 8@ Standard ML [Milner 85, MaeQueen 85] and Ma~n-LSf's constructive type theory
[Martin-L6f 79]. Some direct objections to (AB.3) are described in [MacQueen 86]. However, we can-
not drop (AB.3) from SOL without drastically changing the type expression of the language. As it
stands, type expressions ere separated from the ordinary terms (>expressions} since terms do not
appear in type expressions. But the iTpe of the expression

abs~ype t with xxy is M i~ x

depends on the value of M (i.e., the representation type supplied by M), not just the type of M.
Therefore, in the case where M might be a formal parameter, we can only write the type of

absVype t with x:o" is M i~ x

as a type expression involving M. In addition, the representation independence properties demon-
strated in Theorems 6 and 7 rety on (AK3). This is not to say that representation independence fails
for languages without (AB.3), ordy that the representation independence properties are ~kely to be
more difficult to describe.

Intuitively, the purpose of a representation independence theorem is to show that certain imple-
mentation dedsions do not effect the meanings of programs. Various representation independence, or
"abstraction," theorems have been proposed by Reynolds, Donahue and Haynes [Donahue 7% Haynes
84, Reynolds 74, Reynolds 83]. Essentially, all of these theorems are slight generalizations of the state-
merit,

If two interpretations ~I and ~ are related in a certain way, then the meaning ~tVI~ of any
dosed term M in gf is related to the meaning ~5[M] of M in ~5 in the same certain way.

The pragmatic consequence of this sort of theorem is that if two programming language interpreters are
related in this "certain way," then the result of executing any program using one interpreter will
correspond to the resvdt of executing the same program using the other interpreter. Thus the precise
statement of the theorem describes the kind of implementation derisions that do not effect the mean-
ings of programs° While the representation independence theorems for second-order lambda calculus
without abstype proposed in [Donahue 79, Reynolds 74, Reyndds 83] have some shortcomings 1, a gen-
eral representation independence theorem is proved in [Y/tchell and Meyer 85] (using the model
theo~ developed in [Brace, Meyer and Mitchell 85, Bruce and Meyer 84, Mitchell 84c])i

tn languages with abstract &to type declarations, implementation decisions may be made by

I. A c~i~/que of the ~esults of [Dana~hue 79, Reynolds 74, Reynolds 83] appears in [Haynes 84]. "~le
representation independence theorem of [Haynes 84] ~epai;s some of the shortcomings of previous

264

prograrruners, and so representation independence becomes a programmer concern as well as a
language implementation issue. Since a type such as symbol~ tab le may be implemented once at the
beginning of a development project, and then optimized later, it is useM to know how changes in the
implementation will effect the behavior of procedures that use eymbol~table. In particular, it is
important to know that certain changes do not effect the behavior of other procedures. The theorem in
Section 6 of this paper demonstrates that the oNervable behavior of a program is mot effected by certain
changes in the definitions of abstract data types. The main ideas are described by example In the role
lowing Section.

2, An lllus~a~ive Example: Integer Mulfiseb

2,1. In%rodudion

We look at an example data type, integer multisets, assuming that we observe the behavior of
programs by computing fnteggers. Thus muitisets are used oNy at intermediate stages in computation,
and we only care about the behavior of multisets insoNr as we can observe them by produdng integer
results. In Section 2.2, we compare :unplementations of integer multisets as ff the implementations
were provided as part of the semantics of a simple programming langaage. In Section 2.3, we look at
alternate implementations defined in the language itself, deriving a definition and characterization of
observable equivalence° 're keep the semantics simple, we will assume that programs are fkst-order
terms interpreted over multi-sorted first-order structures, returning to the more cornphcated second-
order lambda calculus in Section 3.

2.2. Builioin Types

An interpretation for expressions involving integers and integer multisets consists of the set of
integers with O, i and +, and a set s of multisets with operations

empty: B, insert: i n t e r s , count: s-~inl

Irdorrnally, empty is the empty muitiset, insert adds an integer to a m~tiset, and count reblrns the mL1-
tiplicity of an element of a muPdset. Let us consider two structures

91 = s% 0, 1, +, ompty insert co ntG

= s% 0, i, . . e p@, insm%

that both interpret the integers and O, 1, + in the usual standard way. The set s g[of mul'dsets in 9/
may be different from the set s ~1 of multiseb of ~, and of course the mulfiset operations may be dif-
ferent

We say that structures 91, ~ are obsemationally equivalent with respect to the integers iL for any closed
integer term M, we have

i.e. the meaning of M in 91 is the same as the meaning of M in ~. Under what conditions will 91 and f5
be observationally eqvdvalent?

A first guess is that 91 and ~5 are observationally equivalent fff there exists some kind of mapping
between 91 and ~, say a homomorpNsm. This is partly correct.

L~,r~,u~ I. I/there is a hamomorphism h:91~, then 7I and ~ are observationally equivalent.
The proof of this lemma is quite "traighfforwardo Since h(0)=0, h(1)=l and h(x+y)=h{x)+h(y), it is
easy to see that h must be the identity on N. By induction on terms, we can Verify that for any closed

firsborder term M, -we have h(NMD G NM].
It seems worthwhile to d i s ~ s two ~ason why the converse of this lemma fails. The first has to

do with the fact that elements of s and s which are not definable by terms are irrelevant. For exam-
ple, ~uppose g is derived from some implementation ~5 of integer multisets by adding some 'nonstan-

dard multiset a with the properly

theorera~, but the theorem is ~Nted in an elaborate way and i~ only applies ~o a spedal dass of models.

265

i n s e r t x a = a for allx.

Then ~ and ~ >A~i be observationally equivalent, since the m~fiset a will never occur in practice, but
there is no homomorphism h ham ~ to ~ since there is no reasonable choice for h(a),

~%nother reason why the converse of the lemma falls may be explained in programming language
terms, One way of representing a multiset is as a linked list of pairs of the form

<element, covmt>,

where the integer co~m~ is the number of times dement has been inse~ed. The empty muJdset is then
the empty linked list, i~ser~ adds a new pair or increments the appropriate count, and the ftmction
eoun~ searches the list and re%ms the appropriate count, An akerna~ive representation makes sense if
we assume that the integers i l0 will occur qmte frequently, vdth other numbers much less Likely.
tn t}~s case, we might use an array of length 10 to count the number of times 1 10 are inserted,
together w~th a simple list of other insertions m the order they ocevu:o Note that repeatedly inserting
12, for example, will resvdt in 12 appearing several times m the list. Provided that insert and co,ant are
implemented properly, these two representations will be observationally equivalent. However, there
can be no homomo~hism ~om the fi~t to the second. To see why tkis is so, consider the r e se t of
k~serting three elements into the empty mvddset+ We use the abbm~atio~

insert 3 x y z for insert x (inse# y (insert z emp~,))o

tn the first representation, assuming x, y>10, we have

inserd ~ x y x = i ~ r f l x x y = <<x , 2>, <y, l > >

whereas in the second representation.

inserf 3 x y x = Array;<x, y, x> *~M%ay;<x, x, y> = insert 3 x x yo

Any homomorphism h from the &vst representatmr~ to the second would have to map the list of pairs
<<x, 2>, <y, 1>> to both <x, y, x> and <x, x, y> , but this is impossible. Conversely,

insert 3 1 2 3 = i~serP 3 2 1

in the second representation, since both set Avray[lj=Pa:ray[2J=Arxay[3]=l. However, in the first
representation using lists of <element, counts> pairs, inserP 1 2 3 and insets 3 3 2 1 yield lists in dif-
ferent orders.

In the example above, both implementations are homomozphic images of some "i:vdtial" imple-
mentation, but there is no struWare presezv~mg function from one to the other. The correct co~espono
dence between observationally equivalent implementations involves relations.

L~.L~ 2. Stnuctures ,~ and !~ for integer mut~e ts are observation~Zly equivalent iff there is a rela-
tion R~gsgxs ~ such * ~

Re(a, b) D R~(inszrt~x a, insert~x b),

R~(a, b) 9 coun~ggx a = eoun~3 x b

InV~dvely, the ~elafion R' spedfies, for each mvdfiset a~s~ the eollection {b~s ~5 t R~(a, b)} of all
"behaviorally eq~valent" m~tisets.

We tan state ~ahis Ierama a little more generally by introducing "logkal relations;" this definition is
based on relations used in [FrieGman 7£ Plofledn 80, Statman 82, Tait 67]. Let ~ and ~ be mvdti-sorted
first-order stnaccOares for sons sl q and functions (or constants) q f~, i.e,,

< ~
m = s i , q E &%.

A fir#-o~der bgi~I relation ~ over g~, ~ iaa family of relations ~={R%] l~i~j} such that

266

R~ g %%x %~ and

for f: t 1 ~tn+ P we have R~f~x l Ks)' fRY1 Ya)) whenever R~(xi, Yi) i~n.

Less fovmaNy, ~. is a logical relation on ~ and ~ if g~ relates the sorts of ;dI and ~ in such a way that
every functior~ f interpreted by ~ and ~ maps related argumen~ to related resets.

One important property of logical relations is that the mearG~gs of expressions are related.

L~MMA 3. Let ~ be a first-order Iogi~l relation ever ~ and ~ ~nd let %, % be environments such
that R(~(x), ~(x)) for every vat&hie x. If M is any first-~der terra, then R(9~I~M~, f;8[[M]~).

Using logical relations, Lewma 2 can be restated

Str'uda, u:es ~ and ~ for integer mtdtisets are observationally equivalent fff there is a logical
relation ~={R in~, R ~} on ~, ~ such that R i~t is the identity relation on ~.

These properties of logical relations are proved for second-order lambda calculus in [Mitchel l and
Meyer 85].

2o3, Userodefined Types

We now extend the syntax of terms to indude abstract data type declarations

absfype t with x~:~ xk:cr k is M in N,

where a representation M has the form

M::= r e p ~ M l _ . M w

In a representation M, the type v is used as the carrier of the type being defined, while M 1 M k
implement operations x 1 x k. As mentioned in the Introduction, t cannot appear in the type of N
and the type of M i must match the type ¢i of the declared operation x i (tbds means that M i must have
type [dt]¢i)o Since our example language only allows first-order terms, we will implement operations
by interpretLng first-order terms M 1 M k with free variables as function expressions.

Since we observe implementations P and Q for integer multlsets using integer expressions, it
seems natural to consider P and Q observationally equivalent if any integer term M involving P always
has the same meardng as the tema we obtain by replacing each occurrence of P by Q. We can simplify
and generalize this notion of observational equivalence using lo~cal relations. If g~ is a logical relation
over ~ and ~, with R m~ the identity, then we know P and Q will be observationaliy equivalent if, for
every N, the meaning of

abs~ype s with empty: s, insert: int-~s-~s, count: s-qnt ia P in N

is related to the meaning of the term

abstype s with empty: s, insert: int~s,-~s, count: s '~ t t is Q in N.

This motivates the definition of observational equivalence with respect to a logical relation.

A multiset context is an expression %[*]

abstype s with empty: s, rosen: int-~s~s, count: saint is * in N

wi th a place * to insert an implementation of integer multisets. If P and Q are implementations of
integer muifisets, and ~ is a logical relation over ~ and ~, we say P and Q are observationslly equivalent
with respect to ~, if ~(~%[P]~, ~ [Q] ~) for every multiset context %[*]°

If P and Q have the form

P :: = rep Sp PI P2 P3 and Q ::= rep Sq QI Q2 Q3'

a suffident condition for observational equivalence is that s_ and s_ are the same, so that we already
have a relation RS~=R~ in ~, and that the meardng of each ~ is rela~ed to the corresponding Qi" How-
ever, this condition is dearly not necessary. For example, even if sp=s~=int, there are many ways of
representing integer multisets as integers. So the empty multiset P1 uses in P need not be the same as
the empty multiset Q1 used in Q.

A better test for observational equivalence of data type implementations is obtained by

267

considering extended relations over extended stractures. The meardng~ of ab~ype ~xpressions invoiw
ing P and Q will have related values if there exists an additional relation R~gspraxso ~° so that g~U{R ~} is
a logical relation over two extended structures ~+ and ~+. The extended structured are defined by

w = %% sit %% q% ¢% ~iie~, ~ea~, ~ie3]>
~3 ÷ = <s~% s;% ~ g f=% fk% ~Q=~, m[Qa]~, f3~Qa]]>,

Since the structure g~+ has a second '*copy" of s~ and ~+ a second copy of Sq, we can use a new relao
tion between sp and Sq to give a correspondence beVeveen multisets m P and mudtisets in Q.

L ~ a 4. bnfiemen~atio~s P and Q for integer mu~i~ts are obwrva~ional2y equivalent with respect
to rdatien ~% over ~ and ~ iff ~here exists a reIatfon R~g~gx~ ~ such that ~U{R§ is a logicd rein,
tien over ~+ and ~+.

Toffs Lamina shows that two implementation P and Q are observafionally eq~valent iff there is a
co~espondenee between the operations of P and the operations of Q.

In secondoorder ~ambda calculus, ffnplementations P and Q wfl/be terms of the language. Both P
and Q have type

~so s A i n t ~ A s-~int,

w~nich is just the signature of integer mu/tisets with the operation names left out. A logical relation
over second-order models will indude a relation for each type, and hence a relation between data type
implementations - elements of existential types. We extend the definition of second-order logics1 relao
tion given ~n [Mitchell and Meyer 85] to existential types by relating all pairs of obsmwationally
equivalent implementations. Theorem 7 in Section 6 generalizes Lemma 4 above by showing that
Lmplementations P and Q are related by some second-oMer logical relation iff there is a correspondence
between the operations of P and the operations of Q, Sections 3 through 5 present the necessary prel-
imLnaries.

a. Sym~

Second-order lambda calculus (SOL, or ffA) is an extension of the ordinary typed lambda calculus.
h addition to a11owing abstraction with respect to v)Ted variables, the secondoorder system al~ows
a~traction with respecl to types themselves° We use a version of the language in which every term
has a ~q~e and every subexpression of a type expression hes a kind. (Kinds were first used in
[McCracken 79]0 The subexpressions of type expressions, which may be type expressions or operators
like ~ and V, will be called consmac,o~o We define the sets of kinds and constructors before introduc-
ing the s3,vatax and type checking rules for tenmso

We use the constant T to denote the kind consistkng of all types. The set of kind expressions is
given by fine granmnar

::= T I ~1=>~ •

The kind expression % . ~ a wi~ be interpreted as a set of hznctions from ~1 to %. For example, func-
tions hem types to types will have kind ToTe We define the set of constructor expressions, beglnning
with a set of constructor constants. Let %e~ be a set of constant symbols c K, each with a specified kind
(which we write as a superscript when necessary) and let ~ t be a set of variables v% each with a
specified kind, We assume we have infinitely many va~ables of each kind.

The consmactor expressions over %~ and Yew and their kinds, are defined by the following
derivation system

~ : ~ i ~ , v:~ t

268

g:½

For example (kvT.vT)cT is a constructor expression with kind T. A special d.ass of constructor expres o
sions are the type expressions, the constructor expressions of kind T. Since we will often be concerned
with type expressions rather than arbitrary constructor expressions, it will be useful to distingcdsh them
by notational conventions. We adopt the conventions that

r, s, t denote type variables

p, e, ~, ... denote type expressions.

As in the definition above, we will generally use ~s and v for constructor expressions. We include
the usual second*order types in the language by assuming that %e,t contains the function-type construc-
tor constant

: T~(T=>T)

and the polyrnoqphic type and "data type" type constructor constants

V, 3 : (T o T) s T .

As usual, we write ~ as an infix operator, as in the type expression ~-~r, and write Vt.~ for V(M.c0.
The advantage of working in a language with constructor expressions is that we may extend the
language to include products or sums by adding the appropriate constants to ~ r We write b#=v ff
the equation tx=v follows from the usual axioms and rules of irderence for typed lambda expressions
(or, eqmvalently, if pt and ~ are ~t, ~, ~interconvertible.)

As in most typed programming languages, the type of an SeA term will depend on the context in
which it occurs. We must know the types of all free variables before we can assign a lambda expres-
sion a type. Let ~ m be an infinite collection of variables. A syntactic type assignment B is a function
from a subset (finite or inf iNte) of ~Fterm to type expressions. For any syntactic type assignment B, let
B[x:~/] be the type assignment which is identical to B except that (B[x:7])(x)=~.

Let B be a syntactic type assignment, and let ~*era~ be a set of constants, each with a spedfied
dosed type. We define terms and their types using derivation rules for formulas BbM:~ (read "M has
type 3' with respect to B'). If M is a term and t does not occur free in B(x) for any x free in M, then t is
bind~ble in M with respe~ to B. We use {~/t}¢ to denote the result of substituting ~r for free occurrences of
t in m Constants and variables are typed as follows.

B ~ : , and B~x:~x) ff x is in the domain of B

The typing vales for compound terms are

B~-M:e~, BbN:e
(4 E)

BFMN:~

B[x:cr]FM:e

B~Kx:m M:m~r

BbM:V t.~
(v E) .

BFM:T

B~-kt.M:V t.~
t bindable in M w.r.t. B

269

Bb-M:3t ~y, BbN: 9
(~ E) t nov free in p or B(y) for y=~

B~--ab~e t wish x:~ is M in N: p

@ D
B½M:[¢it]~y

(~vTpe eq) %Y=P' BeM:v
BbM:#

The language SL4,B(~'~s,, %term) is the set of terms M over const~dctor constants %cst and term constants
%~em~ such that B~-M:¢ for some coo We oken wTite TypeB(M) for any ;y such that BI-M:c< Gqhite we have
only allowed one operation in ~p ~ M, there is no loss of generality since M may be a tuple of opera-
dons° (See [Mitchell and Plotkin 85]; pairing may be "simulated" in the second-order lamda caleb,flus
above as described in {Brace, Meyer and MitcheLl 85].)

4, Model,

4.1. Kind Sl'n~dctre~

The semantics of consmactor expressions are the familiar semantics of the simply typed lambda
calc@uso

A kind structure ~find for a set q ~ of constructor constants is a t'aple

gind = <{Kind~},{~q~%},~>,

where {~nd ~} is a family of sets indexed by kinds ~, {0bq~%} is a family of one to one and onto func-
tions .indexed by kind expressions ~1 and % such that

@%~% : Kind ~q~½ ~ [KLnd~q ~ Kind%]

for [IQ.lr~d% ~ Kind½] a collection of functions from Kind~q to Kind%, and #:%es~ ~ U J (hqd~ such that
preserves kinds, i.e..~c~)(Kind ~, Since constructor expressions include all typed lambda expressions,
Xind must be a model of the simple typed lambda talc@us.

4.2° Pr~naes and En°¢~nment Model~

Models are defined by first desdbing a s'~aetttre called a frame, and then distinguishing models
from arbi~cary frames. A second or&vfl'ame ~ for S~A(-~c5 v "%tem~) is a tuple

~= <•eind, ~.x~m, {%,bt a,b;KindT}, {®fi f{KindW=>T} >

satisfying conditions (i) through (iv) below.

{ii) ~ = <{Domat aCKindT}, ,~:m> with each D o n a a set, and

~ : %~erm ~ Oa D°ma satisfies c~=(C) (Dom [q for all c v in ~{term*

(iii) For each a,b(KLnd T, we have a set [Doma~Dom b] of functions from

Dom a to Dom b with @a,b : D ° m a ~ ~ [D°ma "* D°mb] a bijection.

(iv) Fo~t every f (Kind ~T~TI, we have a subset [Fia~KindTDOmffal]gHa(KL~a~,Domffal

w i n ¢~ : Don Yf - [EI~mndTDom~a)] a bijec#don.

270

(v) For every f(YSnd [T -~ T] and a, b(Kind T, we have mappings

Suma, ~:Dom vtfl~'a ~ Dora 3~-~a and Injb ' f: Dora fl~ ~ Dora 3~

with %~, a(Suu~a, ~ @(In K ~ d) = ~, a($~.~_~ @ b)d

Essentially, condition (iii) states that Dora ~-'b must "represent" some set [Doma~Dom b] of func-
tions from Dora ~ to Dom b. Sirrdlarly, condition (iv) specifies that Dom W must represent some subset
[Ha~TDOmf(@] of the product Ua~TDOm f(a). Some intuition for condition (v) may be gained by comparing
3f to an kffinite sum (see [Mitchell and Plotkin 85]).

Terms are in te r fe red using @ for application, @-1 for abstraction, Sum for abs~ype and Inj for
~p . Since different @ and ~'~ functions are used, depending on the types of terms, the meaning of a
term M in frame ~ will be defined relative to some type assignment B. We ~Mll also need to assume
that our envirorm~ents map variables to elements of the correct topes. If B is a type assignment and
an environment mapping ~Fcs t to elements of the appropriate kinds, and ¢F~erm to elements of U~om, we
say that ~ satisfies B, written "@B, ff

~×) ; [B(x) h
for each variable x~ dora(B).

Let ~ be a second-order frame and let B be a syntactic type assigmnent If ~ B , then the mean.°
ings of terms of ~¢A~ are defined inductively as follows:

× ~% ~ ~(x),

c ~ = ~ (c) ,

where T y p e B (M) = ~ and a=~cr~ b = ~ %

~x:cr.M ~B~ = @'la, b g, where

g(d) = ~ M ~BI×:~],q[d/x] for all d~Dom a and

a, b are the meanings of ¢r and Types(M) in

where TypeB(M)=~t.¢ and f=[M.c~,~,

kt.M ~B~ = @-1 g, where

for all a~Kind T, g(a) = ~ M ~B'~[alt] for B' = BIFV(M) and

f ~ Kind TaT is the function [kt.TypeB(M) ~'~1

abs~ype t with x:o" i~ M in N ~ =

S ~ , ~([Kt.~:a.N ~B@ [M]]~ where

f(Kind[T-~T]=[kt.~TypeB(N)~ ~ and b=[Type~(N)~

[repot. ~ ~ M]]B~ = hail, ~l~ [M liB% where

f~Kind[T -~ T] is the function [kt.~Y ~'q.

In these inductive clauses, there is no guarantee that [M]B~] is defined for all M, since g in the kx:~.M
case may not be in the domain of @~,b" ' and similarly for g in the M.M case. Therefore, we make the

271

following definition° An ~vironm~mt modal for the second-order lambda calculua is a secon&order
~ame such that for all ~ B and aN terms M of ~A~, the mea~ng ~M]]~ as defined above, exists.
When there is no danger of cordusion we leave off the superscript B on the meaning of teems and simo
ply write IMp. It is easy to check that the meardngs of terms have the appropriate semantic tKpes.
See [Bruce and Meyer 84, Bruce, Meyer and MJtchell 85, Mitchell 84c] for details.

5, L~glcal Relations

In stL~dying representation independence, we use a logical relation ~t over models ~ and f~ to
establish an observational eq~valenee between ~ and ~. If ~a, b), then we thk~ of b as equivalent
in ~3 to a fin ~fo The essential property of a logical relation ~ on functions f in ~I and g in ~ of
appropMate types is that ~(L g) holds fff ~b(f(a), g(b)) fbr all related a, b of appropriate types. In the
case that f and g are pol~nnorph~c fmnctions, ~(i g) is determined by whether ~(f(a), g(b)) for al~
related tyFes a from ~ and b from fro We define ~t(a, b) for elements a and b of corresponcL~ng existen-
tim types according to whether a and b are observationally equivalent with respect to ~9o (see Section 2.3
for motivation)° Like the defir~dtion of ~(L g) for pol~no~pbdc ftmctions f and g, the definition of ~(a,
b) may seem drc~ar. However, -we are able to give a more concrete description of ~(a, b) in Section 66.
Our description in Section 5 also shows that if a=rep a 0 a I and b=~ep b 0 b I, then ~(a, b) depends ordy
on the correspondence between the behavior of operation a I on type a 0 and the behavior of operation
b~ on type b 0.

&l. iYA Logical Relations

Logical relatbns over second-order models involve ordinary logical relations over kind structa~es.
Let ~ind 1 and ~L;nd 2 be two kind structures for %k~nd" A ffA IaSicM reZation ~ over Xind 1 and ~Ci~d 2 is a
faraily {R~ of relations such that

R ~ G Kindl~xKind2~ for each kind

We say that ~ preserves a constant e of kind n if

<age), G(c)> ~R ~

and generM1y assume that a rela~on ~ preserves all constants from %~,vA" We will always assume that
any to~cal relation preserves ~, ¥ , ~ C~k~ ~ . The basle property of logical relations, called the Fundao
mental Theorem of Logical Relations in [Statman 82], is

T ~ o ~ 5. (Fundamen~aI Theorem of ff A Logical Relations [Statman 82]) Let ~ be a constant-
preserving Iogi~I relation wet kind sLr~ctures ~Cind~, ~£ind~ and let %, % be environments for
~ind~ and Gind~ such ~hat for each variable v of kind ~ we have <%(v), ~t(v)>;R~. Then for any
constructional ~ of kind n,

< YYfindl[g~ %, ~Cind2[g~% > ~ R ~.

&2~ ffA Logic~ Relations

A logical relation ~ over models ~I and ~ wilt consist of a ffA logical relation over ~i~d~ and
~ind~ together with a family of relations Over ~.om~ and ~omn~ The relations on @om~ and ~.zm~a will
be indexed by pairs of related types a~Kind T bEKind T More precisely, let 9d and ~ be mode~s for
YA(%c~t' %~rm)" An ffAoIogicaI relation over % ~ is a family ~ of relations

iR ~ G Kind~ ~x I<in&~ r" for each kind

R~'~ G D o m ~ x D o m ~ for each <a, b>~R T

such ~nat

272

(LRol) {R~ is a ~YAqogical rela~on over %ind,, ~ind~

(LR.2) For all <a v b~>, <%, b~> (R T and <c, d> (Dom~xDom~ we have

<C, d> (Ra~a~ ' bc~b~ iff Vc',d'.<cq d'> (Ray b~ D <cd, dd'> (R~ ~*

(LR.3) For all <f, g> ~R T~T and <c, d> ~Do~n~V~×Dom~ V~ we have

<c, d>~R w, vg iff Va, b.<a, b>~R T D <ca, db>ER ~a), g~o)

(LR.4) For functions <L g>ER ToT and <c, d > (D o m ~ × D o m ~ g , we have

<c, d>ER ~L ~g iff for all <a, b>ER T and <cy dl> ERV~'~'~a, ¥~.gt~b,

<(Sums, ~ q)c, ($ ~ b , ~ d~)d> ~R a, b

A logical relation ~t over models ~ and ~ for ,VA(%c~, %te~) W esevaes a constant c~%~era ~

<#~c), #~c)>~R a' b, where a=~cr], b = ~ , and cr is the type of c.

Note that by the Fundamental Theorem for ~YA Relations, the semantic types a = ~ y] and b=~cr~ of
any constant c c~ must be related. Unless otherwise spedfied, we will assume that any relation ~ over
models ~ and ~ for YA(~es ~, %*eras) preserves both %cs* and %~erm"

Let ~ be a logical relation over 5~A(~v qgtera~) models ~ and ~. If ~ and ~ are environments
fc¢ ~ and ~, respectively, we say that ~ and ~ are related environments with respect to type assignment A
ff

and for every variable x we have

< ~ ×) , ~a(x)> ER ~. ~

where a=~A(x)~%¢ and b = ~ A (x)] ~ The "Fundamental Theorem" in [Mitchell and Meyer 85] may be
extended to abstract data type declarations.

T ~ o ~ 6. (Fundamental Theorem of ~A Logical Relations) Let ~ be a logical relation over
ff A(%c~, %tcr~) models ~.I and ~ and let ~ , ~:~ be related environments with respect to type assign-
ment A. Assume that ~ preserves the constants of ~A(-~c~ r %e~r~), Then .for any term M of

where a = ~[Type A (M)~'q~ and b= ~Type A (M)]v~;
Note that no spedfic assumptions about Sum and ~ j are made other than those implicit

(LR.4). Furthermore, since our defirdfion (LR.4) is not simply the relation induced by relating constants
for ~um and lnj (in accordance with the treatment of ~-types given in ~l~,fitchell 84c, Bruce, Meyer and
Mitchell 85]), the theorem above does not follow from the correspon~ng theorem in [Mitchell and
Meyer 85].

6o Representation Lndependence for Abs~act Data Types

6°1, I~pllcatlons of the "Fundament~ 2~eore~"

Theorem 6 shows that the meanings of terms are, to a reasonable degree, independent of the
representations of the built-in types. That is, if models ~ and ~ are related by a logical relation, then
the meaning of a term M in ~f is related to the meaning of the same term M in ~3. Consequently, ff we
cfistin~sh programs from other dosed terms by choosing some set cr I ~a of flc~ed "program
types, ' then whenever there is a logical relation ~t over models ~ and ~ ,wlth

273

Dome'S, ,- Dom i

and R% the identity relation, the meaning of any program M i~ ~f will be identical to the meaning of M
in ,~5o

Since the Fundamental Theorem applies to open tem'~s as well as closed terms, 'we can also use
the theore:m to show a degree of representation independence for user-defined data types. More
specifically, using the Fundamental Theorem and the substitution lemma, we can show that if P and Q
are related data f~pe implementations, then any program using implementation P wtl give the same
res~i~ as the same program using Q. Suppose P and Q are closed terms of' %Te ~ t.~' and M is a term of
some program %T e cr~ c~ a as above with free variable x of type 3t.~, 7lien whenever we have a
relation 5% over model; N and ~ -with eacla R~r~ the identity relation, and a pair of environments ~aa, %
with

N(x)=?,t~R~ reIated to %(x)=~Q~,

%~'~ h a v e

by the Ftmdamental "7f~heorem, By the Substitution Lemma (see [Bruce and Meyer 84, Bruce, Meyer
and Mitd~ell 83, Mitchell 84c]), we have ~[M]]N=~[P/x]M~ and similarly for [Q/x]M, so that

%~i[P/x]M~ = !5~[Q/x]M~.

rnua logically related data type implementations are obsercational~y eqtfivalent. (With appropriate con°
sidera~on of environments, t~ds argument also applies to lists Pt Pn and Qi Qn of possibly
open data t;,7~e implementatinns 0

However, the FundamentM Theorem does not give us any information about when the imple-
mentations P and Q are related. In paNcalar, if

P : := repcrpP1 and Q : := ~epeqQl ,

6~en we expect R(P, Q) to depend ordy on the relationsh/p between the behavior of operation P1 on ~r~
' V and the behavior of operation QI on ffq. We wN pro" e this in Section 6.3 using the model construction

outILaed in 5eCdon 5.2.

6o2o E~ensinns ~o Models

Let % be a second-order model with type a0E~Gndtro We define a model !h~a 0 analogous to the
fi~rst~order g~+ of Section 2.3. Lufuitivety, we want ~ a 0 to be gf with an extra copy of %, so that we can
distingmish between the type a e when i~ is used as the representation type .for some abstract type, and
the type a 0 when it is used otherwise°

Essentiatiy, we let fffind e be the kind structure generated by elements of gin& plus a new W e a r
~ e way to describe this construction is begm with elements of $£ind as constants, plus a new type
constant a~, and take equivalence classes of dosed cons~actor expressions as elements of hind*. We
conside:r ~= v if this equation is provable from the equational t h e o r / o f ~find, using the usual irfferenee
miles and the new rule

ga 0 ~ ~a 0

9,at ~ va 1

This 8ires us a kind sm~cgJre ha which a~ satisfies predsely the same equations as a 0, but we do not
have a0=alo F~rthermore, any element of Kind ÷g is of the form fa 1. where f is a (possibly constant)
tunc~o:n from gJnd¢.

We define ~ n ¢ using only the sets of ~ m , with Don% :used for Don%l. More generally, f ~ any
~ e fa~, we get Dorn~4% be Dome%. It is not hard to verify that this construction gives us a second.-
order model

274

5,3o A Caa~ac~ed~a~ier~ of Observational Equivale~ace

We can show #3aat the meanings

~ j a 0 c ~= ~ rep ~ M~ h and ~ j b 0 d = ~ vep ~ N~lb

of two implementation expressions are logically related iff there is a correspondence between the
behavior of c on a 0 and the behavior of d on b0. This characterization of a logical relation ~A on existeno
fial ly)~s uses the extended models Wa 0 and ~ b 0 with "duplicate copies" of a 0 and b 0. From this
characterization, it is easy to desc~be when the meamngs of expressions of the form ×~ X~. rep ~ M
wilI be logically relate&

THEO~,EM ~. Let ~ be a logical relation over 91 and ~, with anfKind~ T and bafKin&~ r, Let <f,
g> ~ R r ~ , so that ~f and ~g are related types, and let c, d be ehernents~of 9I and ~ wit~ c(Domj%
and d~Dom~b~. (Note that % and b o ned not be related by ~.) Then <Inj a 0 e, haj b 0 d>~1~ ~f,

~g fff there is a logical relation Gover extended models %fta 0 and ~ b o such that <c, d>(Sf% gb~ and
5 ~' ~=W' ~ for eveny <a, b> (R ~,

7, Conclusion and Db~cHon~ for ~u~her Investigation

Theorems 6 and 7 demonstrate some important representation independence properties. Irdoro
really, Theorem 6 says that logically related data type implementations cannot be distinguished by pro-
grams, while Theorem 7 assures us that whenever there is a correspondence between the operations of
P and Q, implementations P and Q will belogically related, Since it follows from these theorems that
implementations based on different representation types will be indistinguishable as long as the opera-
tions correspond properly, it seems fair to conclude that SOL is type secure. (In fact, Theorems 5 and 7
rmght be taken as a formal definition of type security.) One hopes that other languages such as Pebble
and Standard ~vra can be proved type secure in an equally satisfying predse sense.

It would be useful to be able to prove that data type implementations we encounter in practice
are observationagy equivalent, h prindple, this may be done using the inference system in [MitcheU
and Meyer 85] for demonstrating ~a t pairs of terms are logically related. However, we have not tried
to carry out any significant proofs. One interesting problem here is that the P and Q may be observa-
tionally equivalent if we deride to keep all other declarations fixed, but P and Q may become observ-
ably different when some other dedarations are changed. Thus, the interdependence of data types
becomes important. A useful proof system for demonstrating observational equivalence of data type
implementations seems an important area for future research.

Acknowledgements: Thanks to Albert Meyer and Oliver Schoett for some helpful discussions. The inves-
tigative framework of this paper is based on joint work with Meyer.

References

[Bruce and Meyer 84] Bruce, K. and Meyer, A., A Completeness Theorem for Second-Order
PolymorpNc Lambda Cakculus. In Proc. fnf. Syrup. on Semantics of Data Types, 5ophia-Antipolis (France) ,
t984, pages 131-144..

[Bruce~ Meyer and Mitchell 85] Bruce, K.K, Meyer, A.R. and Mitchell, J.C., The semantics of second-
order lambda calculus, to appear

[Burstall and Lampson 84] Burstall, R. and Lampson, B., A Kernel Language for Abstract Data Types
and Mod~es~ In Pwc. fnt'l Syrup, on Semantics of Data Types, 1984, pages 1-50.

[Donahue 79] Donahue, j., On the semantics of data type, SIAM 7. Computing 8 1979. pages 545-560

[Friedman 75] Friedman, H., Equality Between Fvmctionals. In R. Parikh (ed.), Logic Colloquium, pages
22-37. Spf~.ger-Verlag I975.

[Girard 71] Girard, J.-Y., Une extension de Finterpreta~on de Ghdel a Fanalyse, et son application
Fglimination des coupures dens FanAyse et la th4orie des ~ypes. ha Fens tad, J.E. (ed.), 2 nd

275

Scandinavian Logic SUp, , pages 63-92. No~vHotland 1971,

[Gordon, eto aL 79] Gordon, MJ., R° ~v~ner and C.P. Wadswo~h, Edinburgh LCF. Lect~Jre Notes in
Computer Sdence, Vol. 78 Spr:inger-Verlag 1979.

[Haynes 84] Haynes, COT,, A Theory of Data Type Representation hdependenceo In Int, Syrup, on
Sem~ntics of Data Tw~es , SpfingeroVeflag, 1984, pages 157o176o

[Liskov et., aL 81] Liskov, B. et. eL, CLU Reyerence Manual. Lecture Notes in Computer Science, Vol. 114
Springer-VoTing 1981.

[MacQ¢Jeen 85] MaeQueen, D.Bo, Modutes for Standard ML. Poiymorphism 2, 2 1985.35 pages. An ear-
lier version appeared in Proc. 1984 ACM Syrup. on Lisp and Functional Programming.

[MacQueen 86] MacQueen, D.B., Using dependent types to express modular structure. In Proc. I34h
ACM Syrup. on Prin@Ies of Programming Languages, 1986. To appear.

[Mar~n-LSf 79~Mar~in-L6L P., Constractive mathematics and computer programrmngo 1979. Paper
presented at 6 International Congress for Logic, Methodology and Philosophy of Sdence, Prep:tint,
Univo of StockhoLm,, Depto of Math. t979

[McCracken 79] McCracken, No, An Investigation 4 a Programming Language with a Potymcrphic Type Struc-
ture, Syracuse Urgvo 1979.

[MNne~ 85] Milner, R., The standard ML core language. Yolymcrphism 2, 2 1985. 28 pages. An earlier
version appeared in Prec. 1984 ACM Syrup. on Lisp and Functional Programming.

IN, to.hell 84c] Mitc~hell, J.C, Semantic modeg for secondoorder lambda calculus~ In Proc° 25oth IEEE
~Wnp. on Foundaffons of Computer Sdenee , 1984, pages 28%299.

[Mitchell and Plotkin 85] Mitc~hell, J.Co and Notkin, G.D., Abstract types have existential Vypes. In Proc.
t2-th ACM Syrup, on PrincipZes of Programming Languages, January, 1985. pp. 37051,

[Mitchell and Meyer 85] Mitchell, J.Co and Meyer, A.R., Second-order logical relations. In Logics of Prc~
grams, June, 1985. pages 225-236.

[Plotki~ 80] Plotkin, G.D., Lambda definability in dqe bill type hieraret~ In To H.K Curry: Essays on
Combina~o:~y Logic, Lamb& CakuIus and Formalism, pages 363o-37K Academic Press 1980.

[Reynolds 74] Reynolds, J.C., Towards a Tneo~ 7 of Type Structure. tn Paris Colloq. on Programming ,
Springer-Voting, 1974, pages 408425.

[Reyno!ds 83] Reynolds, J.C., Types, Abstraction, and Parametric Polymorphismo In IFIP Congress ,
1983.

[Stamaan 82] Statman, R., Logical relations and the typed lambda calculus. (Manuscript.) To appear in
Information and Con~ol,

[Tait 67] Tait WOW., Intensional interpretation of fiJmcfionats of finite type.]. &ymbotic Logic 32 1967.
pages t98o2t2

276

