Representation independence and data abstraction
(preliminary version)

John C. Mitchell

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

One purpose of type checking in programming languages is to guarantee a degree of
"representation independence:” programs should not depend on the way stacks are
represented, only on the behavior of stacks with respect to push and pop operations.
In languages with abstract data type declarations, representation independence should
hold for user-defined types as well as built-in types. We study the representation
independence properties of a typed functional language (second-order lambda cal-
culus) with polymorphic functions and abstract data type dedlarations in which data
type implementations {packages) may be passed as function parameters and returned
as results. The type checking rules of the language guarantee that two data type
implementations P and Q are equivalence whenever there is a correspondence
between the behavior of the operations of P and the behavior of the operations of Q.

1. Introduction

The second-order (polymorphic) lambda calculus, discovered independently by Girard and Rey-
nolds [Girard 71, Reynolds 74], was proposed by Reynolds as language which captures the essence of
type declarations and polymorphic functions. In [Mitchell and Plotkin 85], it was argued that this
language could be extended to provide a flexible form of abstract data type declaration. The SOL
abstype declaration described in [Mitchell and Plotkin 85] is more flexible than the abstract data type
declarations provided by many languages in that data type implementations may be passed as parame-
ters and retumned as the results of function calls. However, it is not clear a priori whether type check-
ing is "secure” in any semantic sense. Furthermore, recent language designs such as Pebble [Burstall
and Lampson 84] and Standard ML [MacQueen 85, Milner 85] propose more complex type checking
rules that seem more lenient than SOL; it is conceivable that these languages may be less "type secure.”
The goal of this paper is to understand the semantic properties of type checking in SOL well enough to
allow sensible comparisons with other languages. In addition, it is also hoped that this study will be
useful in further investigation of related languages. The main technical result is a characterization of
when two user-supplied data type implementations are equivalent for all intents and purposes.

In sOL, abstract data type declarations have the form
abstype t with xi0y, ..., 0, s Min N,

where t is the type name; Xy, ..., %, are operations on ¢ of types &y, ..., % and M'ixﬁplemems the type.
The scope of the declaration is the body N. For example, an expression declaring complex numbers

looks like , :

Permissions to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permission af the Ass'scgaﬁon for Comput-
ing Machinery. To copy otherwise, o to republish, requires a fee and/or specific permission.

© 1986 ACM-0-89791-175-X-1/86-0263 $00.75
263

abstype complex with create: real-real-complex,
plus: complex-complex-scomplex,
re: complex-real, im: complex-real
s M
inN,
where N uses complex numbers via the operations create, plus, re and im. Abstract data types are
implemented by expressions of the form

Mu=repr M, ... My,

where r is a type and M,, ..., M, implement operations on that type. (The keyword rep is short for
representation, and is taken from cLu [Liskov et. al. 81].) InsoL, an implementation has a existential type
3t.o, which may be thought of as the signature of the data type.

There are three type checking rules for abstype expressions. The first, (AB.1) requires that the
implementation M match the declaration x,i0;, ..., %0, of operations: M must provide implementa-
tions for exactly k operations and the implementation of each operation must have the correct type.
The second type checking rule, (AB.2), stipulates that the type name t must not appear in the types of
free identifiers in N other than x,, ..., %,. This prevents functions other than x,, ..., x, from masquerad-
ing as operations on the abstract type. The third rule, (AB.3), is that t cannot be free in the type of N.
In particular, N cannot have type t, or be one of the operations x,, ..., . Intuitively, this rule
prevents the representation of t from being exported outside the scope of the declaration.

The most controversial rule is (AB.3). This rule is considered briefly in Section 4 of [Reynolds 83]
and adopted in Edinburgh ML {Gordon, et. al. 78], but rejected to varying degrees in Pebble [Burstall
and Lampson 84], Standard ML [Milner 85, MacQueen 85] and Martin-L6f's constructive type theory
[Martin-L&f 79]. Some direct objections to (AB.3) are described in [MacQueen 86]. However, we can-
not drop {AB.3) from s0L without drastically changing the type expression of the language. As it
stanids, type expressions are separated from the ordinary terms (A-expressions) since terms do not
appear in type expressions. But the type of the expression

abstype twithxols M inx

depends on the value of M (i.e., the representation type supplied by M), not just the type of M.
Therefore, in the case where M might be a formal parameter, we can only write the type of

abstype t with xto s M in x

as a type expression involving M. In addition, the represeniation independence properties demon-
strated in Theorems 6 and 7 rely on (AB.3). This is not to say that representation independence fails
for languages without {AB.3), only that the representation independence properties are likely to be
more difficult to describe.

Intuitively, the purpose of a representation independence theorem is to show that certain imple-
mentation decisions do not effect the meanings of programs. Various representation independence, or
"abstraction,” theorems have been proposed by Reynolds, Donahue and Haynes [Donahue 79, Haynes
84, Reynolds 74, Reynolds 83]. Essentially, all of these theorems are slight generalizations of the state-
ment,

If two interpretations % and % are related in a certain way, then the meaning %[M] of any
closed term M in % is related to the meaning B[M] of M in B in the same certain way.

The pragmatic consequence of this sort of theorern is that if two programming language interpreters are
related in this "certain way,” then the result of executing any program using one interpreter will
correspond 1o the result of executing the same program using the other interpreter. Thus the precise
statement of the theorem describes the kind of implementation decisions that do not effect the mean-
ings of programs. While the representation independence theorems for second-order lambda calculus
without abstype proposed in [Donahue 79, Reynolds 74, Reynolds 83] have some shortcomings’, a gen-
eral representation independence theorem is proved in [Mitchell and Meyer 85] (using the model
theory developed in [Bruce, Meyer and Mitchell 85, Bruce and Meyer 84, Mitchell 84c]).

In languages with abstract data type declarations, implementation decisions may be made by

1. A critique of the results of [Donahue 79, Reynolds 74, Reynolds 83] appears in [Haynes 84]. The
representation independence theorem of [Haynes 84] repairs some of the shortcomings of previous

264

programmers, and so representation independence becomes a programmer concern as well as a
language implementation issue. Since a type such as symbol_table may be implemented once at the
beginning of a development project, and then optimized later, it is useful to know how changes in the
implementation will effect the behavior of procedures that use symbol_table. In particular, it is
important to know that certain changes do not effect the behavior of other procedures. The theorem in
Section 6 of this paper demonstrates that the observable behavior of a program is not effected by certain
changes in the definitions of abstract data types. The main ideas are described by example in the fol-
lowing Section.

2. An Qlustrative Example: Integer Multisels

2.1, Introduction

We look at an example data type, integer multisets, assuming that we observe the behavior of
programs by computing integers. Thus multisets are used only at intermediate stages in computation,
and we only care about the behavior of multisets insofar as we can observe them by producing integer
results. In Section 2.2, we compare implementations of integer multisets as if the implementations
were provided as part of the semantics of a simple programming language. In Section 2.3, we look at
alternate implementations defined in the language itself, deriving a definition and characterization of
observable equivalence. To keep the semantics simple, we will assume that programs are first-order
terms interpreted over multi-sorted first-order structures, returning to the more complicated second-
order lambda calculus in Section 3.

2.2, Built-in Types

An interpretation for expressions involving integers and integer multisets consists of the set of
integers with 0, 1 and +, and a set s of multisets with operations

empty: s, insert: int-»s—s, count: s->int

Informally, empty is the empty multiset, insert adds an integer to a multiset, and count returns the mul-
tiplicity of an element of a multiset. Let us consider two structures

% =<N,s% 0,1, +, emp‘t‘yﬁ, insert™, count®>

B = <N,s?,0,1, +, empty%, insert®, count®>
that both interpret the integers and 0, 1, + in the usual standard way. The set s¥ of multisets in ¥
may be different from the set s© of multisets of B, and of course the multiset operations may be dif-
ferent.
We say that structures %, B are observationally equivalent with respect to the inlegers if, for any closed
integer term M, we have

M) = BM],
i.e. the meaning of M in % is the same as the meaning of M in 8. Under what conditions will % and B
be observationally equivalent?

A first guess is that % and % are observationally equivalent iff there exists some kind of mapping
between 9 and B, say a homomorphism, This is partly correct. : :

Lovma 1. If there is o homomorphism h: %%, then %A and B are observationally equivalent. o
The proof of this lemma is quite st:aighﬁomard. Since h(0)=0, h(l)=1 and h(?g%- yy=h(x)+h{y), it is
easy to see that h must be the identity on N. By induction on terms, we can verify that for any closed
first-order term M, we have h(UM]) = B[M]. ’

It seems worthwhile to discuss two reason why the converse of this lemma fails. The first has to
do with the fact that elements of s* and s® which are not definable by terms are irrelevant. For exam-
ple, suppose % is derived from some implementation B of integer multisets by adding some "nonstan-
dard" multiset a with the property o o

theoremms, but the theorem is stated in an elaborate way and it only applies to a special dass of models.

265

insertxa = a forallx

Then % and B will be observationally equivalent, since the multiset a will never occur in practice, but
there is no homomorphism h from ¥ to 8 since there is no reasonable choice for h(a).

Another reason why the converse of the lemma fails may be explained in programming language
terms, One way of representing a multiset is as a linked list of pairs of the form

<glement, count>,

where the integer count is the number of times element has been inserted. The empty multiset is then
the empty linked list, insert adds & new pair or increments the appropriate count, and the function
count searches the list and returns the appropriate count. An alternative representation makes sense if
we assume that the integers 1, ..., 10 will occur quite frequently, with other numbers much less likely.
In this case, we might use an array of length 10 to count the number of times 1, ..., 10 are inserted,
together with a simple list of other insertions in the order they occur. Note that repeatedly inserting
12, for example, will result in 12 appearing several times in the list. Provided that insert and count are
implemented properly, these two representations will be observationally equivalent. However, there
can be no homomorphism from the first to the second. To see why this is so, consider the result of
inserting three elements into the empty multiset. We use the abbreviation

insert® x vz for insert x (insert v (insert z empty)).
In the first representation, assuming x, y>10, we have
insert® x y x = insert® xxy = <<x, 2>, <y, 1>>
whereas in the second representation.
insert® x y x = Array;<x, y, x> #Array;<x, x, y> = insert® x x ¥.

Any homomorphism h from the first representation to the second would have to map the list of pairs
<<x, 2>, <y, 1>> to both <x, y, x> and <x, x, y>, but this is impossible, Conversely,

insert? 123 = insert® 321

in the second representation, since both set Array[l]=Array[2]=Array[3]=1. However, in the first
representation using lists of <element, counts> pairs, insert® 12 3 and insert® 3 2 1 yield lists in dif-
ferent orders.

In the example above, both implementations are homomorphic images of some "initial” imple-
mentation, but there is no structure preserving function from one to the other. The correct correspon-
dence between observationally equivalent implementations involves relations.

Lovpas 2. Structures U and B for integer multisets are observationally equivalent iff there is a rela-
Hon ngsﬁxs% such that

R'g(mpt‘y%, mpfy%,

R¥a, by D R*{imerfﬂx a, insert® x b),

R¥a, b) Doount¥xa= count®xb

Intuitively, the relation R® specifies, for each multiset a¢s% the collection {bés% | R¥a, b)} of all
"behaviorally equivalent” multisets.
We can state this lemma a little more generally by introducing "logical relations;” this definition is

based on relations used in [Friedman 75, Plotkin 80, Statman 82, Tait 67]. Let % and B be multi-sorted
first-order structures for sorts Spr - § and functons {or constants) £, ..., fk, ie.,

U= <s® 5T 5% £

B <s® .88 58
A first-order logical relation R, over %, B is a family of relations R={R%| 1=i=j} such that

266

RYC si%x si%, and

for f: t,~...=t ., we have "R“n{f‘z{(xl, X}, f%(yz, -+ ¥o)) whenever R(x, y,) i=n.
Less formally, R is a logical relation on % and B if R relates the sorts of ¥ and B in such a way that
every function { interpreted by ¥ and % maps related arguments to related results.
One important property of logical relations is that the meanings of expressions are related.

Levma 3. Let R be a first-order logical relation over % and B and let w,, v, be environments such
that Rin(x), w(x)) for every variable x. If M is any first-order tevm, then R’?%HIM]]%, BlMl,).
Using logical relations, Lemma 2 can be restated

Structures U and B for integer multisets are observationally equivalent iff there is a logical
relation ®={R™, R% on ¥, B such that R™ is the identity relation on N.

These properties of logical relations are proved for second-order lambda calculus in [Mitchell and
Meyer 83]. '

2.3, User-defined Types
We now extend the syntax of terms to include abstract data type declarations

abstype t with X0y, ., %o, 8 Min N,
where a representation M has the form
Mu=repr M, ... M,.

In a representation M, the type 7 is used as the carrier of the type being defined, while M,, ..., M,
implement operations xy, ..., x,. As mentioned in the Introduction, t cannot appear in the type of N
and the type of M; must match the type o; of the declared operation x; {this means that M, must have
type [v/t]o;). Since owr example language only allows first-order terms, we will implement operations
by interpreting first-order terms M,, ..., M, with free variables as function expressions.

Since we observe implementations P and Q for integer multisets using integer expressions, it
seems natural to consider P and Q observationally equivalent if any integer term M involving P always
has the same meaning as the term we obtain by replacing each occurrence of P by Q. We can simplify
and generalize this notion of observational equivalence using logical relations. If R is a logical relation
over ¥ and B, with R™ the identity, then we know P and Q will be observationally equivalent if, for
avery N, the meaning of ‘ ' ‘

abstype s with empty: s, insert: int-»s—s, count: s—int {8 Pin N
is related to the meaning of the term
abstype s with empty: s, insert: int-»s—s, count: s~int is Q in N.
This motivates the definition of observational equivalence with respect to a logical relation,
A multiset context is an expression 6[*]
abstype s with empty: s, insert: int-s~s, count: s=int is*in N

with a place * to insert an implementation of integer multisets. If P and Q are implementations of
integer multisets, and @ is a logical relation over % and B, we say P and Q are ‘observationally equivalent

with respect to R if ROUE[P]], BIE[Q]]) for every multiset context €'} ~ . - ‘
If P and Q have the form |
P 1ep sp P’l PZ P3 an& Q‘::z xep sq Q‘l QZ Q3’

a sufficient condition for observational equivalence is that s, and s_ are the same, so that we already
have a relation R%=R% in &, and that the meaning of each 1;)x is related to the corresponding Q.. How-

ever, this condition is clearly not necessary. For example, even if 8555 =int, there are many ways of
representing integer multisets as integers. So the empty multiset P, used in P need not be the same as

the empty multiset Q, used in Q.
A better test for observational equivalence of data type implementations is obtained by

267

considering extended relations over extended structures. The meanings of abstype expressions involv-
ing P and Q will have related values if there exists an additional relation R°Cs_"xs q"B s0 that RU{R®} is
a logical relation over two extended structures Y% and B*. The extended structures are defined by

o= <s, ¥ 5% s %% 6% e upy), up,l>

%‘;s = "‘(S;B; seng E;E, §q$; f;a; 223 f}g%? m@ggl %KQZH’ %HQJE:}”

Since the structure 2™ has a second "copy” of 5, and B a second copy of 5, we can use a new rela-

tion between 5 and s to give a correspondence between multisets in P and multisets in .

Lovma 4. Implementations P and Q for integer mullisels ave observationally equivalent with respect

to relation R over U and B iff there exists a relation R‘g;gpﬂx sq% such that RUR® is a logical rela-

tion over U™ and B”.

This Lemma shows that two implementation P and Q are observationally equivalent iff there is a
correspondence between the operations of P and the operations of (3.

In second-order lambda calculus, implementations P and Q will be terms of the language. Both P
and have type

s, 5 A int-s~s A s-int,

which is just the signature of integer multisets with the operation names left out. A logical relation
over second-order models will include a relation for each type, and hence a relation between data type
implementations ~ elements of existential types. We extend the definition of second-order logical rela-
tion given in [Mitchell and Meyer 85] to existential types by relating all pairs of observationally
equivalent implementations. Theorem 7 in Section 6 generalizes Lemma 4 above by showing that
implementations P and Q are related by some second-order logical relation iff there is a correspondence
between the operations of P and the operations of Q. Sections 3 through 5 present the necessary prel-
iminaries.

3. Byniax

Second-order lambda calculus (301, or ¥A) is an extension of the ordinary typed lambda calculus.
In addition to allowing abstraction with respect to typed variables, the second-order system allows
abstraction with respect to types themselves. We use a version of the language in which every term
has a type and every subexpression of a type expression has a kind. (Kinds were first used in
[McCracken 79].) The subexpressions of type expressions, which may be type expressions or operators
like -~ and ¥, will be called constructors. We define the sets of kinds and constructors before introduc-
ing the syntax and type checking rules for terms.

We use the constant T to denote the kind consisting of all types. The set of kind expressions is
given by the grammar

ko= T rg=>n.

The kind expression x,=>x, will be interpreted as a set of functions from ®y to r,. For example, func-
tions from types to types will have kind T=>T. We define the set of constructor expressions, beginning
with a set of constructor constants. Let €, be a set of constant symbols ¢®, each with a specified kind
(which we write as a superscript when necessary) and let ¥, be a set of variables v*, each with a
specified kind, We assume we have infinitely many variables of each kind.

The constructor expressions over 6., and ¥, and their kinds, are defined by the following
derivation system

cu, v

BNy =Ry, yﬁ

Huii,

268

Ky
WL R =R,
For example (\T.vT)cT is a constructor expression with kind T. A special class of constructor expres-
sions are the type expressions, the constructor expressions of kind T. Since we will often be concerned
with type expressions rather than arbitrary constructor expressions, it will be useful to distinguish them
by notational conventions. We adopt the conventions that

7, 8, 1, ... denote type variables
g @ % ... denote type expressions.

As in the definition above, we will generally use p and v for constructor expressions. We include
the usual second-order types in the language by assuming that 6, contains the function-type construc-
tor constant ,

. Ta:»(T::.;»T)
and the polymorphic type and "data type” type constructor constants
Y, 3 (T=T)=T,

As usual, we write ~ as an infix operator, as in the type expression o=, and write Vt.o for V{ht.0).
The advantage of working in a language with constructor expressions is that we may extend the
language to include products or sums by adding the appropriate constants to @, We write Fp=v if
the equation p=v follows from the usual axioms and rules of inference for typed lambda expressions
{or, equivalently, if u and v are o, B, ninterconvertible.)

As in most typed programming languages, the type of an ¥A term will depend on the context in
which it occurs. We must know the types of all free variables before we can assign a lambda expres-
sion a type. Let %, be an infinite collection of variables. A syntactic type assignment B is a function
from a subset (finite or infinite) of ¥, to type expressions. For any syntactic type assignment B, let
Blx:v] be the type assignment which is identical to B except that (B[x:y](x)=".

Let B be a syntactic type assignment, and let 4, be a set of constants, each with a specified
closed type. We define terms and their types using derivation rules for formulas BrM:y (read "M has
type y with respect to B"). If M is a term and t does not occur free in B(x) for any x free in M, then tis
bindable in M with respect to B. We use {r/t}o to denote the result of substituting r for free occurrences of
tin . Constants and variables are typed as follows. :

BreTr and BheB(x) if x is in the domain of B
The typing rules for compound terms are
Br-M:g-»z, BrNior

w2 B e et
=B BFMN»

BixolrMr
Braxio. Mgt

BF-M:Yt.o

| 24 N
VB Br-Mr:{r/tho

BHMLt

D BRALMY by

¢t bindable in M w.z.t. B

269

FMiHt o, BENL
{#E) BrMiata 7 tnot free in p or Bly) for yox

Brabstype t with xo s M in Nip

BRMi[s/t]e

3
GD Brrep,, v M: 3t.o

Fy=p, BFEMy

(type) BrM:p

The language &f,,ﬁs{%cst, Cﬁtem} is the set of terms M over constructor constants ’\Eém and term constants
@erm Such that B-Mio for some 0. We often write Typeg(M) for any o such that B-M:o. While we have
only allowed one operation in rep 7 M, there is no loss of generality since M may be a tuple of opera-
tions. (See [Mitchell and Plotkin 85]; pairing may be "simulated” in the second-order lamda calculus
above as described in [Bruce, Meyer and Mitchell 85].)

4, Models

4.1. Kind Structures
The semantics of constructor expressions are the familiar semantics of the simply typed lambda
calcudus,

A kind structure Hind for a set @, of constructor constants is a tuple
Hind = <{Kiﬁd’<},{®xﬁ$%},§>/

where {Kind'} is a family of sets indexed by kinds x, {®

tions indexed by kind expressions x; and x, such that
@qu,‘a : Kind"™% = [Kind% - Kind®]

for [Kind"™ = Kind"] a collection of functions from Kind™ to Kind®, and S8, — U Kind" such that $

preserves kinds, i.e. H(c)€Kind® Since constructor expressions include all typed lambda expressions,

Hind must be a model of the simple typed lambda calculus.

K’inz} is a family of one to one and onto func

4.2. Frames and Environment Models

Models are defined by first describing a structure called a frame, and then distinguishing models
from arbitrary frames. A second order frame F for FAMB g Biope) i5 a tuple

F=<Uind, Bom, {®,,| a,beKind"}, {®] feKindT=T}>
satisfying conditions (i} through (iv) below.
() Hind = <{Kind"}, {@)“1: Ka}’ $> is a kind structure for By
i = <4Jom® 8 , > with eac om® a set, an
(i) Som (Dom? a¢Kind T}, 9, > with each Dom? d
Fim ¢ Bropgn ~ UDom? satisfies I () € Doml™ for all ¥ in B
{iii) For each a,b€Kind?, we have a set [Dom®-DomP] of functions from
Dom? to Dom® with D, 5 Dom?™® = [Dom? ~ Dom®] a bijection.

(iv) For every £ ¢ Kind™™7, we have a subset {Haémﬁdyﬁomﬂ"’)jgﬁa{Kmergmﬂa)

with @ : Dom¥f = [T, .. :Dom@] a bijection.

270

{v) For every feKindl™ * Tl and a, beKind®, we have mappings
Sum, Dom?*# » Dom¥~2 and Inj, ¢ Dom® - Dom
with @z, (Sum, . g)(Inj, (d) = By (D)4 ., 8) D)
Essentially, condition (iii) states that Dom?™ must "represent” some set [Dome-Dom?] of func-
tions from Dom?® to Dom®. Similarly, condition (iv) specifies that Dom"! must represent some subset

[11, . Dom{®] of the product I1, .,Dom®. Some intuition for condition (v) may be gained by comparing
Hf to an infinite sum (see [Mitchell and Plotkin 85]).

Terms are interpreted using @ for application, & for abstraction, Sum for abstype and Inj for
rep. Since different ® and @ functions are used, depending on the types of terms, the meaning of a
term M in frame F will be defined relative to some type assignment B. We will also need to assume
that our environments map variables to elements of the correct types. If B is a type assignment and 5

an environment mapping V. to elements of the appropriate kinds, and V' to elements of USom, we
PPING Vo pprop term

say that v satisfies B, written nf=B, if
) € [B In
for each variable x¢dom(B).

Let ¥ be a second-order frame and let B be a syntactic type assignment. If n=B, then the mean-
ings of terms of ¥ Ay are defined inductively as follows:

[x 1P = =),
[cPn= 9,00,
[MN By = (@,] M P [N Pn,
where Typeg(M)=o- and a=[oln, b=[+n,
[mcoM [Py = @y}a,b g, where
g(d) = [M [Px9lq[d/x] for all déDom? and
a, b are the meanings of o and Typey(M} inm
[MrPo= @[MPBy [,
where Typeg(M)=Vt.0 and f=[xt.o]n,
[AtM [Py = @'lf g, whers
for all a¢Kind?, g(a) = [M P'rfalt] for B = B.FV(M) and
f € Kind™7 is the function [M. Typeg(M) In
[abstype t with x:o is M in N [Py = ‘
Sum, ([At Ao N Py [M Im, where
feKindT ~ T M.o-Typey(N) In‘and b= [[TypeB(N’}]]fn
[repg, o 7 M [P0 = Injg py [M IPn, where

feKind(T Tl is the function [M.o [Py,

In these inductive clauses, there is no guarantee that [M[Pq is defined for all M, since g in the hxo.M
case may not be in the domain of @, ", and similarly for g in the .M case. Therefore, we make the

271

following definition. An environment model for the second-order lambda calculus is a second-order
frame such that for all n=B and all terms M of Ay, the meaning M]Py, as defined above, exists.
When there is no danger of confusion we leave off the superscript B on the meaning of terms and sim-
ply write [Mlm. It is easy to check that the meanings of terms have the appropriate semantic types.
See [Bruce and Meyer B4, Bruce, Meyer and Mitchell 85, Mitchell 84c] for detaiis.

5. Logical Relations

In studying representation independence, we use a logical relation R over models % and B 1o
establish an observational equivalence between ¥ and B. If ®R(a, b), then we think of b as equivalent
in B to a in Y. The essential property of a logical relation R on functions { in W and g in B of
appropriate types is that R(f, g) holds iff R(f(a), g(b)) for all related a, b of appropriate types. In the
case that f and g are polymorphic functions, R(f, g) is determined by whether %(f(a), g(b)) for all
related types a from ¥ and b from B. We define R(a, b) for elements a and b of corresponding existen-
tial types according to whether a and b are observationally equivalent with respect to R (see Section 2.3
for motivation). Like the definition of ®{f, g) for polymorphic functions f and g, the definition of R(a,
b) may seem circular. However, we are able to give a more concrete description of R(a, b) in Section 6.
Our description in Section 6 also shows that if a=rep a,; a, and b=rep by b,, then R(a, b) depends only
on the correspondence between the behavior of operation a, on type a, and the behavior of operation

b, on type by,

5.1. TA Logical Relations

Logical relations over second-order models involve ordinary logical relations over kind structures.
Let Hind, and Hind) be two kind structures for |, .. A TA logical relation R over Kind; and Kind, is a
family {R"} of relations such that

R* € Kind, *xKind," for each kind «

<s, t> €RS ™ iff Vs, e’ Ve exT <5, £,> €RM4 D <ssy, tt,>€R%
We say that R preserves a constant ¢ of kind « if

<4,{c), F{c)>€R"

and generally assume that a relation R preserves all constants from €, ,. We will always assume that
any logical relation preserves —, ¥, 3€%, ,. The basic property of logical relations, called the Funda-
mental Theorem of Logical Relations in [Statman 82], is

TrzoreM 5. (Fundamental Theorem of TA Logical Relations [Statman 82]) Let R be a constant-
preserving logical relation over kind structures Hind,, Hind, ond let m, m, be environments for
Hind, and Hind, such that for each variable v of kind x we have <n(v), n,(v)>€R*. Then for any
constructional u of kind =,

<Hind,[pln,, HindyJuln>€R¥,

8.2, A Logical Relations

A logical relation & over models % and % will consist of a TA logical relation over ¥indy and
Hindgg, together with a family of relations over Bomy and Jomg, The relations on Zomy and Domg will
be indexed by pairs of related types aEKind%{T, bei(ind%?. More precisely, let 9 and B be models for
FA(C, B,). An FA-logical relation over %, B is a family R of relations

R* & Kindg/x Kindg" for each kind «

RAP ¢ DamQ{WDQm%b for each <a, b>¢RT
such that

272

{LR.1) {R"} is a T A-logical relation over Hindgy, Kindg,
(LR.2) For all <a,, b;>, <a,, b,>¢R” and <¢, d>¢Domg"2x Domg™P: we have
<e, d>ERY ™ Bhiff o, d' <, d'> €Rir P D <o, dd'> ¢R%2 B2
{LR.3) For all <f, g>€¢R™™T and <c, d> EDom;aWXDom%wg we have
<c, d>€RYE VB iff Va, b.<a, b>€RT D <ca, db>¢RHe) 80
(LR.4) For functions <f, g>¢R* T and <c, d>¢DomyPx Doms, we have
<c, d>€R3 38 iff for all <a, b>¢RT and <c, d,>€RYH~a Vigtsh,
<(Sum, ; c))c, (Sum, , d;)d>€R™ b,
A logical relation ® over models % and B for FA(€,,, if
<Sgfc), Pofc)>€R> b where a=%[o], b=%[o], and & is the type of c.

Note that by the Fundamental Theorem for TA Relations, the semantic types a=%[o] and b=8o] of
any constant ¢ must be related. Unless otherwise specified, we will assume that any relation & over

models % and B for FA(8,,, 6,) preserves both €, and ¢, .
%,

Let R be a logical relation over $A(4 . 4,,,.) models A and B. If 7y and ny are environments
for % and B, respectively, we say that n and ng are related environments with respect to type assignment A
if

@yopyy) Preserves a constant c€Q,,

g g I A

and for every variable x we have

<mdx), mgfx)> R P,

where a=U[A()]n, and b=B[A()]ny The "Fundamental Theorem" in {Mitchell and Meyer 85] may be
extended to abstract data type declarations.

Tusorem 6. (Fundamental Theorem of FA Logical Relations) Let B be a logical relation over
FA(B,, @,,,,) models U and B and let ny, wy be related environments with respect to type assign-
ment A. Assume that R preserves the constants of SA(G,,, 6,,.). Then for any term M of
E;AA(%CS?’ %Eerm) '

<U[Mlng, BMlng>€R™ ®,

where a= [Type ,(M)ng and b=B[Type ,(M)lng

Note that no spedific assumptions about Sum and Inj are made other than those implicit in
(LR.4). Furthermore, since our definition (LR.4) is not simply the relation induced by relating constants
for Sum and Inj (in accordance with the treatment of 3-types given in [Mitchell 84c, Bruce, Meyer and
Mitchell 85]), the theorem above does not follow from the corresponding theorem in [Mitchell and
Meyer 85]. :

6. Representation Independence for Abstract Data Types

6.1, Implications of the "Fundamental Theorem” 4

Theorem 6 shows that the meanings of terms are, to a reasonable degree, independent of the
representations of the built-in types. That is, if models % and B are related by a logical relation, then
the meaning of a term M in % is related to the meaning of the same term M in 8. Consequently, if we
distinguish programs from other closed terms by choosing some set oy, ..., o, of closed "program
types," then whenever there is a logical relation & over models % and B with

273

Domg™ = Domg’

and RY the identity relation, the meaning of any program M in ¥ will be identical to the meaning of M
in .

Since the Fundamental Theorem applies to open terms as well as closed terms, we can also use
the theorem to show a degree of representation independence for user-defined data types. More
specifically, using the Fundamental Theorem and the substitution lemma, we can show that if P and Q
are related data type implementations, then any program using implementation P will give the same
result as the same program using Q. Suppose P and Q are closed terms of type Jt.r and M is a term of
some program type oy, ...,0, as above with free variable x of type Jt.s. Then whenever we have a
relation & over models ¥ and B with each RY the identity relation, and a pair of environments Ny My
with

n,00=UF] related to m (0=P[Q]
we have

%ﬁ :‘Qa = E&NMZ’%

by the Fundamental Theorem. By the Substitution Lemma (see¢ [Bruce and Meyer 84, Bruce, Meyer
and Mitchell 85, Mitchell 84c]), we have U[M]n = U[[P/x]M] and similarly for [Q/x]M, so that

AP IMI=BIIQAM].

Thus logically related data type implementations are observationally equivalent. (With appropriate con-
sideration of environments, this argument also applies to lists Py, ..., P, and Q,, ..., Q_ of possibly
open data type implementations.)

However, the Fundamental Theorem does not give us any information about when the imple-
mentations P and @ are related. In particudar, if

Pi= rep vy P, and Q1= rep Iy Q.

then we expect R(P, Q) to depend only on the relationship between the behavior of operation P, on &
and the behavior of operation Q, on Oy We will prove this in Section 6.3 using the model construction
outlined in Section 6.2

6.2. Extensions o Models

Let % be a second-order model with type a,¢Kind®. We define a model *a, analogous to the
first-order U of Section 2.3, Intuitively, we want A'a, to be % with an extra copy of a, so that we can
ﬁsﬁngui&h between the type a; when it is used as the representation type for some abstract type, and
the type ay when it is used otherwise.

Essentially, we let Hind’ be the kind structure generated by elements of 3ind, plus a new type ay.
One way to describe this construction is begin with elements of Hind as constants, pius a new type
constant a,, and take equivalence classes of closed constructor expressions as elements of Hind'. We

ronsider uesv if this equation is provable from the equational theory of Mind, using the usual inference
rules and the new rule

Hag=va,

Hay=va,

This gives us a kind structure in which a, satisfies precisely the same equations as a,, but we do not
have ay=a,. Furthermore, any element of Kind'? is of the form fa,, where f is a (possibly constant)
function from Kind®.

We define Qom® using only the sets of Zom, with Dom® used for Dom*. More generally, for any
type fa,, we let Dom™: be Dom™. It is not hard to verify that this construction gives us a second-
order model.

274

6.3. A Characterization of Observational Equivalence
We can show that the meanings

Injajc = U rep o M, and Inj by d = B[rep v Nln,

of two implementation expressions are logically related iff there is a correspondence between the
behavior of ¢ on ag and the behavior of d on by, This characterization of a logical relation ® on existen-
tial types uses the extended models %'a; and B*b; with "duplicate copies” of ap and by, From this
characterization, it is easy to describe when the meanings of expressions of the form Xg 3. rep o M
will be logically related.

Tuzorem 7. Let 9 be a logical relation over W and B, with a,€Kindg! and byeKindgl. Let <f,
g>€R™™T, 50 that 3f and g are related types, and let ¢, d be elements of U and B with c€ Domgy/%
and dé€ Dcm;g?b@. (Note that a, and by need not be related by R.) Then <Inj a, ¢, Inj by d>¢€R3f

gﬁ zg; fggr%]z'% rae%é%:aé Zz;l%timé gﬁver extended models Wao and EB*bo such that <¢, d> € 5% &% gpg

7. Conclusion and Directions for Fusther Investigation

Theorems 6 and 7 demonstrate some important representation independence properties. Infor-
mally, Theorem 6 says that logically related data type implementations cannot be distinguished by pro-
grams, while Theorem 7 assures us that whenever there is a correspondence between the operations of
P and Q, implementations P and Q will be.logically related. Since it follows from these theorems that
implementations based on different representation types will be indistinguishable as long as the opera-
tions correspond properly, it seems fair to conclude that SOL is type secure. {In fact, Theorems 6 and 7
might be taken as a formal definition of type security.) One hopes that other languages such as Pebble
and Standard ML can be proved type secure in an equally satisfying precise sense.

It would be useful to be able to prove that data type implementations we encounter in practice
are observationally equivalent. In principle, this may be done using the inference system in [Mitchell
and Meyer 85] for demonstrating that pairs of terms are logically related. However, we have not tried
to carry out any significant proofs. One interesting problem here is that the P and Q may be observa-
tionally equivalent if we decide to keep all other declarations fixed, but P and Q may become observ-
ably different when some other declarations are changed. Thus, the interdependence of data types
becomes important. A useful proof system for demonstrating observational equivalence of data type
implementations seems an important area for future research.

Acknowledgements: Thanks to Albert Meyer and Oliver Schoett for some helpful discussions. The inves-
tigative framework of this paper is based on joint work with Meyer.

References

[Bruce and Meyer B4] Bruce, K. and Meyer, A., A Completeness Theorem for Second-Order
Polymorphic Lambda Caleulus. In Proc. Inf. Symp. on Semantics of Data Types, Sophia-Antipolis (France) ,
1984, pages 131-144..

[Bruce, Meyer and Mitchell 85] Bruce, K.B., Meyer, A.R. and Mitchell,].C., The semantics of second-
order lambda calculus. to appeay

[Burstall and Lampson 84] Burstall, R. and Lampson, B., A Kernel Language for Abstract Data Types
and Modules. In Proc. Int'] Symp. on Semantics of Data Types , 1984, pages 1-50.

[Donahue 79] Donahue, J., On the semantics of data type. SIAM J. Computing 8 1979. pages 546-560

[Friedman 73] Friedman, H., Equality Between Functionals. In R. Parikh (ed.), Logic Colloguium, pages
22-37. Springer-YVerlag 1975,

[Girard 71] Girard, J.-Y., Une extension de linterpretation de Godel a I'analyse, et son application &
Vélimination des coupures dans analyse et la théorle des types. In Fenstad, 1L.E (ed.), 2

275

Scandinavign Logic Symp., pages 63-92. North-Holland 1971,

[Gordon, et. al. 79] Gordon, M.J., R. Milner and C.P. Wadsworth, Edinburgh LCF. Lecture Notes in
Computer Science, Vol. 78 Springer-Verlag 1979,

[Haynes 84] Haynes, C.T., A Theory of Data Type Representation Independence. In Int. Symp. on
Semantics of Data Types , Springer-Verlag , 1984, pages 157-176.

{Liskov et. al. 81] Liskov, B. et. al., CLU Reference Manual. Lecture Notes in Computer Science, Vol. 114
Springer-Verlag 1981,

[MacQueen 85] MacQueen, D.B., Modules for Standard ML. Polymorphism 2, 2 1985. 35 pages. An ear-
ler version appeared in Proc. 1984 ACM Symp. on Lisp and Functonal Programiming.

[MacQueen 86] MacQueen, D.B., Using dependent types to express modular structure. In Proc. 13-th
ACM Symp. on Principles of Programming Languages , 1986. To appear.

[Martin-L&8f 79] Martin-L6f, P., Constructive mathematics and computer programming. 1979. Paper
presented at 6% International Congress for Logic, Methodology and Philosophy of Science, Preprint,
Undy. of Stockholm, Dept. of Math. 1979

[McCracken 79] McCracken, N., An Investigation of a Programming Language with a Polymorphic Type Struc-
turz, Syracuse Univ, 1979

[Milner 85] Milner, R., The standard ML core language. Polymorphism 2, 2 1985. 28 pages. An earlier
version appeared in Proc. 1984 ACM Symp. on Lisp and Functional Programming,.

[Mitchell B4c] Mitchell, J.C., Semantic models for second-order lambda calculus. In Proc. 25-th IEEE
Symyp. on Foundations of Computer Science , 1984, pages 289-295,

[Mitchel] and Plotkin 85] Mitchell,].C. and Plotkin, G.D., Abstract types have existential types. In Proc.
12-th ACM Symp. on Principles of Programming Languages , January, 1985. pp. 37-51.

[Mitchell and Meyer 85] Mitchell,].C. and Meyer, A.R., Second-order logical relations. In Logics of Pro-
grams , June, 1985, pages 225-236.

[Plotkin 80] Plotkin, G.D., Lambda definability in the full type hierarchy. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 363-373. Academic Press 1980.

[Reynolds 74] Reynolds,].C., Towards a Theory of Type Structure. In Paris Collog. on Programming ,
Springer-Verlag , 1974, pages 408-425.

{Reynolds 83] Reynolds, J.C., Types, Abstraction, and Parametric Polymorphism. In IFIP Congress ,
1983,

[Statman 82] Statman, R., Logical relations and the typed lambda calculus. (Manuscript.) To appear in
Information and Control,

[Tait 67] Tait, W.W., Intensional interpretation of functionals of finite type. J. Symbolic Logic 32 1967.
pages 198-212

276

