
J. Functional Programming 1 (1): 1{000, January 1998. Printed in the United Kingdom

c 1998 Cambridge University Press

1

Short Cut Fusion is Correct

Patricia Johann

Department of Computer Science

Rutgers University

Camden, NJ 08102 USA

pjohann@crab.rutgers.edu

Abstract

Fusion is the process of removing intermediate data structures from modularly constructed
functional programs. Short cut fusion is a particular fusion technique which uses a single,
local transformation rule to fuse compositions of list-processing functions. Short cut fusion
has traditionally been treated purely syntactically, and justi�cations for it have appealed
either to intuition or to \free theorems" | even though the latter have not been known to
hold in languages supporting higher-order polymorphic functions and �xpoint recursion.
In this paper we use Pitts' recent demonstration that contextual equivalence in such
languages is parametric to provide the �rst formal proof of the correctness of short cut
fusion for them. In particular, we show that programs which have undergone short cut
fusion are contextually equivalent to their unfused counterparts.

1 Introduction

Modular program construction is widely regarded as an integral part of any reason-

able software development process. One very general way of achieving modularity

in functional languages is to construct large programs as compositions of small,

generally applicable components. Each component in such a composition produces

a data structure as its output, and this data structure is immediately consumed by

the next component in the composition. Intermediate data structures thus serve as

a kind of \glue" allowing components to be combined in a mix-and-match fashion.

The components comprising modular programs are typically de�ned as recursive

functions. The de�nitions in Figure 1 are common examples of such functions: foldr

consumes lists, while map and append both consume and produce lists. Using these

functions we can de�ne, for example, the function mappend which maps a function

over the result of appending two lists:

mappend :: forall a. forall b. (a -> b) -> List a -> List a -> List b

mappend = /\a b. \f xs ys. map a b f (append a xs ys)

In this informal discussion we will express program fragments in a Haskell-like nota-

tion with explicit type quanti�cation, abstraction, and application. Quanti�cation

of the type t over the type variable a is denoted forall a.t, abstraction of the

2 Patricia Johann

foldr :: forall a. forall b. b -> (a -> b -> b) -> List a -> b

foldr = /\a b. \n c xs. case xs of

Nil -> n

Cons z zs -> c z (foldr a b n c zs)

map :: forall a. forall b. (a -> b) -> List a -> List b

map = /\a b. \f l. case l of

Nil -> Nil

Cons z zs -> Cons (f z) (map a b f zs)

append :: forall a. List a -> List a -> List a

append = /\a. \xs ys. case xs of

Nil -> ys

Cons z zs -> Cons z (append a zs ys)

Fig. 1. Recursive functions on lists

term M over the type variable a is denoted /\a.M, and application of the term M to

the type t is denoted M t.

Unfortunately, modularly constructed programs like mappend tend to be less ef-

�cient than their non-modular counterparts. The main diÆculty is that the direct

implementation of compositional programs literally constructs, traverses, and dis-

cards intermediate data structures | even when they play no essential role in

a computation. For instance, the above implementation of mappend unnecessarily

constructs and then traverses the intermediate list resulting from appending xs

onto ys. This requires processing the list xs twice. Even in lazy languages this is

expensive, both slowing execution time and increasing heap space requirements.

It is often possible to avoid manipulating intermediate data structures by using

a more elaborate style of programming in which the computations performed by

component functions in a composition are intermingled. In this monolithic style of

programming the function mappend is de�ned as

mappend' :: forall a. forall b. (a -> b) -> List a -> List a -> List b

mappend' = /\a b. \f xs ys.

case xs of

Nil -> map a b f ys

Cons z zs -> Cons (f z) (mappend' a b f zs ys)

The list xs is only processed once by mappend'.

Experienced programmers writing a function to map over the result of appending

two lists would instinctively produce mappend' rather than mappend; small functions

like mappend are easily optimized at the keyboard. Because they are used very often,

it is essential that small functions are optimized whenever possible. Automatic

fusion tools ensure that they are.

On the other hand, when programs are either very large or very complex, even

experienced programmers may �nd that eliminating intermediate data structures

by hand is not a very attractive alternative to the modular style of programming.

Methods for automatically eliminating intermediate data structures are needed in

this situation as well.

Short Cut Fusion is Correct 3

map :: forall a. forall b. (a -> b) -> List a -> List b

map = /\a b. \f l. build b (/\a'. \(n::a') (c :: b -> a' -> a').

foldr a a' n (\(y::a) (l'::a'). c (f y) l') l)

append :: forall a. List a -> List a -> List a

append = /\a. \xs ys. build a (/\b. \(n::b) (c::a -> b -> b).

foldr a b (foldr a b n c ys) c xs)

Fig. 2. Functions in build-foldr form

1.1 Short Cut Fusion

Fusion is the process of removing intermediate data structures from modularly

constructed functional programs. In recent years, a number of program fusion tech-

niques have been developed (Gill et al., 1993; Sheard and Fegaras, 1993; Takano and

Meijer, 1995). Short cut fusion (Gill, 1996; Gill et al., 1993) is a particular technique

that uses a single, local transformation rule | called the foldr-build rule | to

fuse compositions of list-processing functions via canned applications of traditional

fold/unfold program transformation steps. In order to participate in short cut fu-

sion, list-processing functions must be expressible in terms of the list-consuming

function foldr and the list-producing function build.

Operationally, foldr takes as input types t and t', a replacement term n::t'

for Nil, a replacement term c :: t -> t' -> t' for Cons, and a list xs of type

List t. It replaces all (fully applied) occurrences of Cons in xs by c, and the single

(fully applied) occurrence of Nil in xs by n. The result is a value of type t'. The

de�nition of foldr appears in Figure 1.

The function build, on the other hand, takes as input a type t and a term M

providing a type-independent template for constructing \abstract" lists with \ele-

ments" of type t. It instantiates all occurrences of the \abstract" list constructors

which appear in the result list speci�ed by M with the \concrete" list constructors

Nil and Cons. The result is a list of elements of type t. More precisely, if t is a

type and M is any term with type forall a. a -> (t -> a -> a) -> a, then

build t M = M (List t) Nil Cons

Compositions of list-consuming and -producing functions de�ned in terms of

foldr and build can be fused via short cut fusion for lists: If M is a term with type

forall a. a -> (t -> a -> a) -> a, then any occurrence of foldr t t' n c

(build t M) in a program can be replaced by M t' n c. Short cut fusion makes

sense intuitively: the result of a computation is the same regardless of whether

the function M is �rst applied to List t, Nil, and Cons and then the latter are

replaced in the resulting list by n and c, respectively, or the abstract constructors

in (an appropriate instance of) M are replaced by n and c, respectively, directly.

Figure 2 shows the build-foldr forms of the functions map and append from Fig-

ure 1. The fused function mappend' can be derived from mappend by inlining these

de�nitions and applying short cut fusion in conjunction with standard program

simpli�cation rules.

4 Patricia Johann

1.2 The Problem of Correctness

Short cut fusion has successfully been used to improve programs in modern func-

tional languages. It has even been shown to transformmodular programs into mono-

lithic ones exhibiting order-of-magnitude eÆciency increases over those from which

they are derived. Nevertheless, there remain diÆculties associated with the use of

short cut fusion. One of the most substantial is that its correctness has not yet been

proved for the languages to which it is applied.

Short cut fusion has traditionally been treated purely syntactically, with little

consideration given to the underlying semantics of the programs to which it is ap-

plied. In particular, the fact that the foldr-build rule holds only for languages

admitting parametric models has been downplayed in the literature, and the ap-

plication of short cut fusion to functional programs has been justi�ed by appeal-

ing either to intuition about the operational behavior of build and foldr or to

Wadler's \free theorems" (Wadler, 1989).� But intuition is unsuitable as a basis for

formal proofs, and the correctness of \free theorems" itself relies on the existence

of parametric models. Since no parametric models for modern functional languages

are known to exist, these justi�cations of short cut fusion for them are far from

satisfactory.

Simply put, parametricity is the requirement that all polymorphic functions de-

�nable in a language operate uniformly over all types. This requirement gives rise to

corresponding uniformity conditions on models, and these conditions are known to

be satis�ed by models supporting a parametric structure. Parametric models have

been shown to exist for some higher-order polymorphic languages (Bainbridge et

al., 1990), but because these fail to model �xpoint recursion they do not adequately

accommodate short cut fusion. While it may be possible to extend such models to

encompass �xpoint recursion, this has not been reported in the literature, and until

recently the existence of parametric models for languages supporting both higher-

order polymorphic functions and �xpoint recursion had not been demonstrated.

As a result, neither short cut fusion for even the most streamlined of higher-order

polymorphic languages with �xpoint recursion, nor short cut fusion for the modern

functional languages which extend them, has enjoyed a formal proof of correctness.

1.3 Proving Correctness

In this paper we provide the �rst-ever formal proof of the correctness of short

cut fusion for a calculus supporting both higher-order polymorphic functions and

�xpoint recursion. Because modern functional languages typically support features

that cannot be modeled in such calculi, our results do not apply to them directly.

Nevertheless, our results do make some progress toward proving the correctness of

short cut fusion for modern functional languages, and thus toward bridging the gap

between the theory of parametricity and the practice of program fusion.

� In fact, the only formal proof of correctness of short cut fusion for a modern functional
language on record appeals to Wadler's \free theorems" (Gill, 1996).

Short Cut Fusion is Correct 5

Our proof of the correctness of short cut fusion relies on Pitts' recent demonstra-

tion of the existence of relationally parametric models for a class of polymorphic

lambda calculi supporting �xpoint recursion at the level of terms and recursion

via data types with non-strict constructors at the level of types (Pitts, 2000; Pitts,

1998b). Pitts uses logical relations to characterize contextual equivalence in such

calculi, and this characterization enables him to show that identifying contextually

equivalent terms gives rise to relationally parametric models for them. Our main

result (Theorem 2.1) employs Pitts' characterization of contextual equivalence to

demonstrate that programs in these calculi which have undergone short cut fusion

are contextually equivalent to their unfused counterparts. The correctness of short

cut fusion for them follows immediately.

Our proof techniques, like those of Pitts on which they are based, are opera-

tional in nature. Denotational approaches to proving the correctness of short cut

fusion have thus far been unsuccessful. While it may be possible to construct a

proof directly using the denotational notions that Pitts captures syntactically, to

our knowledge this has not yet been accomplished. Similar remarks apply to di-

rectly constructing relationally parametric models of rank-2 fragments of suitable

polymorphic calculi. It is worth noting that Pitts' relationally parametric character-

ization of contextual equivalence holds even in the presence of fully impredicative

polymorphism. Characterization of contextual equivalence for predicative calculi |

i.e., for calculi whose types do not rely on the collection of types for their de�ni-

tion | can be achieved by appropriately restricting the characterizations for the

corresponding impredicative ones.

Short cut fusion can be generalized along two orthogonal dimensions. On the

one hand, short cut fusion is easily generalized to arbitrary covariant recursive

types | called algebraic data types below and elsewhere. Such generalizations have

already been incorporated into a number of automatic fusion tools (Chitil, 1999;

Gill, 1996; Johann, 1997; Johann and Visser, 2000; N�emeth, 2000). On the other

hand, short cut fusion for lists can be generalized to accommodate more general list

production. Gill (Gill, 1996) has introduced a program construct called augment

which generalizes build to produce lists with tails other than Nil. The behavior

of augment is similar to that of build, the main di�erence being that whereas

build instantiates the occurrence of the \abstract" list constructor corresponding

to Nil in the result list speci�ed by a list template M with Nil itself, augment can

instantiate it with any given list. More speci�cally, if t is a type, M is any term with

type forall a. a -> (t -> a -> a) -> a, and ys has type List t, then

augment t M ys = M (List t) ys Cons

Gill has also derived a foldr-augment fusion rule, similar to the foldr-build rule,

for lists. According to this rule, occurrences of foldr t t' n c (augment t M ys)

in a program can be replaced by M t' (foldr t t' n c ys) c.

In fact, short cut fusion can be generalized along both of these dimensions simul-

taneously to arrive at generalizations of augment and the foldr-augment rule for

lists to non-list algebraic data types. In these more general settings, augment can

be interpreted as constructing substitution instances of algebraic data structures,

6 Patricia Johann

Types � ::= � type variable
j � ! � function type
j 8�:� 8-type
j List � list type

Terms M ::= x variable
j �x : �:M function abstraction
j MM function application
j ��:M type abstraction
j M� type application
j fix(M) �xpoint recursion
j Nil� empty list
j Cons� M M non-empty list
j case M of fNil�)M j Cons� x x)Mg case expression

Fig. 3. Syntax of PolyPCF

and the generalized foldr-augment rule can be viewed as optimizing compositions

of functions that uniformly consume algebraic data structures with functions that

uniformly produce substitution instances of them. The techniques in this paper can

be extended in a straightforward | but notationally intensive | manner along the

lines of Pitts (1998b) to prove the correctness of the generalized foldr-augment

rule. Correctness of the foldr-augment rule for lists, as well as of short cut fusion

for non-list algebraic data types, are immediate consequences. Details appear in

Johann (2001).

2 PolyPCF and Contextual Equivalence

In exploring the correctness of short cut fusion we work in the same setting as

in Pitts (2000), and our presentation is heavily inuenced by that paper. In this

section we introduce Pitts' PolyPCF, the polymorphic lambda calculus for which

we formalize and prove the correctness of short cut fusion. We also make precise

the notion of contextual equivalence which is required in this endeavor. Contextual

equivalence for PolyPCF terms is characterized in Section 3, which culminates in

Section 3.3 in a proof of correctness of short cut fusion for PolyPCF. Section 4

concludes.

2.1 PolyPCF

PolyPCF combines the Girard-Reynolds polymorphic lambda calculus with Plotkin's

PCF by extending PCF with lazy lists and 8-types. Since the treatment of ground

types (e.g., natural numbers and booleans) in the theory developed here is precisely

the same as the treatment of list types, for notational convenience we assume that

PolyPCF supports only the latter. The syntax of PolyPCF types and terms is given

in Figure 3. As described in the introduction, the theory developed here extends to

accommodate non-list algebraic data types.

A number of remarks concerning the de�nitions of Figure 3 are in order. Type

Short Cut Fusion is Correct 7

�; x : � ` x : �
� ` F : � ! �

� ` fix(F) : �

�; x : �1 `M : �2

� ` �x : �1:M : �1 ! �2

� ` F : �1 ! �2 � ` A : �1

� ` F A : �2

�; � `M : �

� ` ��:M : 8�:�

� ` G : 8�:�1

� ` G�2 : �1[�2=�]

� ` Nil� : List �
� ` H : � � ` T : List �

� ` Cons� H T : List �

� ` L : List � � `M1 : �2 �; h : �1; t : List �1 ` M2 : �2

� ` case L of fNil�)M1 j Cons� z zs)M2g : �2

Fig. 4. PolyPCF type assignment

variables and term variables range over disjoint countably in�nite sets. The con-

structions 8�: (), �x : �: , ��: , and case M of fNil�) M j Cons� x x0)

g are binders. As is customary, we identify types and terms which di�er only by

renamings of their bound variables. We write ftv(e) for the (�nite) set of free type

variables of a type or term e, and fv(M) for the (�nite) set of free variables of a

term M . The result of substituting the type � for all free occurrences of the type

variable � in a type or term e is denoted e[�=�]. The result of substituting the term

M 0 for all free occurrences of the variable x in the term M is denoted M [M 0=x].

We will be concerned only with PolyPCF terms which are typeable. The type

assignment relation for PolyPCF is completely standard; it is given in Figure 4.

A typing environment � is a pair A;�, where A ia a �nite set of type variables

and � is a function de�ned on a �nite set dom(�) of variables which maps each

x 2 dom(�) to a type with free type variables in A. We write � `M : � to indicate

that termM has type � in the type environment �. Implicit in this notation are four

assumptions, namely that � = A; �, that ftv (M) � A, that ftv(�) � A, and that

fv (M) � dom(�). The notation �; x : � indicates the typing environment obtained

from � = A; � by extending the function � to map x 62 dom(�) to � . Similarly,

the notation �; � denotes the typing environment obtained from � = A; � by

extending A with a type variable � 62 A.

The explicit type annotations on lambda-bound term variables and empty lists

ensure that well-formed PolyPCF terms have unique types. That is, given � and

M , there is at most one type � for which � `M : � holds. For convenience we will

sometimes suppress type information below.

A type � is closed if ftv(�) = ;. A term M is closed if fv (M) = ;, regardless of

whether or not M contains free type variables. The set of closed PolyPCF terms is

denoted Typ. For � 2 Typ the set of closed PolyPCF termsM for which ;; ; `M : �

is denoted Term(�). Both foldr and build are expressible as closed PolyPCF

8 Patricia Johann

terms: writing l� for the type 8�: � ! (� ! � ! �)! � we can de�ne

foldr = ��:��: �n : �: �c : �! � ! �: �xs : List �: unbuild � xs � n c

and

build = ��: construct �

where

unbuild � = fix(�h : List � ! l� :�xs : List �:��: �n : �:�c : � ! �! �:

case xs of fNil�) n j Cons� z zs) c z (h zs �n c)g)

and

construct � = �M : l� :M (List �) Nil� (�h : �: �t : List �: Cons� h t)

The auxiliary terms unbuild and construct are necessary because the type con-

structor List must be applied to a type to produce a well-formed PolyPCF type.

That is, List itself is not a PolyPCF type. In addition, the de�nition of construct

reects the fact that the list constructors Nil and Cons must be fully applied in

well-formed PolyPCF terms.

2.2 Operational Semantics

The operational semantics of PolyPCF is given by the inductively de�ned evaluation

relation in Figure 5. It relates a closed term M to a value V of the same closed

type; this is denoted M + V . The set of PolyPCF values is given by

V ::= �x:M j ��:M j Nil j ConsM M

Note that function application is given a call-by-name semantics, constructors are

non-strict, and type applications are not evaluated \under the �." In addition,

PolyPCF evaluation is deterministic, although the rule for fix entails the existence

of terms whose evaluation does not terminate.

2.3 Contextual Equivalence

With the operational semantics of PolyPCF in place, we can now make precise

the notion of contextual equivalence for its terms. Informally, two terms in a pro-

gramming language are contextually equivalent if they are interchangeable in any

program with no di�erence in observable behavior when the resulting programs are

executed. In order to formalize this notion for PolyPCF we must specify what a

PolyPCF program is, as well as the PolyPCF program behavior we are interested

in observing.

Recall that ground types have been replaced by list types in PolyPCF. To mimic

the standard notions of a program as a closed term of ground type and the ob-

servable behavior of a program as the constant value, if any, to which it evaluates,

we therefore de�ne a PolyPCF program to be a closed term of list type and take

the observable behavior of a PolyPCF program to be whether or not it evaluates to

Short Cut Fusion is Correct 9

V + V (V a value)
F fix(F) + V

fix(F) + V

L + Cons H T M2[H=z; T=zs] + V

case L of fNil)M1 j Cons z zs)M2g + V

F + �x : �:M M [A=x] + V

F A + V

L + Nil M1 + V

case L of fNil)M1 j Cons z zs)M2g + V

G + ��:M M [�=�] + V

G � + V

Fig. 5. PolyPCF evaluation relation

Nil.y We further de�ne two PolyPCF terms M1 and M2 such that � `M1 : � and

� `M2 : � to be contextually equivalent with respect to � if, for any context M[]

for which M[M1];M[M2] 2 Term(List � 0) for � 0 2 Typ , we have

M[M1] + Nil� 0 , M[M2] + Nil� 0

As usual, a contextM[] is a PolyPCF term with a subterm replaced by the place-

holder ` ', andM[M] denotes the term which results from replacing the placeholder

by the term M . We write

� `M1 =ctx M2 : �

to indicate that M1 and M2 are terms of type � which are contextually equivalent

with respect to �. IfM1 andM2 are closed terms of closed type � , we writeM1 =ctx

M2 : � instead of ;; ; ` M1 =ctx M2 : � . In this case we say simply that M1 and

M2 are contextually equivalent.

For terms M;M1, and M2 of type �1, A of type �2, and F of type � , the following

contextual equivalences are shown in Pitts (2000) to hold:

(�x : �2:M)A =ctx M [A=x] : �1 (1)

(��:M)�2 =ctx M [�2=�] : �1[�2=�] (2)

case Nil�2 of fNil)M1 j Cons z zs)M2g =ctx M1 : �1 (3)

case Cons�2 H T of

fNil)M1 j Cons z zs)M2g =ctx M2[H=z; T=zs] : �1 (4)

fix(F) =ctx F fix(F) : � (5)

y It may seem more natural to observe as much as one can about the results of evaluation.
But observing the entire list value, if any, to which a program evaluates | rather than
just observing whether or not it evaluates to Nil| can entail the comparison of thunks,
and this leads to too high a degree of intensionality. On the other hand, by considering
programs in suitable contexts, we can show that observing whether or not they evaluate
to Nil leads to the same notion of observational equivalence as observing the outermost
constructors of the list values, if any, to which programs evaluate. The same technique
can also be used to show that merely observing whether or not programs terminate
leads once again to this same notion of observational equivalence. These alternative
characterizations may seem more intuitive.

10 Patricia Johann

2.4 Formalizing Short Cut Fusion

Once we have the notion of contextual equivalence at our disposal we can formalize

the correctness of short cut fusion for PolyPCF. We will consider only closed types

and terms below. This restriction is reasonable because contextual equivalence for

open terms is reducible to contextual equivalence for closed terms of closed type,

as shown in Theorem 5.1 of Pitts (2000).

Theorem 2.1

(Short Cut Fusion) Let � and � 0be closed types, and let

M : 8�: �! (� ! �! �)! �;

n : � 0;

and

c : � ! � 0 ! � 0

be closed terms. Then

foldr � � 0 n c (build � M) =ctx M � 0 n c : � 0

3 Correctness of Short Cut Fusion

To prove the correctness of short cut fusion for PolyPCF we would like to de�ne

a logical relation which coincides with PolyPCF contextual equivalence. A logical

relation R is a collection fR� j � a typeg of relations with the property that the

relations at complex types are determined by the relations at their subtypes in such

a way that closure of R under the basic operations of term formation is guaranteed.

A logical relation which coincides with PolyPCF contextual equivalence would en-

force contextual equivalence of related terms. This would in turn incorporate into

the theory of contextual equivalence a notion of relational parametricity analo-

gous to that introduced by Reynolds for the pure polymorphic lambda calculus

(Reynolds, 1983).

Unfortunately, a naive approach to de�ning a logical relation with the desired

properties | i.e., an approach which quanti�es over all appropriately typed rela-

tions in de�ning the relation at 8-types | is not suÆciently restrictive to ensure

parametricity. What is needed is some criterion for identifying those relations on

closed PolyPCF terms which are \admissible for �xpoint induction," in the sense

that they syntactically capture the domain-theoretic notion of admissibility. (In

domain theory, a subset of a domain is said to be admissible if it contains the least

element of the domain and is closed under taking least upper bounds of chains

in the domain.) The notion of >>-closure de�ned below, taken from Pitts (2000),

provides a criterion suÆcient to guarantee this kind of admissibility (Abadi, 2000).

The notion of >>-closure is induced by a Galois connection between term rela-

tions and evaluation contexts, i.e., contexts M[] which have a single occurrence

of the placeholder ` ' in the position at which the next subexpression will be eval-

uated. In Pitts (2000), analysis of evaluation contexts is aided by recasting them in

Short Cut Fusion is Correct 11

� ` Id : � ,! �

� ` S : � 0 ,! � 00 � ` A : �

� ` S Æ (M) : (� ,! � 0) ,! � 00

� ` S : � 0[�=�] ,! � 00 � not free in �

� ` S Æ (�) : (8�:�) ,! � 00

� ` S : � 0 ,! � 00 � `M1 : �
0 �; h : �; t : List � ` M2 : � 0

� ` S Æ (case of fNil)M1 j Cons h t)M2g) : List � ,! � 00

Fig. 6. Frame stack type judgements

terms of the notion of frame stack given in De�nition 3.1 below. This frame stack

realization of evaluation contexts gives rise to Pitts' syntactic characterization of

the PolyPCF termination properties entailed by contextual equivalence. The re-

sulting PolyPCF structural termination relation provides the key to appropriate

speci�cation of the clause for 8-types in the logical relation which coincides with

contextual equivalence.

After sketching Pitts' characterization of contextual equivalence in terms of log-

ical relations in Sections 3.1 and 3.2, we use it in Section 3.3 to prove correctness

of short cut fusion. This proof is the main contribution of the paper.

3.1 >>-closed Relations

De�nition 3.1

The grammar for PolyPCF frame stacks is

S ::= Id j S Æ F

where F ranges over frames:

F ::= (M) j (�) j case of f:::g

Frame stacks have types and typing derivations, although explicit type informa-

tion is not included in their syntax. The type judgement � ` S : � ,! � 0 for a frame

stack S indicates the argument type � and the result type � 0 of S. As usual, � is a

typing environment and certain well-formedness conditions of judgements hold; in

particular, � is assumed to contain all free variables and free type variables of all

expressions appearing in the judgement. The axioms and rules inductively de�ning

type judgements for frame stacks are given in Figure 6. We will only be concerned

with stacks which are typeable. Although well-formed frame stacks do not have

unique types, they do satisfy the following property: Given �, S, and � , there is at

most one � 0 such that � ` S : � ,! � 0 holds. In this paper, the argument types of

frame stacks will always be known at the time of their use.

Given closed types � and � 0, we write Stack(�; � 0) for the set of frame stacks for

which ;; ; ` S : � ,! � 0. We are particularly interested in the case when the result

12 Patricia Johann

S >M [A=x]

S Æ (A) > �x : �:M

S Æ (A) > F

S > F A

S >M [�=�]

S Æ (�) > ��:M

S Æ (�) > G

S > G�

S Æ (fix(F)) > F

S > fix(F) Id > Nil

S >M1

S Æ (case of fNil)M1 j Cons z zs)M2g) > Nil

S >M2[H=z; T=zs]

S Æ (case of fNil)M1 j Cons z zs)M2g) > Cons H T

Fig. 7. PolyPCF structural termination relation

type � 0 of a frame stack is a list type, and so we write

Stack(�) =
[
fStack(�;List � 0) j � 0 2 Typg

The operation S;M 7! SM of applying a stack to a term is the analogue for frame

stacks of the operation of �lling the hole in an evaluation context with a term. It

is de�ned by induction on the number of frames in the stack as follows:

Id M = M

(S Æ F) M = S(F [M])

Here, F [M] is the term that results from replacing ` ' by M in the frame F .

If S 2 Stack(�; � 0) and M 2 Term(�), then SM 2 Term(� 0). Unlike PolyPCF

evaluation, stack application is strict in its second argument. This follows from the

fact that

SM + V i� there exists a value V 0 such that M + V 0 and S V 0 + V

which can be proved by induction on the number of frames in the frame stack S.

The corresponding property

F [M] + V i� there exists a value V 0 such that M + V 0 and F [V 0] + V

for frames, needed for the base case of the induction, follows directly from the

inductive de�nition of the PolyPCF evaluation relation in Figure 5.

PolyPCF termination is captured by the structural termination relation ()>()

de�ned in Figure 7. For all closed types � and � 0, all frame stacks S 2 Stack(�;List � 0),

and all M 2 Term(�), we have

SM + Nil� 0 , S>M

Pitts uses this characterization of PolyPCF termination to prove that, in any con-

text, evaluation of a �xed point terminates i� some �nite unwinding of it does.

Short Cut Fusion is Correct 13

This, in turn, allows him to make precise the sense in which >>-closed relations |

de�ned below | are admissible for �xed point induction.

De�nition 3.2

A PolyPCF term relation is a binary relation between (typeable) closed terms.

Given closed types � and � 0 we write Rel(�; � 0) for the set of term relations which

are subsets of Term(�) � Term(� 0). A PolyPCF stack relation is a binary rela-

tion between (typeable) frame stacks whose result types are list types. We write

Rel>(�; � 0) for the set of relations which are subsets of Stack(�)� Stack(� 0).

The relation ()> transforms stack relations into term relations and vice versa:

De�nition 3.3

Given any closed types � and � 0, and any r 2 Rel(�; � 0), de�ne r> 2 Rel>(�; � 0) by

(S; S0) 2 r> , for all (M;M 0) 2 r: S>M , S0>M 0

Similarly, given any s 2 Rel>(�; � 0), de�ne s> 2 Rel(�; � 0) by

(M;M 0) 2 s> , for all (S; S0) 2 s: S>M , S0>M 0

The relation ()> gives rise to the notion of >>-closure which characterizes

those relations which are suitable for consideration in the clause for 8-types in the

de�nition of the logical relation which coincides with contextual equivalence.

De�nition 3.4

A term relation r is said to be >>-closed if r = r>>.

Since r � r>> always holds, this is equivalent to requiring that r>> � r. Expanding

the de�nitions of r> and s> above gives (M;M 0) 2 r>> i�

for each pair (S; S0) of (appropriately typed) stacks,

if for all (N;N 0) 2 r: S>N , S0>N 0;

then S>M , S0>M 0: (6)

This characterization of >>-closedness will be used in Section 3.3.

3.2 Characterizing Contextual Equivalence

We are now in a position to describe PolyPCF contextual equivalence in terms of

parametric logical relations. The following constructions on term relations describe

the ways in which the various PolyPCF type constructors act on term relations.

The relation constructor corresponding to! is denoted!, the relation constructor

corresponding to 8 is denoted 8, and the relation constructor corresponding to List

is denoted List.

De�nition 3.5

Action of ! on term relations: Given r1 2 Rel(�1; �
0
1) and r2 2 Rel(�2; �

0
2),

de�ne r1! r2 2 Rel(�1 ! �2; �
0
1 ! � 02) by

(F; F 0) 2 r1! r2 , for all (A;A0) 2 r1: (FA; F
0A0) 2 r2

14 Patricia Johann

Action of 8 on term relations: Let �1 and �
0
1 be types with at most one free type

variable, say �, and let R be a function mapping term relations r 2 Rel(�2; �
0
2) for

any closed types �2 and � 02 to term relations R(r) 2 Rel(�1[�2=�]; �
0
1[�

0
2=�]). De�ne

the term relation 8r: R(r) 2 Rel(8�:�1;8�:� 01) by

(G;G0) 2 8r: R(r) , for all �2; �
0

2 2 Typ: for all r 2 Rel(�2 ; �
0

2): (G�2 ;G
0� 02) 2 R(r)

Action of List () on term relations: Let � and � 0 be closed types, let r1 2

Rel(�; � 0), and let r2 2 Rel(List �;List � 0). De�ne 1+(r1�r2) 2 Rel(List �;List � 0)

by

1+(r1�r2) =

f(Nil� ; Nil� 0)g [f(Cons H T; ConsH 0 T 0) j (H;H 0) 2 r1 and (T; T 0) 2 r2g

Since Rel(List �;List � 0) is a complete lattice under the subset relation, and since,

for each r1, the mapping r2 7! (1+(r1�r2))
>> is monotone, we can form its greatest

�xed point. Denoting the greatest �xed point of a mapping r 7! R(r) by �r:R(r),

for each relation r1 we de�ne the term relation List r1 by

List r1 = �r2: (1+(r1�r2))
>>

We form the greatest �xed point here because contextual equivalence does not

distinguish between programs unless there are observable reasons for doing so.

Using these notions of actions we can de�ne the logical relations in which we are

interested.

De�nition 3.6

The logical relation � comprises a family of mappings

r1 2 Rel(�1; �
0

1); :::; rn 2 Rel(�n; �
0

n
) 7! �� (rn=�n) 2 Rel(� [�n=�n]; � [� 0n=�n]) (7)

from tuples of term relations to term relations, one for each type � and each list �n

of distinct variables containing the free variables of � . These mappings are de�ned

by the four clauses given below.

1. ��(r=�; rn=�n) = r

2. ��1!�2
(rn=�n) = ��1

(rn=�n)!��2
(rn=�n)

3. �8�:� (rn=�n) = 8r:�� (r
>>=�; rn=�n)

4. �List � (rn=�n) = List (�� (rn=�n))

To see that the third clause in De�nition 3.6 is sensible, note that � [�n=�n]

and � [� 0
n
=�n] are types containing at most one free variable, namely �, and that

�� maps any term relation r 2 Rel(�; �0) for closed types �; �0 to the term rela-

tion �� (r
>>=�; rn=�n) 2 Rel(� [�n=�n][�=�]; � [� 0n=�n][�

0=�]). According to De�ni-

tion 3.5, we therefore have 8r:�� (r
>>=�; rn=�n) 2 Rel(8�:� [�n=�n];8�:� [� 0n=�n]),

as required by (7).

Taking n = 0 in (7), we see that for each closed type � we can apply �� to the

empty tuple of term relations to obtain the term relation �� () 2 Rel(�; �). It is

shown in Pitts (2000) that this relation coincides with the relation of contextual

equivalence of closed terms at the closed type � . In fact, Pitts shows a stronger

correspondence between � and contextual equivalence: using an appropriate notion

Short Cut Fusion is Correct 15

of closing substitution to extend � to a logical relation � ` M �M 0 : � between

open terms, he shows that

� `M =ctx M
0 : � , � `M �M 0 : � (8)

The observation (8) guarantees that the logical relation � corresponds to the

operational semantics of PolyPCF. In particular, the de�nition of ��1!�2
in the

second clause of De�nition 3.6 reects the fact that termination at function types

is not observable in PolyPCF. This is as expected: for types �1 and �2, the rela-

tion ��1
(rn=�n)!��2

(rn=�n) may not be >>-closed, and so may not capture

PolyPCF contextual equivalence.

It is possible to de�ne call-by-value and lazy versions of PolyPCF. As pointed out

in Pitts (2000), both versions require modi�cation of the de�nition of the relation

()>(), as well as modi�cation of the action of arrow types on term relations

to reect the appropriate operational semantics and notions of observability. In

addition, de�ning a call-by-value PolyPCF also requires a slightly di�erent notion

of frame stack. The full development of these ideas for a call-by-value version of

PolyPCF is given in Pitts (1998a). The details for a lazy PolyPCF remain un-

published. Laziness is necessary, for example, to capture the semantics of languages

such as Haskell, whose termination at function types is observable. (Existence of the

function seq guarantees that termination at function types is observable in Haskell.

This function takes two arguments and reduces the �rst to weak head normal form

before returning the second.)

For our purposes we need only the following two corollaries of (8). Proposition 3.7

guarantees that � is reexive.

Proposition 3.7

For each closed type � and each closed term M , (M;M) 2 �� ().

Proposition 3.8

For all closed types � and closed terms M and M 0 of type � ,

M =ctx M
0 : � , for all S 2 Stack(�): S>M , S>M 0

3.3 Proof of Theorem 2.1

Let � be as in De�nition 3.6, and let � , � 0, M , n, and c be as in the statement of

Theorem 2.1. Since M and its type are closed, Proposition 3.7 ensures that

(M;M) 2 �8�:�!(�!�!�)!�() (9)

Applying the de�nition of � for 8-types shows that (9) holds i� for all closed types

� 00 and � 0 and for all r 2 Rel(� 00; � 0),

(M� 00;M� 0) 2 ��!(�!�!�)!�(r
>>=�)

Two-fold application of the de�nition of � for arrow types ensures that for all

closed types � 00 and � 0, and for all r 2 Rel(� 00; � 0), for all pairs of closed terms

(n0; n) 2 r>> and (c0; c) 2 ��!�!�(r
>>=�), (9) holds i�

(M � 00 c0 n0;M � 0 c n) 2 r>>

16 Patricia Johann

Expanding the condition on (c0; c) shows it equivalent to the assertion that if

(a0; a) 2 �� (r
>>=�) and (b0; b) 2 r>>, then (c0 a0 b0; c a b) 2 r>>. Since (9)

holds, we conclude that for all closed types � 00 and � 0 and for all r 2 Rel(� 00; � 0),

if (n0; n) 2 r>>;

and if (a0; a) 2 �� (r
>>=�) and (b0; b) 2 r>> imply (c0 a0 b0; c a b) 2 r>>;

then (M � 00 c0 n0;M � 0 c n) 2 r>> (10)

Note that all of the terms appearing in (10) are closed.

Now consider the instantiation

� 00 = List �

r = f(M;M 0) j foldr � � 0 n c M =ctx M 0 : � 0g

c0 = �x: �y: Cons x y

n0 = Nil

If we can verify that the hypotheses of (10) hold, then we may conclude that

foldr � � 0 n c (M (List �) Nil (�x : �y :Cons x y)) =ctx M � 0 n c : � 0

Then, since build � M =ctx M (List �) Nil (�x :�y :Cons x y) : List � , we will have

proved the correctness of short cut fusion.

To verify that (10) holds we �rst prove that r is >>-closed. To see this, suppose

(M;M 0) 2 r>>. We want to verify that foldr � � 0 n c M =ctx M 0 : � 0. Let

S 2 Rel(�; � 0) be the \stack equivalent"

Id Æ case of

Nil) n

Cons z zs) c z (foldr � � 0 n c zs)

of the evaluation context foldr � � 0 n c. Then S is such that for all N : List � ,

S N =ctx foldr � � 0 n c N : � 0 (11)

since

foldr � � 0 n c N =ctx (��:��: �n: �c: �xs:

case xs of

fNil) n j

Cons z zs) c z (foldr� � n c zs)g) � � 0 n c N

=ctx case N of

fNil) n j

Cons z zs) c z (foldr � � 0 n c zs)g

=ctx (Id Æ case of

fNil) n j

Cons z zs) c z (foldr � � 0 n c zs)g)N

=ctx S N

The �rst equivalence is by (5) and the de�nition of foldr, the second is by repeated

application of (1) and (2), the third is by the de�nition of frame stack application,

and the fourth is by the de�nition of S.

Short Cut Fusion is Correct 17

Observe that if we de�ne the append operation on frame stacks by

S@Id = S

and

S0@(S Æ F) = (S0@S) Æ F

then

(S0@S)>M , S0> (SM) (12)

Moreover, for any S0 2 Stack(� 0), the frame stack (S0@S; S0) has the property

that for all (N;N 0) with foldr � � 0 n c N =ctx N 0 : � 0,

(S0@S)>N , S0>S N , S0>N 0

The �rst equivalence by (12), and the second is by Proposition 3.8 and (11) and

the fact that =ctx is transitive. Together with (6), the fact that (M;M 0) 2 r>>

therefore implies that

(S0@S)>M , S0>M 0 (13)

But then

S0>M 0 , (S0@S)>M , S0>SM , S0> foldr � � 0 n c M

Here, the �rst equivalence is by (13), the second is by (12), and the third is by (11).

Since S0 was arbitrary we have shown that

for all S0 2 Stack(� 0): S0>M 0 , S0> foldr � � 0 n c M

By Proposition 3.8, we therefore have M 0 =ctx foldr � � 0 n c M : � 0, i.e.,

(M;M 0) 2 r, as desired.

To verify the hypotheses of (10), �rst observe that foldr � � 0 n c Nil =ctx n : � 0,

i.e., that (n0; n) 2 r. Second, note that since � is closed, �� (r
>>=�) is precisely

�� (). Thus, if (a
0; a) 2 �� (r

>>=�), then by Proposition 3.7, then a0 =ctx a : � . If,

in addition, (b0; b) 2 r, then foldr � � 0 n c b0

=ctx b : �
0. Since =ctx is a congruence, equivalences (1) through (5) guarantee that

foldr � � 0 n c (c0 a0 b0) =ctx c a b : � 0

It is also possible to derive >>-closedness of r as a consequence of Lemma 6.1 of

Pitts (2000), but in the interest of keeping this paper as self-contained as possible,

we choose to prove it directly.

4 Conclusion

In this paper we have used Pitts' characterization of contextual equivalence for

PolyPCF to provide the �rst proof of correctness of short cut fusion for a poly-

morphic lambda calculus supporting �xpoint recursion at the level of terms and

recursion via lazy lists at the level of types. More speci�cally, we have shown that

programs in such calculi which have undergone short cut fusion are contextually

18 Patricia Johann

equivalent to their unfused counterparts. Our result formalizes the conventional

wisdom concerning short cut fusion for these calculi.

The proof of the correctness of short cut fusion given here can be generalized

to prove the correctness of generalizations of Gill's foldr-augment fusion (Gill,

1996) for versions of PolyPCF supporting algebraic data types other than lists.

Specializing this result yields correctness proofs for short cut fusion for non-list

algebraic data types, as well as foldr-augment fusion for lists, in these calculi.

These results are detailed in Johann (2001).

Acknowledgments

I am grateful to Olaf Chitil, Graham Hutton, and Andrew Pitts for helpful dis-

cussions on the topic of this paper. I also thank the anonymous referees and the

editor for their comments and suggestions for improvement. This work was com-

pleted while visiting the Foundations of Programming group at the University of

Nottingham. It was supported, in part, by the National Science Foundation under

grant CCR-9900510.

References

Abadi, M. (2000) >>-closed relations and admissibility. Mathematical Structures in Com-

puter Science 10: 313-320.

Bainbridge, E. S., Freyd, P. J., Scedrov, A. and Scott, P. J. (1990) Functorial polymor-
phism. Theoretical Computer Science 70(1): 35-64. Corrigendium in 71(3): 431, 1990.

Chitil, O. (1999) Type inference builds a short cut to deforestation. Proceedings, Interna-
tional Conference on Functional Programming, 249-260.

Gill, A. (1996) Cheap Deforestation for Non-strict Functional Languages. PhD thesis,
Glasgow University.

Gill, A., Launchbury, J., and Peyton Jones, S. L. (1993) A short cut to deforestation.
Proceedings, Conference on Functional Languages and Computer Architecture, 223-232.

Johann, P. (1997) An implementation of warm fusion. Available at
ftp://ftp.cse.ogi.edu/pub/pacsoft/wf/.

Johann, P. (2001) Short cut fusion: Proved and improved. Proceedings, Workshop on

Semantics, Applications, and Implementation of Program Generation, Lecture Notes in

Computer Science 2196, 47-71. Springer-Verlag.

Johann, P. and Visser, E. (2000) Warm fusion in Stratego: A case study in generation of
program transformation systems. Annals of Mathematics and Arti�cial Intelligence 29
(1-4): 1-34.

N�emeth, L. (2000) Catamorphism Based Program Transformations for Non-strict Func-

tional Languages. PhD thesis, Glasgow University.

Pitts, A. (1998) Existential types: Logical relations and operational equivalence. Proceed-
ings, International Colloquium on Automata, Languages, and Programming, Lecture

Notes in Computer Science 1443, 309-326.

Pitts, A. (1998) Parametric polymorphism, recursive types, and operational equivalence.
Unpublished Manuscript.

Pitts, A. (2000) Parametric polymorphism and operational equivalence. Mathematical

Structures in Computer Science 10: 1-39.

Short Cut Fusion is Correct 19

Takano, A. and Meijer, E. (1995) Shortcut deforestation in calculational form. Proceedings,
Conference on Functional Programming and Computer Architecture, 324-333.

Reynolds, J. C. (1983) Types, abstraction, and parametric polymorphism. Information
Processing 83, 513-523.

Sheard, T. and Fegaras, L. (1993) A fold for all seasons. Proceedings, Conference on

Functional Programming and Computer Architecture, 233-242.

Wadler, P. (1989) Theorems for free! Proceedings, Conference on Functional Programming

and Computer Architecture, 347-359.

