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Abstract

There has recently been great progress in proving the ¢oesx
of compilers for increasingly realistic languages withrgasingly
realistic runtime systems. Most work on this problem hasi$ecl
on proving the correctness of a particular compiler, legvapen
the question of how to verify the correctness of assembly ¢bdt
is hand-optimized or linked together from the output of riplet
compilers. This has led Benton and other researchers tmgeop
more abstract, compositional notions of when a low-levebpam
correctly realizes a high-level one. However, the statehefdrt
in so-called “compositional compiler correctness” hagaansid-
ered relatively simple high-level and low-level languages

In this paper, we propose a novel, extensional, compiler-
independent notion of equivalence between high-level narog
in an expressive, impure ML-like\-calculus and low-level pro-
grams in an (only slightly) idealized assembly language défine
this equivalence by means of a biorthogonal, step-indexeagke
logical relation, which enables us to reason quite flexitibypu
assembly code that uses local state in a different mannerttiea
high-level code it implements(g.,self-modifying code). In con-
trast to prior work, we factor our relation in a symmetrig)daage-
generic fashion, which helps to simplify and clarify therfal pre-
sentation, and we also show how to account for the presenae of
garbage collector. Our approach relies on recent develogame
Kripke logical relations for ML-like languages, in partlau the
idea of possible worlds as state transition systems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage¥ Formal Definitions and Theory; D.3.3Pfogramming
Languagep Language Constructs and Features; F.3.@g[cs
and Meanings of PrograniisSpecifying and Verifying and Rea-
soning about Programs
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1. Introduction

While compiler verification is an age-old problem, there haen
remarkable progress in the last several years in provingahect-
ness of compilers for increasingly realistic languages witreas-
ingly realistic runtime systems. Of particular note is LygsaCom-
pcert project [18], in which he used the Coq proof assistabbth
program and verify a multi-pass optimizing compiler from iem
nor (a C-like intermediate language) to PowerPC assemidy- D
gaye [13] has adapted the Compcert framework to a compitex fo
pure mini-ML language, and McCreight al.[19] have extended it
to support interfacing with a garbage collector. IndepeitigieChli-
pala[10, 12] has developed verified compilers for both packim-
pure functional core languages, the former garbage-¢etieavith

a focus on using custom Coq tactics to provide significardraat
tion of verification.

That said, all of the aforementioned work has focused on-prov
ing the correctness ofarticular compiler, leaving open the ques-
tion of how to verify the correctness of assembly code thhaiwd-
optimized or linked together from the output of multiple quitn
ers. The issue is that compiler correctness results areafjpies-
tablished by exhibiting a fairly close simulation relatibatween
source and target code, but code produced by another campile
may obey an entirely different simulation relation with taurce
program, and hand-optimized code might not closely sireutia¢
source program at all. Thus, existing correctness proofetd
fundamentally on the “closed-world” assumption that ong ¢@n-
trol over how the whole source program is compiled.

In order to lift the closed-world assumption, Benton and 5iir
suggest that what is needed is a more abstract, extensiotiaih n
of what it means for a low-level program to correctly implame
a high-level one—a notion that is not tied to a particular eom
piler and that, moreover, offers as much flexibility in thevitevel
representation of high-level features as possible. Whasor@ng
strictly about high-level programs, the canonical extenai notion
of when one program implements the same functionality athano
is observational(or contextual equivalence, which says that the
two programs exhibit the same (termination) behavior wHanoeqal
into the context of an arbitrary enclosing well-typed higtiel pro-
gram. However, it is not clear how to define such a contextaal n
tion of equivalence between high- and low-level prograresaoise
there is no way to run both programs under shenecontext—one
would need to quantify oveequivalenthigh- and low-level pro-
gram contexts, but when are two contexts equivalent? Weaadle b
to the original question.

Benton and Hur’s solution is to definelagical relation be-
tween the high- and low-level languages (actually two refe,
one for each direction of semantic approximation, emplgyrde-
notational semantics to represent the high-level sidejidad rela-
tions are inherently extensionak-g.,two functions are logically
related iff they map related arguments to related resdtmndless
of their private implementation details—and guaranteevedgnt



termination behavior under arbitrary contexts that arenfedves
logically related. While not as canonical as contextuaiajence,
logical equivalence is nevertheless useful as long as anestab-
lish that the logical relations are sufficiently populateidethat
they relate enough programs/contexts of interest.

In the traditional setting where one is defining equivaleate
programs in the same language, this “sufficient populatfmap-
erty is ensured by th&undamental theorem of logical relations
which states that all well-typed programs (and thus all siygled
contexts) are logically self-related. For mixed high-loglations,
Benton and Hur demonstrate sufficient population by prowgjch
simple, one-pass compilation translation from their higghtheir
low-level language and proving that all well-typed higkedkpro-
grams are logically equivalent to their compilations. Thégo use
the logical relations to show the relatedness of some sitmguhel-
optimized low-level code with corresponding high-levebgrams.

Benton and Hur present their work as the first step towards
“compositional compiler correctness”. However, the seulan-
guage they consider—the simply-typ&dalculus with recursion—
is purely functional, and the target language they consigar
SECD machine—is relatively high-level. Chlipala [11] hafse-
quently proposed a more syntactic approach to proving cempo
tional compiler correctness, applicable to a richer, inep{aibeit
untyped) source language, but the target language he eossgl
also pretty high-level, namely a CPS variant of the source.

1.1 Contributions

In this paper, we study compositional equivalence of highd a
low-level programs in a more realistic setting. Our higheldan-
guage is an expressive ML-like CB¥-calculus, supporting ab-
stract types, general recursive types, and general mutafde
ences. Our low-level language is an (only slightly) ideadizas-
sembly language. Furthermore, our logical relation isglesi to
be sound in the presence of garbage collection, under sdrhe fa
abstract assumptions about the behavior of the garbagectmil
that are satisfied by both mark-and-sweep and copying tofkec

Following Benton and Hur, we define our equivalence using
a biorthogonal, step-indexetbgical relation. Biorthogonality is
useful when reasoning about programs (such as low-leved)one
whose behavior isontext-sensitiveand step-indexing is useful in
reasoning about semantically “cyclic” features like resiue types
and higher-order state.

We depart from prior work, though, in that our relation iscals
aKripke logical relation—.e., it is indexed bypossible worldghat
specify assumptions about the machine state. Possiblesvare
useful in enforcing invariants about low-level data stuues €.9.,
that a heap-allocated representation of a closure is inbta)ta
They are also helpful in encoding a variety of runtime system
variants, such as the convention concerning callee-saistees
and the notion of data liveness. Last but not least, possaibléds
enable us to reason quite flexibly about assembly code tlest us
local state in a different manner than the high-level code it imple
ments. An interesting example of this sslf-modifyingassembly
code, whose correctness proof involves reasoning aboutelasV
internal state changes—specifically, changes to the ced#-it
that clearly have no high-level counterpart. This is theerss of
what we mean when we say that our relatiomigensional

Technically, our approach relies closely on recent develop
ments in Kripke logical relations for ML-like languages, fpar-
ticular the idea of possible worlds atate transition system3his
idea, which we review in Section 3.3, was proposed origyniayl
Ahmedet al. [2] (in a somewhat different form) as a way to rea-
son about representation independence for so-called fgeves
abstract data types, whose private state undergoes a lbsahtro
series of state transitions during the execution of the narog

Dreyeret al. [14] have subsequently generalized the idea in or-
der to reason about “well-bracketed” state changes. Byhgamirr
high-low logical relations on this most recent work, we abtea
to cleanly model a variety of state transition systems thestea
naturally in low-level coded.g.,in self-modifying code).

Lastly, a novel feature of our logical relation is that, vehit
is defined by induction on an ML-like type structure, it iscatée-
fined in alanguage-generidashion. That is, it may be instantiated
to form an equivalence relation between any two languaggs-{h
or low-level) that are capable of implementing variousvaf lin-
guistic constructs-e.g.,function application, plugging a continu-
ation with a value, etc. Factoring the relation in this wajpkeo
simplify and clarify the formal presentation. Moreoverhis the
advantage that the relation becomes inherently symmetddtaus
easier to use in proving high-low equivalences than Bentwh a
Hur's asymmetric approximation relations.

2. HIGHand LOW

The high-level languagElIGH is a System F-like polymorphiz-
calculus extended with existential, product and iso-r&igartypes,
as well as ML-style general references (higher-order sté&ig-
ure 1 shows the syntax and the typing and evaluation judgnent
The inference rules for typing and evaluation are standsrdye
omit them (see the companion technical appendix [15] foaitt

The low-level languagéOW is an assembly language ideal-
ized in two ways: its word and memory sizes are infinite anthits
structions are represented by abstract objects ratheghahysi-
cal words. Its memory consists of four entities: code menregis-
ter file, stack and heap. A code memory is a map from physical ad
dresses (represented by natural numbers) to instructhoregjister
file is a map from registers to words. Words in turn are repriese
by natural numbers with an extra bit indicating whether theedv
is a pointer to a heap cell or not (useful for garbage cobbectiur-
poses). There are 12 registers, half of whigh,{vo, . ..,sv4) are
specified as callee-save registers by our calling convenBoth
a stack and a heap are random-access memamestfaps from
addresses to words).

The instruction set includes standard instructiopsp( jnz,
jneq, move, plus, minus) supporting different addressing modes
via Ivalues and rvalues. The non-standard operationsdedalt
for normal terminationfail for raising a runtime errorjptr for
testing whether a value is a pointer or negtptr for marking a
pointer bit, andisr, isw for inspecting and updating instructions
in code memory. Note that as instructions are not repregdmye
words, we employ a bijectioR and its inverséD (for Encode and
Decode) to convert back and forth between instructions andsvo

The dynamic semantics dfOW is standard and is given in
Figure 1. A machine configuratiof®, pc) is a pair consisting of a
memory and a program counter; it halts, fails or evolves tuitzar
configuration(®’, pc’) by executing the instruction storedat in
the code memorp.code.

3. The Key Ideas

In this section, we present the key ideas behind our workutitro
the lens of an illustrative, challenging example. We willlkva
through the code of this example, suggest intuitively howeason
about it, and then explain how our Kripke logical relationnfizl-
izes this intuition. While we will initially ignore the quéen of
how garbage collection affects matters, we will return tis ik-
sue at the end of the section and discuss how our logicaioelat
enables reasoning in the presence of a garbage collector.

This section is intended to be accessible to a broad progiagam
languages audience, and hopefully to serve as a useful guitie



HIGH - Syntax & Semantics
alblm X1 | T = 12| Va7 | a7 | pa. T | ref T
x|l (e1,e2)|el|e2|Az:T.e|er ea| Aae|eT |
pack (71, €) as 72 | unpack e1 as (o, x) in ez |
rollr e|unrolle|refe|er :=ea|le|er ==ea| ...
x| L] (vi,v2) | \x:T. e | Aa.e | pack (T1,v) as T2 | roll- v | ...
o| (K e2) | (v1,K) | K1|K.2|Kez|vi K|K]|rollr K|
unroll K | pack (11, K) as 72 | unpack K as (o, z) in ez |

<

ref K| K:=ex|vi =K |IK|K==e2|v1 ==K| .
=-| X%, &7 with ftv(r) =0 A=A« Iou=- \F,x.ﬂ'
Static semantics : AT ke:T

HCVal & (v | ftv(v) = 0 A fv(v) = 0}

HHeap def {h € HLoc —g, HCVal }

Dynamic semantics : (h,e) = (KW', €)
LOW — Syntax

PConf &' ' {(@,pe) € PMem x PAddr}

PMem &' {® = (code, reg, stk, hp)

€ PCode x PRegFlle x PStack >< PHeap}
PCode def PAddr — Instruction PRegFlle = Reglster — PWord

PStack % pAddr — PWord PHeap = e pAddr — PWord
PAddr & {4 e N} PWord :ef{we{O,l}xN}
r € Register = sp|svg| ... |sva|wko| ... |wks

lv € PLvalue
rv € PRvalue
¢ € Instruction ::=

Lr) {a)s [ (r
Iv|w

fail | halt | jmprv | jnzrvrv | jneqrvrvrv |
jptrrvrv |setptr lv|move lvrv |pluslvrvry |
minus lvrvrv |isrlvrv|iswrvry

— o) [ {a)y, [ (r+ o)y

LOW - Semantics

w| € 7o (w) isptr(w) £ (m (w) = 1) n = 0,n) a%(1,a)
B(w)  Ew o(lr)) S Bxes(r)

2 ((a),) £ .stk(a) (= 0)) & @5tk (7)) - o)
P((a)y,) = <I>-hp( ) ®((r + o)) = @.hp(|2([7])[ +0)
D[|r] — w] def (®.code, D.reg[r — w], P.stk, ®.hp)

®[{a), — w] 3: (®.code, ®.reg, P.stk[a — w], ®.hp)

D[(r — o), — w] = (®.code, D.reg, D.stk[|P([r])| — 0 — w], P.hp)
®[{a)y, — w] = (®.code, ®.reg, P.stk, .hpla — w])

D(r + o), = w] = (P.code, P.reg, ®.stk, .hp[|P(|r])| + 0 — w])
[fail] (®, pc) ) fail

[halt] (®, pc) Z:ZI halt

[3mp rv] (%, pc) & (& [20V)])

[3nz rvq rva] (@, pe) = if ®(rva) #0

then(®, |®(rvy)|) else(®, pc + 1)
if ®(rva) # P(rvs)
then(®, |®(rv1)]|) else(®,pc + 1)
= if isptr(®(rva))

then(®, |®(rv1)]|) else(®, pc + 1)
(@[lv = @(rv)], pc+ 1)

[ineqrvi rve rvs] (@, pc)
[iptr rvi rva] (P, pc)

[move lv rv] (@, pc)
[setptr Iv] (@, pc)

[plus v rvy rva] (@, pc)
[minus v rvy rva] (®, pc)
[isr v rv] (®, pc)

[isw rvi rva] (P, pc)

(®[tv = [®(1v)]], pe + 1)

(@[tv > [®(rv1)] + [@(rv2)[], pe + 1)
(®[tv = [B(v1)| — [B(va)l], pe + 1)
(@
(

[lv — E(®.code(|®(rv)]))],pc + 1)
(@.code[[®(rv1)] — D(|@(rva)])],
d.reg, .stk, @.hp), pc + 1)
whereE : Instruction — N is a bijection, andD) =E-L
Dynamic semantics : (®,pc) — [®.code(pc)] (P, pc)

||§.=§||ﬁ

Figure 1. Syntax and Semantics for thHGH andLOW Languages (excerpt)

vast majority of readers who are not intimately familiartwiecent
developments in Kripke logical relations.

3.1 A Motivating Example

Our motivating example is based on Pitts and Stark’s “awltivar
example [22]. Their original example is almost blindinginple—
prove that the followinddIGH terms are contextually equivalent:

def

e

let z = ref 0 in Af:unit — unit. (z := 1; f (); )

7 X faunit — unit. (F ();1)

e

The first termg, allocates a fresh memory locationinitially set to
0, and then returns a higher-order function. When called|atter
will set z to 1, invoke its callback argument, and then return the
contents ofz. The second tern¥’, is similar, except that it does
not bother allocating or updating any memory, and the famncti
it defines always returnk. Proving thate ande’ are contextually
equivalent is tantamount to showing that, in the former, never
the callback invocatiorf () returnsz points tol.

After a moment’s thought, it should hopefully be intuitiyel
clear why the equivalence holds. The pointein e is initially set
to 0, but once the function thatreturns is applied for the first time,
x will be set tol and will never be set back ta This is because
“owns” z as a piece dbcal stateand the only thing ever does ta:
after first allocating it is to set it td. Thus, the “awkward” example
serves as an elegant distillation of (1) the ability of coaledntrol
some local state and impose arbitrary constraints on it(2nthe
ability of that local state to evolve over time in ameversible
(or monotong way. Such irreversible changes to local state arise
in a variety of real-world situationse-g.,in “generative” ADTs
(whose sets of inhabitants grow over time), and in data &trec
initialization [2]. It is thus rather remarkable that oncently have

methods been developed for proving an equivalence as siasple
the “awkward” example [8, 2, 23]. (More on that in Section.3.3

We are now ready to present our motivating example. We want
to prove a variant of the awkward example, namely thatth@H
terme is implemented correctly by BOW programp, wherep’s
implementation follows the secortdIGH term ¢’ fairly closely.
By itself, that would already be an interesting result—ituleb
demonstrate the extensional equivalence of a high-levarpm
with an “optimized” low-level program, where the optimiiat is
based on the inability of high-level program contexts toestse’s
manipulation of local state. But we will make it more inteieg
still with an added twist: the code of the function thatvaluates to
will be obfuscatedusing a primitive form of encryption, and when
first applied, the function will first decrypt and overwritsélf via
self-modifying code

The LOW programp is shown in Figure 2. Before we walk
through the code, let us first note thet parameterized bylloc, a
code pointer to the memory allocation routine, ddthe location
in the code segment whegts code will be loaded and where its
execution will begin—these parameters will be instantias part
of linking and loading. (We will define the formal semantics o
linking and loading fol.OW programs in Section 7.)

bg: Create and return a closure. The evaluation op is very
simple: it does no interesting computation except to immauedly
create and return a closure value, just asHil8H terme’ does.
The first 3 instructions starting abg allocate a fresh one-word
closure on the heap by invoking théloc routine (passing it the
size parametet in registerwks and the return addredss + 3
in registerwk,). We only need one word for the closure because
the function we're implementinge{) is closed, so all we need to
store in the closure is the naked code pointer. Zhec routine
is assumed to return the pointer to a fresh one-word celkig,
without modifying the contents of any registers exceft; and



e ®let z = ref 0in Afwunit > unit.z:=1; f (); 1z
» % \alloc, bg. [
bg move [wky | bg+ 3
move |wks | 1
jmp alloc
bg +3 move (wks +0),, bg+5
jmp [wko
bg+5 move [wks| bg + 10
bg+6 isr [wky | [wks |
minus | wka | [wky | 666
isw |wks | [wky |
plus |wks | [wks | 1
bg 4+ 10 D(E(jneq bg+6 [wks] bg 4 21 ) + 666)
bg+ 11 D(E(isw bg+5 E(jmp bg 4 12) ) + 666)
bg + 12 D(E(move (wki +0), bg+ 13 ) + 666)
bg + 13 D(E(plus |[sp]| Lsp] 1 ) + 666)
D(E(move (sp—1);  |wko] ) + 666)
D(E(move |wk | [wka | ) + 666)
D(E(move |wko | bg + 18 ) + 666)
D(E(jmp  (wki + 0)y ) + 666)
bg + 18 D(E(move |[wks] 1 ) + 666)
D(E(minus |sp| [sp] 1 ) + 666)
}og +20 D(E(jmp  (sp — ), ) + 666)

Figure 2. Motivating Example

wks. We then store in that cell the code pointer + 5, before
jumping to the return address, which we assume the linkaiéo
had passed tp originally in registerwko. (The linker/loader has
essentially the same calling convention as for ordinarctions,
which is different from the one failloc and is described below—
seebg + 12.) Although our calling convention is that return values
are passed back to the calleriis, our return value was already in
wks after the call taulloc, so we need not explicitly move anything
into wks before returning.

We now describe the implementation of the closure returired (
wks) by the evaluation op. Initially, this closure contains just a
code pointer tdbg + 5, but eventually that code pointer will be
updated (see below).

bg + 5: Decrypt and overwrite the code. The code from
bg + 10 on is obfuscated by the addition 666 to the machine
representation of each instruction. Eventually, once theecis
decrypted, the function will be executable starting at thdrass
bg + 13. Before that time, however, the function must begin ex-
ecuting atbg + 5, because the first step will be to decrypt and
overwrite the obfuscated instructions. The reader canyeasiify
manually that the code startinglag + 5 will use registerwks to
loop through the instructionisg + 10 throughbg + 20. For each,
it will use isr to read the instruction stored ks into wka, sub-
tract666 from it, and then write the decrypted instruction back to
the code segment at addregks. When this loop is finished, the
program counter will be aig + 11.

bg + 11: Redirect the first instruction of the function. Hav-
ing decrypted the code, we do not want future calls to thistion
to perform the decryption again. We therefore overwrite ftret
instruction (abg + 5) with a jump tobg + 12.

bg + 12: Update the code pointer.TheLOW calling conven-
tion is that a function is passed its return addressly, its argu-
ment inwko, and its own closure iwk; . The decryption code start-
ing atbg + 5 did not touch any of these registers, sbgt+ 12 we
know thatwk; still stores a closure with a code pointertig + 5.

An important point: Why did we botheboth redirecting the
bg + 5 instruction (to jump tobg + 12) and updating the code
pointer in the function closure? Would the latter alone naveh
been sufficient? The answer is that it dependsp Mvere only
evaluated once, in which case only one closure for this fanct
were ever generated, then yes, just updating the code poiatdd
be sufficient becauseg + 5 would become effectively dead code.
But we would like our notion of high-low program equivalence
to be preserved under a rich set of program contexts inaudin
those that evaluate the programs—herande—more than once.
Repeated evaluation of will result in the creation of multiple
closures for the functiop defines, and merely updating the code
pointer for one closure will not change the fact that othesates
may still point tobg + 5, so it is necessary to redirect the + 5
instruction as well.

bg + 13: Implement Af. (f (); 1). This is the implementation
of the function proper. We first push our return addregs onto
the stack. We then invoke the callback argumehin(the HIGH
code) by moving a pointer tg’'s closure intowk;, moving the
return addresbg + 18 into wko, and jumping tof’s code pointer
(wki + 0),,. (Note: f's argument type isinit, so there is no need
to pass anything in the argument registdt,.) When control is
returned tcbg + 18, we store the resultin the result registewks,
pop the return address off the stack, and jump to it.

3.2 Discussion of the Motivating Example

Why doesp implemente? Intuitively, the reason is that the self-
modifying aspects op are not visible tgp's clients because they
do not affect its extensional behavior; and ultimately,epchas
decrypted itself, it behaves essentially the same abltG¢l term
¢’, which we have already argued is equivalent.t®f course, this
begs the question: how exactly do we know tpatclients cannot
observe its self-modifications?

Interestingly, the answer is remarkably similar to the argut
for why e and e’ are equivalent, namely that whatdoes to its
own code takes the form of irreversible changes to locakstat
Specifically, we take it as a given that'owns” its own code, and
since the evaluation qf will allocate a fresh memory cell for the
closure it returnsp owns that closure as well. Thus, in reasoning
aboutp, we can place restrictions on how its code and closure
may evolve over time. Much as the local variablén e starts out
pointing to0 and eventually points td, the code op starts out in
encrypted form, and if/when any closure it returns is firgtlizg,
it changes to decrypted form. In both cases, it is critical the
never revert to the earlier state. Similarly, the closutarreed by
the evaluation op starts out with its code pointer set bg + 5,
but iffwhen the closure is ever applied, it will be sebig+ 13. In
this case, it is not so essential for correctness that the pothter
never revert back tbg + 5, but itis essential that the closure’s code
pointer only be set tbg + 13 when the code is in the decrypted
state.

Given these restrictions on how the local state @nde may
evolve, it is but a short distance to keona fideproof. Before
sketching that proof, let us first review the recent work oiipke
logical relations that will put our reasoning on a solid fagt

3.3 Kripke Logical Relations and State Transition Systems

Logical relations are a well-established technique forsoeing
about equivalence of higher-order programs. A logicaltiefais
defined inductively on the type structure of the languagdiaase
type the logical relation coincides with observable equalie.g.,
two programs of typént are logically related if they produce the

Having decrypted the code, we can now safely update this code same integer—and at higher type the relation is defined l®y-int

pointer—wk; + 0), —to point tobg + 13, the address where the
function begins its computation in earnest.

preting each type operator by the appropriate logical coire—
e.g.,two functions are related at type — 7 if relatedness of their



arguments at type; impliesrelatedness of their results at type

The important feature about logical relations for our peg®is
that they give considerable leeway to how related functamesm-
plemented, so long as they produce related results. (AsoBertd
Hur [5] channeling Machiavelli put it, “the ends justify theeans.”)

In the presence of state, we cannot talk about the relatednes
of two programs without making some assumptions and impos-

ing some restrictions on how they manipulate state. Thishisres
Kripke logical relationscome in. Kripke logical relations are in-
dexed bypossible worldswhich represent a set of restrictions on

the memories of the two programs under which the programs are

guaranteed to behave equivalently. When we want to provesthe
latedness of two programs under a woid, we suppose we are
given arbitrary initial memories that are related bg.( satisfy the
restrictions of )W, and we proceed typically by showing that when
evaluated under those memories the programs either (1)dioth
verge (don’t terminate), or else (2) produce values and firah-
ories that are related under some “future” word of .

What does it mean foi’’ to be a future world ofV/? If in the
course of evaluation the programs allocate fresh piecesaiany,
W' may extend the initial worldl” with new restrictions governing
the use of the freshly allocated memory. This approach allosy
to establish whatever constraints we want on freshly alémtatate
that is keptlocal. (If the state is made globally accessible-g-,by
being passed to the context atefl type—then the state will have
to obey the usual invariants dictated by thétype.)

In traditional Kripke logical relations, such as those ofti
and Stark [22], possible worlds essentially take the forrsimiple
memory relationsi.e., memoryinvariants As we have seen in the
“awkward” example, however, memory invariants are not asae
ily enough; we need additionally the ability to describeuasptions
about state that may change in a controlled and monotone(itay.
is thus not a surprise that Pitts and Stark put forth the “asrki
example as an example for which their method was inadequate.

To address this limitation, Ahmeet al. [2] proposed gener-
alizing possible worlds to include the ability for a memoslar
tion to evolve Dreyeret al. [14] later streamlined and extended
Ahmedet al’s approach in various ways, and cast Ahnetal’s
possible worlds as collections efate transition systems (STS's)
In the case of the “awkward” example, one can understandethe r
strictions placed on’s local variabler according to the following

STS:
=y =D

When this STS is first added to the initial wold, it starts out
in thex — 0 state, because afteris first allocated, it points to
0. However, under Dreyest al’'s model, future worlds of¥ may
not only place additional restrictions on fresh pieces ofmoey but
also update the state of existing STS'din Thus, in some future
world W, the above STS may be switched to the— 1 state, and
memories satisfying?’ would have to mapr to 1. Furthermore,
any future world ofiW’’ would have to remain in the — 1 state
as there is no transition out of it. This corresponds to theitine
reasoning about the example that we described in Section 3.1

3.4 State Transition Systems for the Motivating Example

Using Kripke logical relations based on state transiticstams, we
can now roughly sketch the proof of equivalence@nde.

We will prove thatp ande are logically related in some initial
world Wy that includes some basic assumptions (in the form of
STS's) about registers, the stack, etc. (See Section 7 failslg

First, since we can assuménas just been loaded into memory,
we can think of its code as a freshly allocated piece of memory
and we are therefore given the opportunity to extérg with an
STS governing’s code. For most programs, we would extémg

at this point with a one-state STS, representing the sinmpbriant
that the code of the program never changes. For our motiyatin
example, we instead extefmtl, with an STS of the form:

——

When the STS is in the left state, the associated memonyiaelat
will require thatp’s code be in its initial, encrypted form, and when
the STS is in the right state, the memory relation will regufrat

p’'s code be in decrypted form. Once decrypted, always deedypt

Whenp ande are executed, the former allocates a fresh closure

on the heap, setting its constituent code pointésger 5, and the
latter allocates the local ref celi, setting its contents t0. Since
both the closure and are freshly allocated, we may at that point
also extend the world with a new STS governing both of them:

z—=0 A z—=1A
closure— bg + 5 closure— bg + 13

We have joined the assumptions about them into one STS becaus
they change in lockstep: when the functions returnegd agde are
applied for the first timeg gets updated td and the closure’s code
pointer gets updated tag + 13 simultaneously.

As noted in Section 3.2, it should never be the case that the
code is still encrypted while the closure returnedbyoints to
bg + 13. (The closure would behave in an unspecified manner if
it were called in such a state.) When adding the second STS, it
therefore important that we outlaw this possibility up freo that
we will not have to consider it later. Fortunately, Dreyaral’s
model, on which our logical relation is based, allows us tfinge
the second STS in such a way that we can only be in its righe stat
if the first STS is also in its right state.

Let W be the world resulting from extendind, with the above
two STS’s. What remains to be shown is that the functionsmeth
by p ande are related in worldV. So, suppose that’’ is a future
world of W, and that we begin executing the high- and low-level
functions in some corresponding high- and low-level mepwmtihat
are related byV’. There are three cases to consider, depending on
the states of the two STS's of interestli’ (the fourth case was
outlawed, as described above):

Case 1:Code is encrypted; — 0, closure— bg + 5. In this
case, we first decrypt the code, and therisiet1 and the closure’s
code pointer thg + 13.

Case 2:Code is decrypted; — 0, closure— bg + 5. In this
case, we set to 1 and the closure’s code pointeritg + 13.

Case 3:Code is decrypted; — 1, closure— bg + 13. In this
case, we set to 1 and don’t touch the closure’s code pointer.

In all three cases, we end up transitioning to a future world
W in which both STS's of interest are in the right state, if they
weren't already there ifl’. After making the state transition, both
the high- and low-level functions invoke their callback argents.
Assuming they return, they will do so with memories thatsti
some future world ofi#’”, but in the STS’s of interest, there is
nowhere to transition to. So we know thaimust still point tol.

The high- and low-level functions must therefore both nettire
same result, namely, along with memories that satisfy a future
world of the starting world?V”.

3.5 Well-Bracketed State Changes and Private Transitions

For simplicity, we have glossed over many details in the abov
proof sketch. One important detail is how we reason about the
stack. When the functions invoke their unknown callbackuarg
ments, we need to know that the callback will return the stack
i.e., the contents of the stack segment up to the stack paipter

as it found it. One approach would be to bake this conditida in



our logical relation for functions. However, as we explairne the
introduction, we have set out to define our relation in a lgrge
language-generic fashion, and it would not make sense te dak
low-level property about the stack into a language-genetation.

Instead, we wish to build this condition into the initial ier
under which we relate high- and low-level programs, but ttogp
erty we desire of the stack is not expressible in terms of S&S’
we have described them so far. To account for stack-like \beha
ior, we employ another aspect of Dreyaral’s possible worlds,
namely the idea oprivatevs. public transitions [14]. Private tran-
sitions were introduced in order to reason about so-caieell*
bracketed” state changes, of which the behavior of the stek
perfect example.

The basic idea is to label local state transitions as eithblip
or private. Functions may make either private or public gitons
internally, but viewed extensionallyi.€., end-to-end), they must
appear to make a public transition. In the STS that we use to
reason about the stack, the states of the STS correspone to th
possible states of the stack; every state is accessible éxary
other state by a private transition, but the only public $iaons
are self-transitions. This grants logically-related fiimies plenty
of flexibility in how they manipulate the stack, but requirthst,
when they return, they leave the stack exactly how they found

We also use private transitions to reason about calleersave
isters, which logically-related functions are expectedeiurn as
they found them, even if they modify them internally.

3.6 Reasoning in the Presence of Garbage Collection

Another important detail we have glossed over is how thegmes
of a garbage collector affects our proof of equivalencep @nd
e. Let us assume that we are using a standard mark-and-swee
or copying collector. The main effect such a collector hasoon
reasoning is that, whenever we pass control to the allo¢atdo
an unknown function that may call the allocator), we need aien
sure that (1) all data that we care about being able to acodhs i
future is in the reachable portion of the heap, and (2) thexena
dangling pointers in the reachable portion of the heap.

Typically, guaranteeing these two conditions is straigfwrd.
In our example, there is one call to the allocatof@i+ 2) and one
call to an unknown function (dig + 17). In the case of the former,
there is nothing interesting to show. But in the case of tttedat is
important that when we increment the stack pointer befarekimg
the callback, we set the contents at the top of the stack tdua va
from which no dangling pointer may be reached. Here, we store
in that stack slot the return addressko |, which trivially satisfies
this requirement.

may get deallocated (or its contents moved by a moving dolitec
and later reused for storing something else?

Our solution is to employlogical memories which form a
layer of abstraction over physical memories. Pointers iagichl
memory are never moved or deallocated. Their connecticeetiity
is established by a component of the logical memory called th
lookup table which specifies for any given logical pointer whether
itis live and, if so, what physical pointer it corresponds\¢e say
that a logical memoryM representsa physical memoryp only
if M’s lookup table describes a bijection between the reachable
portions ofM and®.

We maintain a global invariant on the logical memory, which
must hold before and after calls to the allocator, requithmag all
reachable data be live (and thus not dangling) accordindeo t
lookup table. Together with the definition of what it means do
logical memory to represent a physical one, this invariardrg
antees the allocator’s precondition—(2) above—that tla@esno
reachable dangling pointers. After the allocator retutims Jookup
table of the logical memory may have completely changedy~
due to a semi-space collection—but the only other changbeo t
logical memory will be its extension with a freshly allocatieg-
ical pointer. Thus, if any data we care about was reachalite pr
to allocation—condition (1) above—it will still be reacHalpost-
allocation, and by the global invariant it will also still biee.

With logical memories in hand, we can adapt our logical rela-
tions accordingly so that they relate valuesHIGH with logical
values(i.e.,logical pointers or non-pointer data) i©W . We also
define our possible worlds to impose invariantslogical mem-
ories, not physical ones. In this way, we regain monotopict
well as a clean, abstract account of memory locations thasghe

arbage collector significant flexibility in how it implenmsrthem
nd allows us to essentially ignore how it does so.

4. A Language-Generic Kripke Logical Relation

Figure 3 defines a Kripke logical relation between two langpsa
that is parameterized by abstract specifications for thensguages
(e LangSpec), as well as by a specification for the possible worlds
relating the memories of those languageswWorldSpec).

4.1 Language Specifications

A language specification (upper left of Figure 3) must prevdéts
of values YVal), computationsCom), continuations Cont), mem-
ories Mem), and configurations({onf), together with a number
of operations on these sets. (Note that we are assuming btan-a
dard stratification on sets, and thdal, Com, etc. are “smaller”

So at an abstract level, reasoning in the presence of garbagethanLangSpec.) Most of these operations take elements of some

collection is no big deal. What is more interesting is thenteéc
cal question of how we actually implement this reasoninghia t
context of our logical relation. The central difficulty isatthKripke
logical relations traditionally enjoy mmonotonicityproperty, mean-
ing that when two values are related in a wod they are related
in any future world off¥. Monotonicity is essential when reason-
ing about unknown functions, such as the callback argunmentii
example. There, we were given the assumption that the céllba
argument was logically related in the woilll’, but we did not ac-
tually invoke it until we had transitioned to the future wbili’”.
This step requires a use of monotonicity to show that théaak
argument is still related ifv"”’.

Unfortunately, garbage collection seems superficiallyhtow
a wrench into monotonicity. For instance, in our logicahtin we
want to be able to relatetdl GH pair value(v:, v2) with a memory
location pointing to a representation of that pair valuetentieap.
How can we expect those two value representations to beddlat
all future worlds if, at some point in the future, the memawgdtion

of these sets and return a predicate on another of the setodh
cases, this is because there may be a number of differemtsepr
tations of the same thinge-g.,in LOW, a pair value(vi, v2) is

represented by a pointer that satisfies some conditionanbaoy
pointers may satisfy those conditions.

“plugv” forms a configuration by plugging a value into a con-
tinuation under a given memoryplugc” does the same, but plug-
ging a computation instead of a valuetép” executes a configu-
ration for one step of computation, resulting in either a cewfig-
uration, termination Kalt), or failure (fail). “mdom” returns the
domain of a memory, andhidisj” takes two memories and returns
a memory that contains their disjoint union, if it exists.

“oftype(7)" determines whether a value is considered syntacti-
cally to have type- under a certain memory. In our specification for
HIGH , we include heap typings in memories in order to define
this predicate atef type. ForLOW, there is no notion of syntactic
typing, but we findoftype convenient for expressing assumptions
about the “syntactic” structure of closures (see Section 5)
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def R(W) d={(V1,v2)|(WV17v2)€R}

LangSpec = >R = {(W,v1,v2) | lev(W) >0 = (>W,vi,v2) € R}

{ (Val, Com, Cont, Mem, Conf, OR d: {(W7V1,v2) | YW/ O W. (W', vi,v2) € R}
plugv, plugc, step, mdom, mdisj, R w de {(W’ vi,v2) | W Oy WA (W', vi,v2) € R}
oftype, basey, pair, app, appty, (R, R2) Z'{ (W, v1,v2) | ¥(My, Ma) € M(W). (v1,M1) € Ry A (v2, Ma) € Ry }
I\Jzaikg‘)“vrgfv TS%\Z) | Conf € Set A for Ry € P(£1.Val x £1-Mem), Ry € P(L2.Val x £.Mem)

al, Com, Cont, Mem, Con e
plugy & Val x Cont x Mem — P(Conf) A TyValRel %'{ (71,72, R) | 1,72 € CType A R € WVRel }
plugc € Com x Cont x Mem — P(Conf) A P deef TypeVar — TyValRel def
step € Conf — Conf W { fail, halt } A pL(t)  =7lp(a). 11/ p2(1) = 7lp(a).T2/a]
mdom € Mem — P(Val) A oftype(r, p) &' DLy oftype(p.1(7)), Lz.oftype(p2(7)))
mdisj € Mem X Mem — P(Mem) A def
oftype € CType — P(Val x Mem) A Vle]p = {(W,v1,v2) € oftype(a, p) | (W, v1,v2) € Up(@). R}
basep, € [b] — P(Val x Mem) A Vblp = {(W,v1,v2) € oftype(b, p) | 3z € [b] -
pair € Val x Val — P(Val x Mem) A (W,v1,v2) € O(Ly. baseb(x) Lo .basep(z)) }
app € Val x Val — P(Com) A Vir x m']p d—Ef{ (W, v1,v2) € oftype(r x 7/, p)
appty € Val x CType — P(Com) A I(uy, u2) € >V[r]p(W). 3(u1,u’2) e V[ ]p(W).
pack € CType x Val — P(Val x Mem) A (W, v1,v2) € O(L1.pair(ur, u}), L2.pair(uz, ub)) }
roll € Val — P(Val x Mem) A V[ — T]]p = {(W v1,v2) € oftype(r! — 7,p) | VW' Tp W.V(u1,u2) € V[r']p(W').
ref € Val — P(Val x Mem) A Ve € Li.app(vi,ur). Vea € Lo.app(va,u2). (W', e1,e2) € E[r]p}
asgn € Mem x Val x Val — Mem A V[Va.1]p d—f{ (W, v1,v2) € oftype(Vaw. 1, p) | VW' Jp W.V(71, 72, R) € TyValRel.
VMy, M2. VM € mdisj(M1, M2). Vei € Li.appty(vi, T1). Ves € Lo.appty(ve, T2).
mdom(M) 2 mdom(M1) ¥ mdom(M2) } (W', e1,e2) € E[rlpla = (71,72, R)] }

V[da. T]]p = {(W vi,v2) € oftype(3a. 7, p) |
3(r1, 72, R) € TyValRel. El(ul,ug) e V[rlplae = (71,72, R)|(W).
(W, v1,v2) € O(L1.pack(71,u1), La.pack(r2, u2)) }

V[[refﬂ]p = { (W, vi,v2) € oftype(ref 7, p) | YW/ I W.V(My, Ma) € M(W').

For L1, L2 € LangSpec,

def

WorldSpec < (vi,v2) € B(W') A
{(World, lev, M, B,0,>, J, Jpup) | 3(ur, uz) € pV[rp(W’'). (vi,M1) € Lyref(ur) A (v2, M2) € La.ref(u2)) A
World € Set A V(ui,u2) € bV[r]p(W'). (L1.asgn(M1, v1,u1), L2.asgn(Ma, v2,uz)) € M(W'))}

lev € World — N A

def
Viga. o & u(F,
M € World — P(£;.Mem x £o.Mem) A e vlp: G plFarp)

Farp = AR {(W,v1,v2) € oftype(ua. T, p) |

B € World — P(L1.Val x L2.Val) A P

O < World — P(£r.Cont x a.Cont) A (1, 12) € Virlplo - (p.1(po7),p 2o ), R(V).
> € World — World A et (W, v1,v2) € O(Lq.roll(uy ), Lo.roll(u2)) }

Je P(World x World) A p(FYW) = F(u(F)o,w)(W)

Jpub€ P(World x World) A Klr]p d—ef{ (W, K1, K2) € World x £1.Cont X L2.Cont | YW’ Jpu, W.
3, Jpu are preorderss Jy,, € 3 A V(vi,v2) € V[r]p(W’). V(M1, M2) € M(W').

YW/ I W. oW’ JoW A VCy € L1.plugv(vi, K1, M1). VC2 € La.plugv(ve, K2, M2).
YW’ Jpup W oW’ Jpup, bW A (C1,C2) e O(W') }

YW. oW Jpup, W A Elrlp dzef{ (W, e1,e2) € World x £1.Com x L2.Com |

YW’ 2 W.lev(W’) <lev(W) A Y(K1, K2) € K[r]p(W). ¥(M1, Ma) € M(W).

VW.lev(W) >0 = lev(pW) =lev(W) -1} VC1 € Li.pluge(er, Ki,M1).VC2 € Lo.plugc(es, Ko, M2).

(C1,C2) e O(W) }

Figure 3. Language Specifications, World Specifications, and a Layep@@eneric Kripke Logical Relation

The remaining operations define the various syntactic laggu Appel and McAllester [3] introduced step-indexing in order
forms that are referenced in the definition of the logicaatieh. model recursive types in foundational proof-carrying cotlee
One point of note: determining whether a value represent@ra p  basic idea is to use a natural number index (“step level"jratify
ticular canonical form may require one to consider an aca@myyp what would otherwise be a circular construction. Steptimghas
ing memory. It is easy to see whye-g.,one cannot determine ifa  also proven useful in modeling other semantically circalations
pointer to a pair of heap cells represefits, v ) without inspecting like higher-order state, which is how we use them here. Due to
the heap. Determining whether a computation representscéidn space considerations, since our step-indexed constnufiitows
application also may require inspecting the memory, but axeh closely that of [2] and [14], we refer the interested readethbse
found it technically more convenient to assume that any mmgmo  previous works for the relevant background.
inspection is somehow built into the notion of computatised In the world specification, the important step-indexintaed
Section 5 to see how this works in th®W specification). bits are thelev function, which returns the step level of a given

world, and the> (pronounced “later”) operator, which returns an

o approximated version of the given world at one lower stepllev
4.2 World Specifications We use> to ensure well-foundedness of the logical relation.
A world specification (lower left of Figure 3) defines a set of “M(W)" is the memory relation associated with’, which
possible worlds relating the memories of two languagesiipgc ~ Specifies when two memories (frofy and £-) satisfy the con-
by £1 and L., together with a variety of operations on and relations  Straints of the STS’s if. “B(W)” is a bijection on values rep-
indexed by those worlds. In order to understand some of fitdse ~ resenting memory locations iy, and L. This is used in defining
necessary to first say a word about our usstep-indexing the logical relation foref type. “O(W)” is an observation relation



on configurations. For the possible worlds we employ in thisqy,
O(W) actually only depends dev (1), and it is defined to relate
configurations that either both terminate (without faijuoe that
both run for at leastev (/) steps of computation. When we prove
that two programs are logically related, we will prove it tarsing
worlds of an arbitrary step level, thus ensuring that thegmams
are observably equivalent for arbitrarily many computasteps.
Finally, “J" defines the general “future world” relation between
worlds, and d,.1,” defines a restricted “public” version of that
relation: if W’ J,u1, W, then for any STS i, the new state of
that STS inlW’ must be accessible from its old statelin only by
public transitions (see Section 3.5). BaitandJ,,,;, are preorders.

4.3 Kripke Logical Relation

The right side of Figure 3 displays our Kripke logical retet;
whose definition is parametric w.r;, £, and an instance of
WorldSpec thereon. In the definition, we adopt the convention that
the entities (values, continuations, etc.) framappear in boldface
(v, K, etc.) and the entities fromi» appear in italics«, K, etc.).
The coincidence of the notation fdl, entities with the notation
for the corresponding entities fromIGH is deliberate, for in the
next section we will instantiat€, and £ with our specifications
for LOW andHIGH , respectively. We abuse notation in this way
in order to avoid the proliferation of more than two fonts.

Our logical relation is based very closely on Dregéeal.s [14],
with the principal difference being that the relevant lirgic forms
have been abstracted away in the language specificafiprasd
Lo. For instance, in the logical relation for arrow types, we do
not construct the applicationg;u; and v2u» directly, sincel
and £> may not include an explicit application construct. Rather,
we quantify over arbitrary computatiors and e> drawn from
L1.app(v1,u1) andLz.app(ve, uz), respectively.

The logical relation consists of a relation for valueg{]p),
one for continuationsi([7]p), and one for computationg [r]p).
Here, we assume that is a relational interpretation of the free
variables ofr, mapping them to arbitrary world-indexed value
relations. Forr = «, V[r]p is defined as the restriction @f «)
to triples(W, v1, v2) wherev, andw, are “well-typed” (according
to £;.oftype) and continue to be related in all future worldslf.
This last part, which is specified using thi&? operator defined at
the top right of the figure, is key to ensuring monotonicitytted
value relation. The pair and existential cases of the vadlegion
also use thé&lR operator in order to ensure monotonicity of data
representations-e-g.,that if v1 represents a pair af; anduj, it
will continue to do so in all future worlds.

As in Appel et al. [4], the interpretation of recursive types is
defined by induction on the “strictly future world” relation,.
This relation is well-founded becau$8’ . W implies thatiW’
has a lower step level thdi. By defining the recursive type case
this way, we can relatellIGH programs, whereoll andunroll are
explicit coercions, th. OW programs where they have been erased.

Theref type case relates two memory locations if dereferencing,
assigning and testing them for pointer equality will alwaysduce
related results. The condition on pointer equality testinguaran-
teed by the requirement that the locations be in the bijeaifche
world in which they are related.

The value relation is lifted to a relation on computationsttoy
technique ofbiorthogonality(aka T T-closurg [22, 17]. The idea
is to define two computations to be related if they behave in an
observably equivalent manner when plugged into relatediraon
ations. Two continuations are in turn related if they behiavan
observably equivalent manner when plugged with relatedegl
By quantifying only over public future worlds in the defimiti of
K[7]p, we ensure that computations may only make public transi-
tions when viewed end-to-end, as per the discussion in@e8tb.

This mind-bending technique is well-suited to languagesreh
the evaluation of a computation ntext-sensitivén the sense
that it cannot be performed in ignorance of its continuat®uach
is the case witH_.OW, where a computation always ends with
a jump to its return address. As we shall see, the fact that the
return address really is a valid return address, which isqfahe
contract between computation and continuation, will beoded in
theLOW implementation oblugc that we define in Section 5.

5. Implementing the Specifications

In order to instantiate our logical relations to reldt®W and
HIGH entities, we must first show how to implement the abstract
LangSpec interface for both languages.

For HIGH , the implementation of the interface is almost en-
tirely straightforward, as all the required entities (vwducomputa-
tions) have direct correspondents in thisH language. The only
slightly unusual bit is that we defindlGH memories to be pairs
of heapsand heap typings:. The inclusion of the heap typing is
necessary for definingftype. For the remaining details, please see
the companion technical appendix [15].

Low-Level Entities The implementation oLangSpec for LOW
(Figure 4) is much more interesting. As described in Secsién
we employ a notion ofogical valuesv, which are either non-
pointer wordsw or logical pointerd. Logical Lvalues are similar to
physical PLvalues except that logical Lvalues includedafheap
locations(l : o), in place of physical onega),. We include the
offseto because the logical heap is (for convenience) modeled two-
dimensionally as a list of blocks.

LOW computationse are 4-tuples(cpc, kpc, vloc, data),
where:cpc is the code address where the computation begins,
is the return addressjoc is the Lvalue where the return value will
be stored, andlata is a memory predicate that must be satisfied
in order for the computation to be correctly execute@W con-
tinuationsK are pairskpc, vloc), where:kpc is the code address
where the continuation begins, amtbc is the Lvalue where the
input to the continuation should be placed. It is worth nptinat,
unlike e.cpc and e.kpc, the kpc in K must be a code address,
not an Rvalue, because when we plugeaimto a K, we need to
know that the value oK .kpc will be the same before and after the
execution ofe. WereK .kpc an Rvalue, we would not know that.

Logical memoriedM are 6-tuplegcode, reg, stk, hp, tab, shp),
where:code is the code segmenteg is the register file (minusp
since it is determined by the size of the stackk is the stack,
hp is the heaptab is the lookup table (described in Section 3.6),
andshp is thesystem hegpwhich is a separate portion of the heap
controlled by the runtime system. The lookup table maps &agh
ical pointer to a physical pointer and the size of the memdwglb
starting at that address. The pointer is live iff the size i8. Note
thatreg, stk, andhp are all maps from various Lvalues limgical
values, whereas thab andshp are maps to physical values. In the
proofs, we end up treatingib andshp as essentially black boxes,
since they can be changed at whim by the allocator, whereas th
allocator should not mess around with the logical portiorthef
memory represented hgg, stk, andhp.

Lastly, note thateg, stk, tab, andshp may all be undefined
(undef). This is a useful technical device for defining the disjoint
union of several partial memories: it enables us to spehdy only
one of those partial memories contains information abayt, the
stack. (See the definition ofiidisj” below.)

Low-Level Representations of High-Level Constructs The bot-
tom left of Figure 4 definekOW representations of various high-
level constructs, as required by thangSpec interface. A pair of
vi andv; is represented as a pointer to a pair of cells contairing



Loc & {leN}
Word o {weN}
v € Val =w |1
Iv € Lvalue == |r] [(a) | (r—o) | {T:0), | (r+o0),
rv € Rvalue N5 v | v
Com = {e= (cpc, kpc, vloc, data)
gt € Rvalue X Rvalue x Lvalue x P(Mem) }
Cont = {K = (kpc, vloc) € PAddr x Lvalue }
CodeFrag ot PAddr —g, Instruction
RegFile ot (Register \ {sp} — Val) & { undef }
List X = {(zoy...,Zn-1) | nENAxg,...,zn_1 € X}
Stack o List Val W { undef }
Heap = Loc —g, List Val
Table ot (Loc —fp N x PAddr) W { undef }
SysHeap o (PAddr — Word) & { undef }
Mem = {M = (code, reg, stk, hp, tab, shp)
€ CodeFrag x RegFile x Stack x Heap x Table x SysHeap }
Conf 4" pCont
oftype(r) = {(V M) € Val x Mem |
VTl,Tg T—71—>T2:>E|lwv—l/\Mhp(l)() w A
Vo, 7. 7 =Voa. 1’ :>E|lwv—l/\Mhp(l)() w}
basep () def {(v M) € Val x Mem | visa representatlon aof }

{(V,M)EValxMem|Ell v=1A
M.hp(1)(0) = vi A M hp(D)(1) = v }
app(vi,v2) = {e € Com |3l vi=1A
e.cpc = (1 : 0), Aekpc = |wko] A e.vloc = |wks] A
e.data = {M € Mem | M. reg(wkl) =vi A M.ureg(wka) =va }}
appty (v, 7) e {e€Com |3l v=1A
e.cpc = (I : 0),, Aekpc = |wko| A e.vloc = |wks]| A
e.data = {ME Mem | M.reg(wki) =v }}
{(v/,M) € Val x Mem | v/ = v}
roll(v) f{(v M) GVaIXMcm\v =v}
ref(v) def {(v/,M) € Val x Mem | 3. v/ =1 A M.hp(1)(0) = v}
def {M[l 20— valpp if vi =LA |M.hp(l)| >0
undef otherwise

pair(vi,ve) =

pack(T,v) def

asgn(M, vi,va)

v

det [ w
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v)

a)s)

(
(«
(-

T, S]]

EEEEXR

o)) &

ifv=w
ifv=1
def

def
ey M(r) & Moreg(r)

L M.stk(a)  M((r — o)) ::::M.stk(\M.reg(r)\ —0)
M.hp(l)(0) M({r + 0);,) = M.hp(|M.reg(r))(0)
4" (M.code, M.reg, M..stk, M.hp, T, S)

[l
[l:0— V] def (M.code, M.reg, M.stk,

M.hp[l = (Vo,.--,Vo—1,V,Vot1,---;Vn—1)],

M.tab, M.shp)
if M.hp(l) = (vo,...,
if v=w
if v=1AM.tab(l) =
otherwise
W [a — phyv(M)(vo), ..., phyv(M)(vn—1)]
M.tab(l)=(n,a) A n>0 A M.hp(l)=(vop,..., V1)
M repr @ d:Efq?'.v:odo DO M.code A
®.reg O phyv(M) o M.reg A ®.reg(sp) = |[M.stk| A
Vj < |M.stk|. ®.stk(j) = phyv(M)(M.stk(j)) A
®.hp D phyh(M) & M.shp A
VI, n,a. M.tab(l) = (n,a) An > 0= |M.hp(l)| = n

plugv(v, K, M) d—Ef{ (®,pc) € Conf | M repr & A

pc = K.kpc AM(K.vloc) = v}
plugc(e, K, M) d_Ef{ (®,pc) € Conf | M repr ® A M € e.data A
pc = M(e.cpc) A M(e.kpc) = K.kpc A e.vloc = K.vloc }

def

step(®, pc) = R with (®,pc) = R
def

mdom (M) = {l € Val |l € dom(M.hp) }

mdisj(M1, M2) %' {M € Mem |
M.code O Mj.code W Ma.code A
M.hp O Mi.hp & Ma.hp A
nosh(M.reg, M1.reg, Ma.reg) A
nosh(M.stk, M .stk, M2.stk) A
nosh(M.tab, M1.tab, Ma.tab) A
nosh(M. shp7 M;. shp, Mo.shp) }

(X1 # undef = Xo=undef A X=X1) A

(X2 # undef = Xj=undef A X=X)>)

Vn—1)Ao<n

w

phyv(M)(v) &' { a

undef

(n,a)

def

phyh (M)

nosh(X, Xl,Xg)

Figure 4. The Implementation aL.angSpec for LOW

andv.. pack(r, v) androll(v) are represented the samevagfef-
erences are represented directly as pointers. We alseftygee(7)
to enforce that values of arrow and universal type are repted
by pointers to closures whose first celhista logical pointer. (This
ensures that we can jump to the code address directly.)

The most interesting bit is the representationapp(vi, va)
(andappty(v,7), which is similar). In order for a computatian
to represent this applicatiow, is assumed to be a pointéto a
closure. The starting address of the function applicati@ap(c)

head pointers be disjoint, thus ensuring a proper bijedietween
the reachable parts of the physical and logical heaps.

“M repr ®” says thafM is a valid logical abstraction @b. The
definition is fairly straightforward, making use phyv andphyh
as one would expect. The fourth line of the definition guarast
that the reachable heap is disjoint from the system heapttend
fifth condition just checks that the block sizes specifiedif@erdata
in M.tab are correct. Note tha may contain arbitrary other junk
(in the code, stack, and heap segments) that is not desdryefl

is thus taken to be the code address stored in the first cell of

the closurej.e., (I : 0),.. Our calling convention is that, when the
function is called, the return address should be storedkifn, and
when the function returns, the return value should be storedts,

so e.kpc ande.vloc reflect this convention. Finally, the memory
predicatee.data requires that when control is passedtopc, the
functionv; and argument, are stored invk; andwka.

Connecting Logical and Physical Memories The right side of
Figure 4 defines the remaining elementd.ahgSpec, along with
a number of auxiliary operations. The operations at the igit r
give shorthand for various lookup and update operationsgical
memories. phyv(M)(v)” returns the physical interpretation of
v according toM’s lookup table, if one exists, ancbhyh(M)”
returns the live portion of the physical heap accordingMids
lookup table. Note that the definition @hyh demands that the
physical representations of logical memory blocks withtidet

Plugging Continuations Using M repr @, it is easy to specify
how to plug continuations with values and computations. A-co
figuration(®, pc) belongs toplugv(v, K, M) if (1) M is a valid
abstraction of®, (2) the program countgsc is set to the starting
address of the continuatio®(kpc), and (3) the value is stored
in the location where the continuation is expectingdt (loc).

A configuration(®, pc) belongs toplugc(e, K, M) if (1) M
is a valid abstraction ob, (2) M satisfies the memory constraints
demanded by, (3) the program countgsc is set to the starting
address of the computation.¢pc), (4) the starting address of the
continuation K .kpc) is stored in the place where the computation
is expecting to find its return address.Kpc), and (5) the place
wheree will store its return valued.vloc) is the same place where
K is expecting to find its input valud{_.vloc).

The remaining definitions (oftep, mdom, and mdisj) are
fairly self-explanatory. As mentioned earlier, the defanit of



[bg = instrs] oef [bg — instrs(0), ..., instrs(|instrs| — 1)]
{C}eode def C, undef, undef, §, undef, undef) € Mem

{H }heap d (0, undef, undef, H, undef, undef) € Mem

(
"

e 1l

fv=w
ifv=l1

g

o T
v livein M { In, a. M.tab(l) = (n,a) An >0

{l|3re Register. I = M.reg(r) } U
{1]3j < [M.stk|. T = M.stk(j) }

reach;y1 (M) def reach; (M) U

{1| 3 € reach;(M). 3.7 = M.hp(')(4) }

- Ui e reach; (M)

def

reacho (M)

reach (M)

AllocSpec def
{ A € PAddr — { (init, alloc, instrs, I)
€ PAddr x PAddr x List Instruction x

P(Table x SysHea;
Vecbg, . pe. ( ysHeap) } |

®.code D [gcbg = A(gebg).instrs] A @.reg(wky) = pc =
IM/, @’ . o
(®, A(gcbg).init) — (@', pc) A
®’.code = P.code A M’.code = [gcbg = A(gebg).instrs] A
M’ repr @’ AM’ € A.GR(gcbg) AM' € A.MR(gcbg) A
Vgcbg, M, ®, pc, n.
Mrepr ® AM € A.GR(gcbg) AM € A.MR(gcbg) A
M.reg(wka) = pc A M.reg(wks) =n =
Elq)lvM/?Tv vaﬁvw()? cee, Wn—1-
(®, . A(gcbg).alloc) & (®’,pc) A
M’ repr @' AM' € A.GR(gcbg) A M’ € A.MR(gcbg) A
M/ = MHT7 S”[Wk‘l = Q}mg [Wk5 — l]rcg ]
{[l = (ﬂ7 sy wnfl)}}hcap }
A.GR(gcbg) def {M € Mem | V1 € reach(M). 7 live in M }

A.MR(gcbg) € { M € Mem | (M.tab, M.shp) € A(gcbg).I A

M.code D [gcbg = A(gebg).instrs] }

Figure 5. Abstract Specification of the Memory Allocator

mdisj uses theundef option for reg, stk, tab, andshp to en-
sure that if a memory is split into disjoint pieces, each afsth
indivisible components can only appear in one of the pieces.

Possible Worlds  The model of possible worlds that we use to im-
plementWorldSpec is based very closely on Dreyetal.[14]. For
space reasons, we will therefore not present the detaiteafibdel

in this paper and instead refer the reader to the appendjx(B&e
Section 8 for a more detailed discussion of how our modetesla
to Dreyeret al’s.)

That said, there are a few salient aspects of the model that ar
needed for understanding the definition of compositionagpm
equivalence that we will give in Section 7. In the model, werl
W are 3-tuplegk,w, GR), where:k is W'’s step levelw is a fi-
nite set of state transition systems (STS'’s) of the sortritest in
Section 3, and7R is a global invariant governing the entire mem-
ory. We call the STS'sslandsbecause they govern disjoint pieces
of memory. Two memories are related By if (1) they satisfy its
global invariantGR, and (2) they can be split into disjoint memo-
ries (one for each island) such that tixh pair of memories satis-
fies the “local” memory relation determined by the curreatesbf
the n-th island inw. In our definition of program equivalence, we
will use GR to enforce the property that all reachable data is live.
We need to use a global invariant since reachability canaateh
termined by looking at a local subheap. We use islands toesgpr
all other assumptions about memory.

6. Assumptions About the Memory Allocator

Figure 5 shows the assumptions we make about memory athocati
and garbage collection, in the form of the specificatddivcSpec.
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Given as input a starting physical addregsbg, the runtime system
represented byl will return a 4-tuple(init, alloc, code, I'), where:
init is the starting address of the initialization routine thetssup
the runtime systemalloc is the starting address of the allocator,
code is the list of instructions defining the runtime system, whic
are assumed to be loaded at addgeds, and! is a private invari-
ant of the runtime system, which describes when a logical mem
ory’s lookup table is in sync with its system heap. The asdionp
aboutcode is joined together with the private invariaftto form

the memory predicaté/R defined at the bottom of the figure.

Assuminginit is invoked with the runtime system code in the
right place, and with a return address placedwiky, its spec-
ification says it will return control in a memory that satisfie
MR(gcbg), along with the global invarianGR(gcbg) that all
reachable data is live.

Assuming thatlloc is invoked in a physical memor§ repre-
sented abstractly by the logical memadw, that M satisfies the
MR and GR properties, that the number of cells to be allocated
(n) is stored inwks, and that the return address is storedviky,
the specification ofilloc says that it will return a pointer to a fresh
n-word block inwks, and that the memory it returnd1’) will con-
tinue to satisfy all the aforementioned invariants. Moerowhile
the lookup table and system heaplf may be completely dif-
ferent from those oM, the contents oM must remain otherwise
unchanged. This does not of course prevent the allocator lfiav-
ing performed a GC: any logical pointer that was not reachabl
M before the call talloc may very well be marked as dead in the
lookup table of the post-allocatioM’, but any pointer that was
reachable inMI will still be reachable inMI’ and thus, by the defi-
nition of GR, still be live.

Our specification of the runtime system provides considerab
flexibility—for example, it should be satisfied by either arkia
and-sweep or a copying collector because the specificatiga s
nothing about the private invariant of the runtime systeimweler,
it doesassume that the collector places no restrictions (suchaas re
or write barriers) on what the mutator does to live data. Weebe
it should be possible to adapt our approach to a wider range of
collectors, but we leave that to future work.

7. Compositional Program Equivalence

The logical relation€[[r]p characterizes what it means for two
computationsto be logically equivalent, but ultimately what we
really care about is whether a pair ldfGH andLOW programs

are logically equivalent. What, one may wonder, is the diffee
between computations and programs? In short, a programas wh
youwrite, and a computation is what youn. That is, a program is

a piece of relocatable code that must be linked with othegrnamos

and loaded into memory before it can be executed, whereas a
computation describes the “next” thing to be executed imaing
machine configuration. For thllIGH language, the distinction
between computations and programs can be easily glossed ove
because the operational semanticsHiGH is defined directly

on HIGH programs. For th& OW language, however, especially
given the ability to write self-modifying code, it is imparit to
distinguish the two notions. In this section, we explain taiaOW
program is and how to define logical equivalence betwedkaH
andLOW programs, and we then present our key technical results.

7.1 Equivalence of HIGH and LOW Programs

As can already be seen from our motivating example in Se8tibn

we define aLOW programp to be a function from two code
pointers to a list of instructions. The first of the code peinbputs

is assumed to be the address of the memory allocation routine
and the second is assumed to be the address where the list of
instructions returned by the program will be loaded into raem



?—l.P]rogdd:eff {e| floc(e) =0}

L.Prog € { p € PAddr x PAddr — List Instruction }
DI E0

D[A,a] = {(p,a— R) | p € D[A] AR € TyValRel }

Glp 3%{ (W,v,0) | W € World A v € £.Val}
GT,z: 7]p = { (W, v, (v, — v)) | Ivi, va.
(W, v,()) € O(L.pair(vi, v2), H.Val x H.Mem) A

(W,v1,0) € V[r]p A (W, va,7) € G[Tlp}
W2 (A, gebg) & (k, [ireest, htyping ec( A gchg)], GR(A, gebg))

A;ThEbgrwe:T =
YW’ D W.Vp € D[A] . VY(v,7) € G[LTp(W').
((bg, [wko], [wks|,{ M | M.reg(svo) = v }),vpe) € E[r]p(W')

whereype ::= e[p(a).12/c][y(z)/x]

ATEpre:T ot
P;A;THe:TA

VA, gcbg, bg. Yk, W 2 W2 (A, gebg). V(M, M) € M(W).
VM. M’ = M W {[bg = p(A(gcbg).alloc, bg)|}code =
AW I W. lev(W') =lev(W) A (M, M) € M(W') A

A;THEbgmyre: T

Figure 6. Program Equivalence

When listing the code of a programe.§.,in Figure 2), we write
line numbers on selected lines of codeg(,bg + 3) to indicate

the physical addresses where we expect the code to be loaded,

but note that (1) these addresses are always relative tetond
parameter of the program (typically namieg), so that the code is
always relocatable, and (2) the notation is merely suggestthe
line numbers are not part of the actual program.

Now, concerning equivalence BiGH andLOW programs: it
is possible to define a notion of logical equivalence siriodtween
closedprograms, but we will find it useful when reasoning about
compiler correctness to generalize this relation to onegenpro-
grams. On thédIGH side, an open program is simply an expres-
sion e with free variables (and no free locations), but what is an
open program on theOW side? In order to answer this, we need
to pick an environment-passing convention, specifying twhan
official low-level representation of a high-level enviroent and
where the low-level program expects to get its environmeé.d
In Figure 6, we give a logical relatioG[I']p between low-level
values and high-level environments. This relation spexifiet a
high-level environmenty should be represented as a linked list of
low-level values that are componentwise related to the-ragél
values in the range of. We assume that the environment data is
passed in the registero—this assumption will be codified in the
definition of the program equivalence relatisn(see below).

Before we define program equivalence, we must also sped@fy th
invariants on memories that are required for executing namg.
These conditions are represented byittigal worlds W, in Fig-
ure 6. (Thek in W, simply determines the step level but does not
otherwise affect the definition.) The initial worlds corisi$ three
islands and one global invariant®s*** owns the register file and
the stack in theeOW memory and requires that callee-save reg-
isters and stack be preserved before and after functioa (taik
is accomplished using a combination of private and pub#ogi-
tions as discussed in Section 3.5)"P"¢ requires that the heap
typing in theHIGH memory should only grow in future worlds;
18¢(A, gcbg) owns the lookup table and the system heap and en-
forces the privated. MR (gcbg) invariant of the runtime system
(Figure 5); and the global invariar®R°(.A, gcbg) specifies that
all reachable blocks in tHeOW memory are live 4. GR(gcbg) in
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Figure 5) and that thellGH memory satisfies its heap typing. All
these components &, are formally defined in the appendix [15].

We are now ready to define the program equivalence relation
The judgmentA; T+ p = e : 7 says that & OW programp and a
HIGH programe are equivalent if the following is true. First, It
be any starting step level, and &t be any future world o7} that
does not already impose any invariants on the code segment of
(This latter condition is guaranteed by the assumptionweagare
given initial memoriesM and M related byiV, but whereM does
not contain the code segment pfWe use the notatiovl; W M
here to denote the “smallest” memory indisj(M1, M2), in a
sense defined formally in the appendix.)

Under these assumptions, we must be able to:

1. ExtendW to a future worldWW’ (of the same step level) such
that W’ relatesM’ and M, whereM’ is M extended with
the code ofp. Intuitively, this step affordg the opportunity
to “own” its own code segment by extendifig with an island
governing it. Typically, this island will take the form of an-
variant stating that's code must never be modified, although in
the case of self-modifying code we would instead define the is
land to be a state transition system (as described in Se#dn

. Show that thédllIGH computatiore is related (under the world
W' constructed in the previous step) to ®W computation
e that starts at the beginnindg) of p’s code segment. This
subgoal is encapsulated in tpen computation equivalence
judgmentA; T F bg ~y e : 7 (Figure 6). This judgment says
that, for any future world?"" of W', for any relational interpre-
tation p of the type variables id\, and for any environmente
and~ related unde®W"”’ by G[I'] p, theHIGH computationype
is logically related (b\e[[7]p, underiW”’) to theLOW compu-
tation starting at addre$s. The other three components of the
LOW computation stipulate, respectively, that (1) the compu-
tation expects to find its return address storedviy, (2) the
computation will store its resulting value ks, and (3) the
computation expects to find its environment storegvin One
can think of this last assumption abeuwt as having the effect
of “closing” p, in much the same way thatandp closee.

7.2 Compiler Correctness and Other Technical Results

Our first result is amdequacytheorem for our program equivalence
relation~. The statement of the theorem refers to the following
simple loader for thd. OW language:load(.A, p) first runs the
initialization routine of the memory allocatod, then executesp,
and finally halts as soon as it gets control back fram

load (A, p) ::= let (init, alloc, gcinstrs, _) := A(105),
instrs? := p(alloc, 105 + |gcinstrs|),

loadinstrs? := |
(% 100 %) move |wky] 102
jup  init
(x 102 %) move |wko]| 104
jmp 105 + |gcinstrs|
(+104%) halt
] +H- gcinstrs +H- instrs? in

{(®,100) € PConf | ®.code D [100 = loadinstrs”] }

The adequacy theorem states that clos#@H and LOW pro-
grams that are equivalent accordingdtanust equi-terminate when
loaded by the above loader.

Theorem 1(Adequacy) Foralld;0 - p~e: T,
VA € AllocSpec. V(®, pc) € load(A, p). Vh.
both (®, pc) and(h, e) diverge or both halt without fail.

One might think that this adequacy result is weak because the
loader does not inspect the result returned by the progratiow-



Papp(p1, p2) ::= Aalloc, bg.
letinstrs; := p1(alloc,bg + 4), ¢1 := |instrsy],
instrsy := pa(alloc, bg + c1 + 6), c2 := |instrsa| in |
bg plus  [sp] lsp] 2
move  (sp —2), [wko |
move  (sp — 1), 0
move [wko | bg+c1 +4
instrsy
bg+c1 +4 move  (sp— 1), | wks |
move |[wko | bg+c1+c2+6
instrsg
bg+c1 +c2+6 move [wko | (sp — 2),
move [ wkq | (sp— 1)
move [wka | [wks |
minus  [sp| lspJ 2
| jmp (wki +0)y,

Figure 7. Compilation of Function Application

ever, together with the compositionality result below, cae link
the programp with arbitrary well-behaved “test” programs and the
linked programs are guaranteed to behave the same.

In order to show that our logical relations are sufficiently

populated—an important desideratum, as we explained in the

introduction—we have written a very naive compiler fréttGH

to LOW and proved that every source program is related to its
compiled low-level program by our program equivalence.c8pe
cally, we have implemented a low-level construct corresipumnto
each high-level construct and then defined the compileryime
ductively on the structure of source programs using thesdduel
constructs. For each construct, we have shown a corresgpndi
“compatibility” lemma (following Pitts’ terminology [2]] mean-
ing that program equivalence is preserved under said aanstr
This implies that equivalent programs behave the same warber
trary well-behaved contexts.

One example of a high-level construct is function applarati
Figure 7 shows its low-level realization as a simple linkimggram
Papp(p1, p2). We assume here that is some program computing
a value of function type’ — 7, andp- is some program comput-
ing a value of the argument typé.

The program begins by bumping up the stack pointer twice,
pushing the return address (storedsiky) onto the first new stack
slot, and clearing the second one withThe clearing instruction
(at bg + 2) is needed because the stack slotsat — 1) might
otherwise contain a dangling pointer; thus, in order to ram
the global invariant that all reachable data is live, we nulsar
(sp — 1), before passing control tp;. Whenp, returns, we as-
sume it returns a pointer to a function closurewiks, we store that
pointer in the cleared stack slot, and we proceed to exegutf-
terps returns, we move; 's closure pointer intevk;, the argument
value (returned by-) into wks, and the original return address of
Papp(p1, p2) into wko. We then pop off two stack slots and make
a tall call to the code pointer storedwk;’s closure.

The compatibility result foPapp can be seen as a composition-
ality result for our program equivalence relation.

Lemma 1 (Compatibility: App)
ATkpime 7 2TAATEFEpy~ey: 7 =
A;T - Papp(pi,p2) ®e1ex: 7
Another related construct of course dsabstraction. Figure 8
shows its low-level realization as the progr&abs(p). We assume
here thap is a program implementing the body ofaabstraction,

under the assumption that the argument of that abstractitmei
first element in the linked list environment storedag.
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Pabs(p) ::= Aalloc, bg.
let code := p(alloc, bg + 16), ¢ := |code| in [
bg move [wka | bg + 3
move [wks | 2
jmp alloc
bg+3 move  (wks +0), bg+6
move  (wks+ 1), [svo]
jmp [wko
bg +6 plus  |[sp] lsp] 2
move  (sp — 2) [wko |
move  (sp — 1), [svo |
move [wka | bg + 12
move [wks | 2
jmp alloc
bg + 12 move  (wks+0), |wka]
move  (wks+ 1), (wki +1),
move [svo | [wks |
move [wko bg+c+ 16
code
bg+c+ 16 move [svo] (sp — 1)
minus  |sp| 5 2
] jmp  (sp—0)

Figure 8. Compilation ofA-Abstraction

The actual computation of the program is quite simple, beeau
it merely allocates a closure representing thabstraction and
returns it (just like the example in Section 3.1). The clestonsists
of a code pointer (tbg + 6) and an environment pointer, which
is of course just whatever environment was passelafes(p) in
svo. Whenever the closure is invoked (by jumpingtg + 6), it
first saves the return address (storedvity), as well as the callee-
save registegvo, by pushing them on the stack. It then pushes the
argument valu¢wk, | onto the front of the environment linked-list
headed bywk; + 1), (which requires allocating two new memory
cells), and stores a pointer to this extended environment/gn
before executing. Finally, whenp returns, it pops the stack twice,
and restores the original contents of the callee-save before
jumping to the return address that was stored on the stack.

The compatibility result foPabs is as follows:

Lemma 2 (Compatibility: Abs)
ATz Fpre:T =
A;T F Pabs(p) ~ Ax:t’.e: 7/ — 71
Using Papp, Pabs, and all the othet OW program construc-

tors, we can define a compiléf I ¢]) in a simple, syntax-directed
fashion,e.g.,

(T F e1 e2) :=Papp((" F e1), (I' F e2))
(T F Az:7.€) ::= Pabs(([, x:7 I €))
and then establish the following compiler correctnessltesu
Theorem 2 (Compiler Correctness)For); A;T' e : T,
ATH({CHe)=e: T
The theorem is easily provable by induction@rusing the appro-
priate compatibility lemma in each case.

Finally, we prove the self-modifying awkward programy is
equivalent to the high-level awkward prograigp,,. from Figure 2.

Theorem 3. 0; 0 - Pawk & €awk : (unit — unit) — int

As a corollary, we can see that for afyd); @ I e : unit — unit,
both e,k € and load (A, Papp(pawk, (0 F €)))) equi-terminate.
Similarly, for any®; 0; @ + e : ((unit — unit) — int) — 7, both
€ eawk andload (A, Papp((0 F €], pawk)) €qui-terminate.



Detailed proofs of all these results appear in the companion
technical appendix [15].

8. Related and Future Work

There is a huge body of work on compiler correctness and seman
tics for low-level code. We focus on the most closely relatedk.

Compositional Compiler Correctness As explained in the intro-
duction, the overall motivation of our work is very similarthat of
Benton and Hur [5], and our use of logical relations to buitcea-
tensional, compositional notion of equivalence betweeg-hand
low-level languages is inspired directly by their work. Hoxer,
there are significant differences between our work andgheir
First, they define a relation between a purely functional PCF

purely functional language to an SECD machine, but theireobr
ness result only applies to terminating programs.

None of the aforementioned work considers a target language
that supports garbage collection.

Kripke Logical Relations Our logical relation is based closely
on Dreyer, Neis and Birkedal’s (hereafter, DNB) [14], whiehs
in turn a refinement and generalization of Ahmed, Dreyer and
Rossberg’s [2]. (Of course, these are but the latest in alloegf
work on Kripke logical relations spanning decades—eee cit.,
as well as Pitts and Stark [22], for further pointers to therditure.)
DNB’s main goal was to show how a Kripke model based on
state transition systems could be extended in orthogongs Wwa
exploit theabsenceof certain features, namely higher-order state
and/or control effects. For thdIGH language considered here, in
which there are no control operators, DNB showed how to ekten

like language and an SECD machine, whereas we relate a moretheir baseline model wittprivate transitions(Section 3.5) and

expressive, impure, ML-like high-level language to an asdg
language that is significantly more low-level and realigtian
SECD. Reasoning about compositional equivalence in otinget
is significantly more complex, not least because we mustwligal
reasoning about the heap and the presence of a garbagetaollec
We make essential use of Kripke logical relations for thigppse.

demonstrated the utility of private transitions in reasgnabout
a variety of challenging contextual equivalences invaijvincal
state. For our purposes, private transitions have provetlus
formalizing the “well-bracketing” assumptions about theck and
callee-save registers, assumptions which indeed relysalibence
of control operators. Extending th#iGH language with control

That said, there is a sense in which our setting makes the operators would thus necessitate a significant change tidripke
problem easier. One of Benton and Hur's goals was to develop model, precisely because the compilation strategif@H would

a model of low-level programs that would admit program eguiv
lences (such as commutativity of addition) whose validigpend
on the purely functional nature of the source language. Tawas
end, they related low-level programs denotationsof high-level
programs, so that one could use domain-theoretic reasdning
establish the purely functional equivalences of intefBisése half-
operational, half-denotational relations were of nedgsssym-
metric. In particular, they employ biorthogonality—butlypron
the low-level side of the relation—as well as step-indeximt
only in defining one direction of approximation (in the otlénec-
tion, they use an admissible closure operation). As a rgmaiving
in their setting that a high- and low-level program auivalent
really involves doing two proofs (one for each direction ppeox-
imation) using very different technical machinery.

In our work, we sidestep this problem because the ML-lik& lac
of effect encapsulation in our high-level language causteshiave
a relatively weak equational theory that simply does notiatime
kinds of purely functional equivalences that Benton and Were
interested in. Nevertheless, as our motivating examplstilates,
there are still plenty of interesting equivalences in ottisg, par-
ticularly involving uses of local state. Moreover, our logji rela-
tions, being entirely operational and defined in languagegc
fashion, are inherently symmetric, making them easier o us

More recently, Benton and Hur [6] have generalized theintec
nigue to a compiler for a polymorphic (yet still purely fuinstal)
language, but their logical relations are still asymmetric

Chlipala [11] proposes a syntactic approach to proving asmp
sitional compiler correctness. His idea is to establistt afsgiteria
for high-low compilation relations, such that the resuftdifferent
compilers can be correctly linked so long as their compuifatela-
tions satisfy these criteria. However, the criteria ark sgntactic,
and thus he cannot reason for instance about our motivakng e
ample, wherein the high-low equivalence depends on seovaati
soning about local state. Moreover, Chlipala only considefairly
high-level target language that is a CPS version of the gourc

Jaber and Tabareau [16] propose an alternative approach to

compositional compiler correctness based on type pretsenvn-
stead of proving compiler correctness directly, they pribat the
compiler is type-preserving, but their source languagesat a
rich type system (with dependent refinement types) thattffes-
tively implies correctness. Like Benton and Hur, they cdmpi
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need to change as well. We leave this problem to future work.

Despite the close connection, our logical relation diverigem
DNB's in several ways. First and foremost, whereas DNB atieh
was only designed to reason about high-level programs, tuew
point of our model is to allow us to relate high- and low-leped-
grams. As a result, we have no “fundamental theorem of lbgéca
lations” because one cannot even state such a theorem fatiame
between two languages. Instead, we prowmmpiler correctness
result, whose proof mirrors that of the usual fundamenbtém.
Our consideration of low-level programs has also led us thenza
clear distinction betweeprogramsandcomputationsand between
the notions of equivalence thereon. This seems to us aregtieg
and important distinction that is worth investigating het.

Dealing with low-level programs introduces significanthteic
cal complexity. In order to isolate this complexity, we facthe
presentation of our relation generically w.r.t. a languagecifica-
tion “interface” LangSpec. This helps to clarify the structure of
our Kripke logical relation, bringing into relief its esgedly sym-
metric high-level structure, as well as the components®htodel
that are language-dependent (namely the two implemensatid
LangSpec, where most of the complexity lies). Although we have
in this paper only instantiated our model so as to retiteH and
LOW programs, one may also instantiate the model to rél&dEH
andHIGH programs, olLOW andLOW programs. The former
model would be largely similar to Dreyet al.s; the latter would
enable one to reason about equivalence of low-level progdim
rectly, which may prove useful in reasoning about corressnaf
low-level optimizations, although this remains to be expth

As far as possible worlds are concerned, although ours are
largely similar to DNB'’s, we have extended their worlds ineon
relatively straightforward way: in addition focal invariants (ex-
pressed in our possible worlds sfandg, our worlds also permit
one to express global invariant. We exploit this added functional-
ity to encode the allocator’s invariant that all reachalatadire live
(Sections 3.6 and 6).

Lastly, as far as the high-level structure of the logicahtieh
is concerned, ours is also quite similar to DNB’s, except tha
interpretation of reference types is somewhat differemtiods
approaches to interpreting reference types have been g¥dpn
the literature; our present interpretation is in a more éastonal”
style than either DNB’s or Ahmedt al’s [2], in the sense that



it avoids dependence on too many details of how possibledsorl

are structured. This enables us to present it, as we havenuora
“world-generic” fashion. Among existing accounts, ourgaet for-
mulation is fairly close to the denotational one given bykBdal,
Stavring and Thamsborg [7], but the jury is still out on whigh
these formulations is most felicitous.

Although the primary benefit of presenting our logical rielat
language- and world-generically is to clarify its (admifiecom-
plex) structure, it also enables us to prove a few “stru¢tuean-
mas generically as well, most notabtyonotonicity (That we can
prove monotonicity generically should not be surprisingeg that
it is essentially baked into the logical relation via the wfiféication
over future worlds in certain cases and the use ofltheperator
in others.) Most of the interesting theorems, however, ctie
stated, let alone proven, without talking about the detaflshe
LangSpec’s for HIGH andLOW .

Garbage Collection Torp-Smithet al.[24] prove the correctness
of a Cheney copying collector using separation logic. ThescHy
the behavior of a correct garbage collector in terms of am@e
phism between the reachable portions of the initial and fieaps.
Our specification is broadly similar in that we express thache
able portion of the heap in our logical memories. We consiouc
entireLangSpec for LOW around these logical memories.
Building on the work of Torp-Smitlet al., McCreightet al.[20]

develop a garbage collector interface that is general dndag
characterize a variety of different collectors, includingremen-
tal copying collectors with read and write barriers. Thepver
in Coq that various collectors implement this interfaceq aimat

various mutator programs respect it. In more recent work; Mc

Creight et al. [19] extend Leroy’s Compcert compiler [18] with
support for garbage collection, by building the mutatoltemtor
interface into the design of a new intermediate languagen(®ar.
They prove semantics preservation (mostly) for a compilemfa
purely functional, typed language—Dminor—to GCminor, (ag
in Compcert) not compositional correctness.

Self-Modifying Code Caiet al.[9] provide one of the only formal
accounts of how to verify self-modifying code. They use Hwar
style separation-based reasoning to enable local reas@adiout

modifications to code, in much the same way that standard sep-

aration logic enables local reasoning about the heap. Wptado
similar approach, using possible worlds to impose locaiiants
on—and, more generally, to establish local state trams#tistems

governing—both the heap and the code segment. Ours is the firs

relational model for reasoning about (compositional) egjeince
of self-modifying programs.

Future Work  Given our ability to reason about self-modifying

code, one direction for future work is to adapt this funcsitiy
to reason about more practical applications, such as arjuste
compiler or a dynamic linker/loader.

We have shown compositionality of our high-low relation by

showing that it is closed under the linking constructs esgitde

at the level of ouHIGH language, such as function application.

In future work, we would like to prove that our relation is @ls
compositional w.r.t. a more realistic linking language.

The concrete logical relation we have presented here assume

a uniform data representation. It is possible in principleefine
the meaning of language forms likeir(v1, v2) in @ non-uniform

way—e.g.,to enable flattening—»but it is not currently possible in

our language-generic framework to define such languagesfarm

atypespecialized manner. We leave a serious examination of this

issue to future work.

Lastly, it is unclear how to scale our techniques to reasauiab

compositional correctness ofraulti-phasecompiler because the
step-indexed logical relations we define are not obviousindi-

tive. This is a well-known problem with step-indexed lodiczla-
tions [1], and it seems a fresh idea is needed to circumvent it
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