
A Short Cut to Deforestation

Andrew Gill John Launchbury Simon L Peyton Jones

Department of Computing Science, University of Glasgow G12 8QQ

{andy, j l,simonpj}@dcs. glasgow, ac .uk

Abstract

Lists are often used as “glue” to connect separate parts of
a program together. We propose an automatic teehnique
for improving the efficiency of such programs, by removing
many of these intermediate lists, based on a single, simple,
local transformation. We have implemented the method in
the Glasgow Haakell compiler.

1 Introduction

Functional programs are often constructed by combining to-
gether smaller programs, using an intermediate list to com-
municate between the pieces. For example, the function
all, which tests whether all the elements of a list xs sat-
isfy a given predicate p may be defined as follows (we use
the language Haskell throughout this paper (Hudak et al.
[1992])):

all p X8 = and (map p x8)

Here, p is applied to all the elements of the list XS, pro-
ducing an intermediate list of booleana. These booleane are
“anded” together by the function and, producing a single
boolean result. The intermediate list is discarded, and even-
tually recovered by the garbage collector.

This compositional style of programming is one reason why
lists tend to be so pervasive, despite the availability y of ueer-
defined types. Ftmctional languages support this tendency
by supplying a large library of pre-defined Iist-manipulating
functions, and by supporting special syntax for lists, such as
list comprehensions. Then, because so many functions are
already available to manipulate lists, it is easy to define new
functions which work on lists, and so on.

Unfortunately, all these intermediate lists give rise to an effi-
ciency problem. Each of their cons cells has to be allocated,
filled, taken apart, and finally deallocated, all of which con-
sumes resources. There are more efficient versions of all
which do not use intermediate lists. For example, it can be
re-written like this:

Permission to copy without fee all or pert of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notica and the

titla of the publication and its data appear, and notice is given

that copying ia by permission of tha Association for Computing

Machinery. To copy otherwise, or to republish, requires a fae

and/or specific permission.

ACM-FPCA’93-6/93 /Copenhagen, DK

e ‘1993 ACM O-89791 -595-X1931000610223 . ..9 I .50

all’ p xs = h xs
where h [1 = True

h (x:xa) = p x M h xs

Now no intermediate list is used, but this has been achieved
at the cost of clarity and conciseness compared with the
original definition.

We want to eat our cake and have it too. That is, we would
like to write our programa in the style of all, but have the
compiler automatically transform this into the more efficient
version all >.

One example of just such a transformation is deforestation

(Wadler [1990]). Deforestation removes arbitrary intermedi-
ate data structures (including lists), but suffers from some
major drawbacks (Section 2). As a result, apart from a
prototype incorporated into a local veraion of the Chalmera
LML compiler (Davis [1987]), we know of no mature com-
piler that uses deforestation as part of ita regular optimisa-
tione.

In this paper we present a cheap and easy way of eliminat-
ing many intermediate lists that does not suffer from these
drawbacks. Our optimisation scheme is based on a single,
simple, local transformation, and is practical for inclusion
in a real compiler. It has the following characteristics:

● The technique applies to moat of the standard list pro-
cessing functions. Examples are functions that con-
sume lists, such as and and sum, expresaione that cre-
ate liste, such as [x. . y], and functions that both con-
sume and create lists, such as map, filter, ++ and the
like. In general, the technique handles any composi-
tional list-consuming function, that is, one which can
be written using foldr.

● The technique extends straightforwardly to improve
the state of the art in compiling list comprehensions
(Section 4). Standard compilation techniques for list
comprehensions build an intermediate list in expres-
sions such as

[fxlxt- mapgxs, oddxl
Our technique automatically transforms this expres-
sion to a form that uses no intermediate lists. Fur-
thermore, we are able to use the same technology to
avoid intermediate lists in Haskell’s array comprehen-
sions (Section 5).

223

Like standard deforestation, our method can be ap-
plied to other data structures, such as trees and other
more complicated datatypes, though we have not im-

plemented this generalisation so far.

The effects can be startling. For example, in one program
which makes heavy use of list comprehensions (the 8-queens

program), we have measured a three-fold speedup as a result
of applying our teehnique. While this is probably an upper

bound on the expected improvement in larger programs, the
technique is very cheap to implement, so it provides reason-

able gains at very low cost.

2 Deforestation

The core of Wadler’s deforestation algorithm consists of seven

transformation rules, four of which focus on terms built us-
ing the case construct. Of these, apart from the rule unfold-
ing function calls, the only rule which actually removes com-
putation is the case-on-constmctor rule. Using this rule, the
term,

case (C2 tl t2 t3) of

cl xl x2 -> el

C2 xl x2 x3 -> e2

C3 xl -> e3

is translated to

let xl = tl

x2 = t2

x3 = t3

in
e2

The heap object represented by the constructor C2 is never
built nor examined, so saving computation. Indeed, this
transformation is precisely where the intermediate data str-
ucture is eliminated, and the purpose of all the other trans-
formation rules is to provide opportunities for applying this
key one.

There is a complication, however. When recursive functions
are involved there is a risk of performing infinite transfor-
mation by repeatedly unfolding the function definition. To
alleviate this, the algorithm has to keep track of which func-
tion calls have occurred previously, and so generate a suit-
able recursive definition when a repeat occurs. This is a fold

step in Burstall and Darlington’s sense (Burstall & Darling-
ton [1977]). Keeping track of these function calls and con-

stantly checking for repeats introduces substantial cost and
complexity into the algorithm. What is worse, in general it is

not foolproof. Given arbitrary programs, it is possible that
the patterns of function calls never repeat themselves. This

leads to infinite unfolding, and consequent non-termination
of the compiler.

Turchin addressed this problem in his super-compiler (which
performed a deforestation-like transformation) by using a
generalisation phase (Turchin [1988]). Fi.mction calls are
squeezed into fairly restricted patterns which the user haa
to decide beforehand.

Wadler’s solution is different. He attacks the problem by
limiting the form of the input program to compositions of
functions in so-called treeless form. This is a particularly re-

foldrkz[] ‘Z

foldr k Z (X:X9) = k X (foldr k Z XS)

and xa = foldr (k%) True xs

sum Xs = foldr (+) o X8

elern x xs =foldr(\ ab->a==xl lb)
False xs

nap f xs =foldr(\ ab->fa:b)[] xs

filter f xs =foldr(\ab->iffa
then a: b

else b)

[1 Xs
Xs ++ ys = foldr (:) ys Xs
concat xs = foldr (++) [1 X8
foldl f Z XS =foldr(\ bga->g(fa b))

id xs z

Fi gure 1: Examples of functions using f oldr

strictive form of function definition which severely limits the
general applicability of the algorithm. Not only is it first-
order, but all variables must be used linearly, and no internal
data structures are permitted. These restrictions did how-

ever allow two theorems to be proved: first that the result
was also in treeless form (guaranteeing that no intermediate
structures were built), and secondly that the algorithm does

always terminate (Ferguson & Wadler [1988]),

There have been various attempts to lift some of Wadler’s re-
strictions (Chin [1990]; Marlow & Wadler [1993]), but many
problems remain.

3 Transformation

The approach we take here is less purist, but more practical.
We do not guarantee to remove all intermediate structures
(and indeed in a general program we could not hope to do

so), but we do allow all legal programs as input. Further-
more, like Wadler, we do guarantee termination.

In Wadler’s case, proving termination was far from trivial,

as recursive functions were frequently unfolded. In our case,
a termination proof is trivial as we do not explicitly unfold
recursive functions. Rather, we obtain a similar effect by
performing algebraic transformations on pre-defined func-

tions.

As an example of how this may occur, here is a possible
algebraic transformation which eliminates an intermediate
list:

map f (map g XS) = map (f .g) xs

Unfortunately, we would need a huge set of rules to account

for all possible pairs of functions. Our approach reduces this
set to a single rule, by standardizing the way in which lists

are consumed (Section 3.1), and standard:aing the way in

which they are produced (Section 3.2).

3.1 Consuming Lists

A function which consumes a list in a uniform fashion can
always be expressed by replacing the conses in the list with

a given function 63, and replacing the nil at the end of the

224

list by a given value z. This operation is encapsulated by
the higher-order function f oldr, which can be informally
defined like this:

foldr(6B) z[sl, s2,s”]=31@ (m2@(zn@z))) z)))

The Haskell definition off oldr is given in Figure 1. Very

many list-consuming functions are “uniform” in this sense,

and can be expressed directly in terms of f oldr, and some

of these are also given in Figure 1. The first three fimctions,

and, sum and ele~ are purely list consumers (elen is a Iist-

membership test). The next few both consume and produce
lists. Finally, even f oldl, which consumes a list in a left-

associative way, can be detined in terms off oldr.

One tempting method of exploiting this regularity is to ex-
press programs using f oldr, and then use a small set of

transformation rules on f oldr. However this scheme fails

because there is no general rule to transform a composition
of f oldr with itself. For example consider:

and (map f XS)

We can begin by unfolding end and nap to their f oldr equiv-

alents:

foldr (at) True (foldr ((:) .f) [] XS)

But now we are stuck because of the lack of foldr/foMr

rule.
foldr kl Z1 (foldr kz Z2 e) = ???

It is certainly possible to invent a more specialised transfor-
mation, such as this one:

foldr)CI 21 (foldr ((:) .kz) [] e) = foldr (kl .k2) 21 e

This will successfully transform our example to:

f oldr ((U) ,f) True xs

But now we have run straight back into the problem of an

explosion in the number of rules. How do we know when we

have “enough” rules? How can we be sure we do not have

“redundant” rules?

The reason that there is no foldr/foldr rule is because
the outer f oldr has no “handle” on the way in which the
inner f oldr is producing its output list. We need a way
of identifying exactly where in a term the cons cells of an

output list are being produced: in effect, we need the dual
to foldr.

3.2 Producing Lists

The effect of the application f oldr k z xs is to replace each

cons in the list xs with k and to replace the nil in xs with

z. So if we abstract list-producing functions with respect to
cons and nil, we can obtain the effect of the f oldr merely
by applying the abstracted list-producing function to k and

z. Equivalently, if we detine a function build like this:

buildg= g (:) [1

then we may hope that, for all g, k and z,

foldr k z (build g) = g k .s

We call this equivalence the f oldr/build rule. To ensure

its validity we need to impose some restrictions on g, but we
will address that later (Section 3.4).

To take an example, consider the from function which when

appfied to two numbers produces a list of numbers, starting
from the first and counting up to the second. Originally we
may have defined f rorn by

from a b = if a>b

then [1

else a : from (a+l) b

but abstracting the definition over cons and nil gives,

from’ ab=\cn->ifa>b
then n

else c a (from’ (a+l) b c n)

The original from can be obtained thus:

from a b = build (f ron’ a b)

We can now deforest uses of this new version off rorn so long

as its list is consumed using f oldr. For example,

‘%mhm (fro.) a b))
= from> a b (+) O

(We annotate instances of the f oldr/build rule in all our

examples using f oldr build to make the reduction

explicit.) Now no intermediate e list is produced. Deforest a-
tion has been successful,

In short, provided we build lists using build and consume

them using foldr, the foldr/build rule alone .@ices to

deforest compositions of such functions. Figure 2 gives the
definitions of a number of list-producing functions in terms
of build. The definitions of functions which consume a list

as well as producing one involve f oldr as well as build.
Functions which simply consume a list me defined solely in

terms off oldr, as in Figure 1, and are not repeated here.

3.3 An example: unlines

As a slightly larger example of the f oldr/build rule in ac-
tion, consider the fi.mction unlines, taken from the Haskell
prelude.

unlines 1s = concat (map (\l -> 1 ++ [’\n’l) 1s)

This function takes a list of strings, and joins them together,
inserting a newline character after each one. An int ermedi-

ate version of the list of strings is created, together with

an intermediate version of each string (when the newline

character is appended).

To deforest this definition, we first unfold the standard func-
tions concat, map and ++, using the definitions in Figure 2,

to give:

r-unlines 1s = b ‘ d
(\cO nO -> foldr

(\cl nl ->:

G
(\c2 n2 -> foldr C2 (foldr

(\c3 n3 -> C3 ‘\n’ n3 :

~(\xs b -> foldr CO b x8) nO ~ build
foldr (\l t -> c1 (build

-1)) t) nl 1s))

Now we apply the foldr/build rule in the two places that
are marked, to give:

225

map f xs = build (\ c n -> foldr (\ a b ‘> c (f a) b) n xs)
filter f xs = build (J c n -> foldr O a b -> if f a then c a b else b) n XS)
Xs ++ ys = build (\ c n -> foldr c (foldr c n YS) XS)

concat xs = build (\ c n ‘> foldr (\ x Y ‘> fold c Y x) n xs)

repeat x = build (\ c n -> let

zip xs ys = build (\ c n -> let

in

[1 = build (\ c n -> n)

X:xs = build (\ c n ‘> c x

r=cxrinr)

zip’ (x:xs) (y:ys) = c (x,Y) (zip’ xs ys)
zip’ _ =n

zip> xs ys)

(foldr c n XS))

Figure2: Definitions ofstandardfunctions using foldrandbuild

unlines 1s = build

(\cO nO ->
(\cl nl -> foldr (\l t -> Cl (build

(\c2 n2 -> foldr C2 (

(\c3 n3 -> C3 ‘\n’ n3) c2 n2) 1)) t) ni 1s)
(\xs b -> foldr CO b x8) nO)

Performing three ~-reductions gives:

unlines 1s = build
(\ CO nO -> foldr (\l t ‘> folcIrl CfJ t([build

(\c2 n2 -> foldr C2 (c2 ‘ n’ n2) 1))) nO 1s

This in turn exposes anew opportunity to use the foldr
/ build rule. After using it, and performing some more
~-reductions we get:

unlines 1s = build
(\cO nO -~ foldr (\l b ‘> foldr CO (cO ‘\n’ b) 1) n 1s)

Now no more applications of the transformation are possible.
We may choose to leave the definition in this form, so that
any calls of unl ines may also be deforested. Alternatively,

we may now inline build, revealing the (:)‘s and []. After
simplification we get,

unlines 1s
= foldr (\l b -> foldr (:) (’\n’ : b) 1) [1 1s

If we also inline foldr we get,

unllnes 1s = h 1s
uhere h [1 = [1

h (1:1s) = g 1
where g [1 \=)n):hls

g (X:X9) = x : g Xs

This is as efficient a coding of unlines as we may reasonably

hope for.

The example also makes it clearer how the technique works:
the f oldr at the input end of a list-consuming function “can-
cels out” the build at the output end of a list-producing

one. This cancellation may in turn bring together a fur-
ther f oldr/build pair, and so on. A pipeline (composition)
of list-transforming functions gives rise to a composition of

f oldre and builds which can crudely be pictured like this:

!.. foldr] [build foldr] [build . . .

(The square brackets indicate the related origin of the pair.)
But now, by simply rebracketing we get the composition

. . . [foldr build] [foldr build] . . .

and the inner f oldr/build pairs now “cancel”.

3.4 Correctness

There appears to be a serious problem with the approach
we have described: the f oldr/build rule is patently false!

For example,

foldr k z (build (\c n -> [True]))

$
(\c n -> [True]) k z

Using the definitions of f oldr and build we can see that
the left-hand side is k True z, while the right hand side is
just [True]. These two values do not even necessarily have

the same type!

In this counter-example the trouble is that the function
passed to build constructs its result list without using c

and n. The time we can guarantee that the f oldr/build
rule does hold is when g truly is a list which haa been ‘uni-
formly” abstracted over all its conses and nil.

It turns out that we can guarantee this property simply by

restricting g’s type! Suppose that g has the type

g:V~.(A-+@-+/3)+P+@

for some fixed type A. Then, informally, we can argue as
follows. Because g is polymorphic in ~, it can only manufac-
ture its result (which has type /3) by using its two arguments,
k and z. Furthermore, the types of k and z mean that they

can only be composed into an expression of the form

(Jcel(ke z...(kenz,.))))

which is exactly the form we require.

This arm waving is obviously unsatisfactory. Rather delight-
fully, the theorem we want turns out to be a direct conse-
quence of the “free theorem” for g’s type (Reynolds [1983];
Wadler [1989]).

226

Theorem

If for some fixed A we have

4 List Comprehensions

g: V@,(A+~+/3)+~+~

then

foldr k z (buildg) = g k :

Proof
The “free theorem” associated with g’s type is that, for all

types B and B’, and functions ~ : A + B + B, f’ : A +
B’ + B’, and (a strict) h : B + B’ the following implication

holds:

(Va:A. Vb:B. h(~ab)=j’a(hb))

+ (Vb : B. h (gEj f b) = g~l f’ (h b))

where gB and gBl are the instances of g at B and B’ respec-

tively. (Ilom now on we will drop the subscripts from g as

languages like Haskell have silent type instantiation).

We now instantiate this restdt. Let h = f oldr k z, ~ =(:),

and f’ = k. Now the theorem says,

(Va:A. Vb:B. foldrkz (a: b)=ka(foldrkz b))

+- (W: B. fOldr k Z (g (:) b) = g k (foldr k Z b))

The left hand side is a consequence of the definition of f oldr,
so the right hand side follows. That is,

vb:B. foldrkz (g(:) b)=gk(foldrk Zb)

Now let b = []. By definition, f oldr k z [] = z, so finally

we obtain,

foldrkz (g(:) [l)=gkz

which, given the definition of buil~ is exactly what we re-

quire. a

The impact of this result is significant: so long as build is
only applied to functions of the appropriate type, the defor-
estation transformations may proceed via the f oldr/build

rule with complete security. Furthermore, since all our pro-
gram transformations preserve types, it is only necessary to
check that the original introductions of build (in Figure 2)

are correct.

The ideal way to proceed would be to define build with the
type:

build : Va. (V/3. (a -+ ~ + ~) + @ + ~) + Lista

and then have the compiler’s type-checker confirm that all
applications of build are well-typed. Unfortunately, Hazk-

ell’s type system is based on the Hindley-Mllner system (Mil-
ner [1978]), which does not allow local quantification; that
is, the V’s must all be at the top level of a type. (A more gen-
eral type system, such as that of Ponder (Fairbairn [1985])

or Quest (Cardelli & Longo [1991]) would allow this type for
buil~ but they lack the type-inference property.)

We sidestep this by building into the compiler trusted def-

initions of all the standard functions (map, filter, concat

and so on) in terms of build and foldr. Since the pro-
grammer cannot introduce new builds, security is assured.
It is also straightforward to introduce a special typing rule

into the type checker to allow build to be written by the
programmer.

List comprehensions are a particularly powerful form of syn-
tactic sugar, and have become quite widespread in fictional

programming languages. For example, given two lists of

pairs rl and r2, each of which is intended to represent a

relation, the relational join of the second field of r 1 with the

first field of r2 can be expressed like this:

[(x, z) I (x, yl) <- rl, (y2, z) <- r2, yl==y2]

This can be read as “the list of all pairs (x, z), where (x,yl)
is drawn from rl, (y2, z) is drawn from r2, and yl is equal
to y2° .

There are well established techniques for translating (or

“desugaring”) list comprehensions into a form which guar-
antees to construct only one cons cell for each element of
the result (Augustsson [1987]; Wadler [1987]).

However these techniques view each list comprehension in
isolation. Very commonly, a list comprehension is fed di-

rectly into a list-consuming function — for example, it may
be appended to some other list. It is also very common for

the generators in a comprehension to be simple list produc-
ers. For example:

[fxlx<- mapgxs, oddx]

Clearly we would like to ensure that list comprehensions

are translated in a way which allows the intermediate lists
between them and their producers or consumer to be elim-
inated. It turns out not only can we do this, but it ac-

tually makes the translation rules simpler than before, be-

cause some of the work usually done in the desugaring of
list comprehensions is now done by the later f oldr/build

transformation.

F@we 3 gives the revised desugaring rules. The ‘T& scheme
translates expressions in a rich syntax including list compre-
hensions into a much simpler functional language. (Only the
rules which concern us here from the ‘T& scheme are given.)

The first two rules deal with explicitly-specified lists, such as

[a,b, cl and enumerations, such as [1. .41. The third rule
deals with list comprehensions, by invoking the ~% scheme.

Notice that in each case a build is used, ready to cancel
with the f oldr from any list consumer.

The ‘TX scheme is used only for list comprehensions, and

has the following defining property:

‘TFIEJcn=foMrcn E

The TF scheme has three cases: either the qualifiers after

the “1” are empty, or they begin with a guard B, or they
begin with a generator P + L (in general P can be a pat-
tern, not just a simple variable). Notice, crucially, that in
this third case, the list L is consumed by a f oldr, so any
build at the top of L will cancel with the foldr.

4.1 An example

Consider again the example given above:

[fxlx<- rnapgxs, oddx]

227

‘T& :: Expr + CoreExpr
Tq[El, E2,..., En]] = build (\c n-> c7/?[EIJj (c Tf~E2] . ..(c T&[E.] n)))

Tf~ [J%. .E2]] = build (\c n -> from’ ‘T&~ El] T&~ E2] c n)

TS[[-?? I Q] JJ = build (\c n ->(TX[[E I Q]] c n))

T3 :: Expr + CoreExpr + CoreExpr + C’oreEzpr
7F[[El]llcn = cT&[EJJn

77[[E[B, Q]]cn = if T&[13Jj then TY~[EIQ]llcn else n

TX[[EIP+L, Q]]cn = foh3r~nTC~Ln
where fPb=TF[[EIQ]’JJcb

f.b=b

Figure 3: Lkt and Lkt Comprehension Compilation Rules

The standard technology would construct an intermediate

list for the result of the map. Using the rules in Figure 3
instead, desugaring the list comprehension will give:

build (\ CO nO ->
foldr h nO (nap g XS)

ehere
h x b = if odd x then CO (f x) b else b)

Unfolding map gives:

build (\ CO nO ‘>
foldr I h nO (build

(\ c1 nl -> foldr (cl. g) nl XS))
where

hxb=ifodd xthencO(fx) b

Now we can apply the foldr/build rule, giving

build (\ CO nO ‘>
(\ c1 nl -> foldr (cl. g) nl XS) h nO

r?here
hxb=ifodd xthencO(fx) b

Now some ~-reductions can be done:

build (\ CO nO ‘> foldr (h. g) nO xs
where

hxb= if odd x then CO (f x) b

else b)

else b)

else b)

Lastly, foldr and build can be unfolded, and after further
simplification, we get the efficient expression:

h> XS

where h J [] = [1
h) (x:x=) = if odd x$

then f x) : h! X8
else h> xs

where x> = g x

5 Array Comprehensions

The Haskell language includes an array data type, in which
an array is specified ‘Ml at once” in an array comprehen-

sion. (This contrasts with imperative languages, which usu-
ally modify arrays incrementally.) An example of an array
comprehension is:

arr :: Array Int Int
arr = array (1,10) [n := n * n I n <- [1..1011

This defines an array err with 10 elements of type Int, in-

dexed with the Ints 1 to 10, in which each element contains
the square of its index value. The part between the square

brackets is just an ordinary list comprehension, which pro-
duces a list of index-value pairs (the operator (:=) is an infix
pairing constructor). The function array takes the bounds
of array, and the list of index-value pairs, and constructs an
array from them. There is no requirement to use a list com-
prehension in an application of array the second argument

of array could equally well be constructed with any other

list-producing function.

Clearly we would like to eliminate the intermediate list of

index-value pairs altogether. After all, it is no sooner con-
stmct ed by the list comprehension than it is taken apart by

array. However, we can only use our f oldr/build defor-
estation technique if array consumes the list of index-value
pairs with foldr. So long as array is opaque we cannot

eliminate the intermediate list.

So how can array be expressed? Presumably it must al-
locate a suitably sized array, and then fill in the elements

of this array one by one, by working down the list of index-

value pairs. In other words, we have to build Haskell’s mono-

lithic immutable arrays on top of incrementally updatable

arrays. We have done exactly this in our compiler, aa we

now describe briefly.

5.1 Monads for mutable arrays

Our approach to mutable arrays is based on monads (Moggi
[1989]; Wader [1990]).1 We define an (abstract) type AT a b,
which we think of as the type of “array transformers” for ar-

rays with indices of type a, and values of type b. That is,

1The approsch we describe here is not the only way to implement
arrays — for example it hss the disadvantage of being rather sequen-
tial. The important point is that any implementation of array com-
prehensions must consume the list of index-value pairs. If (and only
if) it does so with a compiler-visible f c.ldr, then our transformation
will eliminate the intermediate list.

228

a value of type AT a b is an array transformer which, when

applied to a particular array, will transform that array in
some way.

We define the following functions to manipulate array trans-

formers:

crest eAT :: (a, a) -> AT a b -> Array a b
writ eAT ::a -> b-> ATab

seqAT :: ATab->ATab-> ATab
doneAT :: ATab

The function createAT takes the bounds of an array, and an
array transformer, allocates a suitably sized array, applies
the array transformer to it, and returns the resulting ar-
ray. The combinator seqAT combines two array transformers

in sequence, while doneAT is the identity transformer. Fi-

n~y, urit eAT is a primitive array transformer which writes

a given value into the array. Array transformers can be com-
piled to efficient code; for example, m-it eAT can be compiled

to a single assignment statement of the form

A[i] = v;

(Our compiler generates C as its target code.) For detaiLs,

the interested reader is referred to Peyton Jones & Wadler
[1993].

Using these four functions we define array as follows:

array bormds iv-pairs = crest eAT bounds action

rrhere
action = foldr assign doneAT iv-pairs
assign (a := b) n = vriteAT a b ‘seqAT’ n

Notice that the list of index-value pairs is now consumed
by an explicit foldr, so that the list can be deforested if it
happens to be produced by a build.

5.2 Deforesting an array comprehension

To illustrate the deforestation of array comprehensions, con-

sider the example with which we began:

arr=srray (1,10) [x :=x*x I x<- [1. .10]1

We can now use our definition of array and the desugaring

rules of Figure 3 to transform this to:

srr = cr.sateAT (1, 10) action
Where

action = foldr aasign doneAT (build

(\ c n ‘> foldr 1 h n ([build
(\cl nl -> g 1

where

where
hxb.

))
aasign (a := b)

Now we can use the
reductions, to give:

gx=ifx>10
then nl
else cl x (g (x+1))))

c (x :=xex)b

n = rrriteAT a b ‘seqATd n

foldr/build rule, and the usual /3-

arr = cre.ateAT (1 ,10) action
Where action = g 1

gx=ifx>10
then doneAT
else mriteAT x (x ● x) ‘seqAT’ g (x+1)

This final form uses no intermediate list of pairs, and fills
up the array with an efficient, tail-recursive function, g.

To summarise, our explicit, monadic formulation of array
interacts very nicely with the f oldr/build deforestation
technique, so that intermediate lists in array comprehensions

can be eliminated without requiring any new machinery.

6 Traversing a List Once Rather Than Twice

There are many examples of lists getting consumed twice,

In his thesis, Hughes noticed that such functions can have
poor space behaviour in sequential implementations. For

example, the average function defied by,

average xs = sum xs I length xs

traverses the list xs twice. In a sequential implementation,
the list xs cannot be consumed and discarded lazily, but at

some point will exist in its entirety. Hughes solution was to

propose a parallel construct to allow the computations to be
interleaved (Hughes [1983]).

The method of this paper has an interesting bearing here.
Re-expressing both functions in terms of foldr gives:

average xs = foldr (+) O xs / foldr inc O X8
vhere inc x n = n+l

Now we have two foldr traversals of the same list. It is an

easy (and generally applicable) transformation to combine
these into a single traversal as follows.

average X8 = p / q

where (p, q) = f oldr f (O ,0) xs
f x -(p, q) = (X+p, q+i)

Now the list is traversed once, and may be consumed and

discarded lazily. Furthermore, before the transformation the
list will certainly be built, because it is used twice (the com-
piler would not usually substitute for xs if it occurs twice).
After the transformation xs occurs only once, so its defini-
tion may be inlined, and hence may perhaps never be built
at all!

Even if the consuming foldr cannot be paired with a build,
the program can be more efficent. As another example con-

sider qsort:

qsort [1 = [1
qsort (x:x8) =qsort[ala< -xs, a<x]

++ [x]++

qsort[a la<- xs, a>=x]

Clearly xs is traversed twice. But, after translating the list
comprehension into foldr, we can use the method above to
obtain a single traversal.

229

7 Implementation and preliminary measurements

We have implemented the ideas explained above in the Glas-

gow Haakell compiler (Peyton Jones [1993]). The compiler

passes which are affected by deforestation are as follows:

1,

2.

3.

7.1

After typechecking, the program is desugared. This
pass is now slightly simpler than before, as discussed

in Section 4.

A sophisticated transformation pass, which we call the
“simplifier”, is now applied to the program. Among

other things, it replaces some variables by their values

(inlining) and performs ,0-reduction. The definitions
of the standard list-processing functions in Figure 2

are made known to the simplifier so that it will inline
them. The main change to the simplifier was to add

the f oldr/build transformation. Of course, at this

stage, we do not inline foldr and build!

We now run the simplifer again, this time unfolding
the definition of build and foldr. The simplifier can

also perform any reductions which are thereby made
possible. One important and common simplification is

to reduce f oldr (:) [] xs to XS.

Initial Results

To get an idea of the upper bound for the improvement

which can be gained by our approach, we examine the welI
known 8-queens program, adapted from (Bird & Wadler

[1988]). Simply printing the results would mean that 1/0

takes up most of the time, so instead we force evaluation
by the simple expedient of adding up the result. The tradi-

tional 8-queens ran too fast on our benchmarking machine
to obtain reliable timings, so we use 10-queens:

main = (print. sum. concat queens) 10

where
queens :: Int -> [[Int]]
queens O = [[11
queens m = [p ++ [n] I p <- queens (m-1) ,

n <- [1..10],

safe p n]

safe : : [Intl ‘> Int -> Bool
safe pn=and[(jl=n) 2&(i+j/=rn+n)

&t (i - j/= m-n)
I (i, j) <- zip [1..1 PI

rrhere n = length p + 1

This example has several intermediate lists, and looks ideal

for our scheme to optimise. The heart of the algorithm is
checking a list of booleans (built using a list comprehension),
just like the function all in Section 1. Because of this we

expect queens to give a feel for an upper bound of what our
optimisation can do.

The original program run without our optimisation, and av-
eraged over several runs took 24.4 seconds and consumed
179 megabytes of heap. The transformed program under

the same conditions ran about three times faster (8.8 sec-
onds) and allocated only 20% as much heap (36 megabytes).
Similar measurements for more realistic programs is still on-

going, but our preliminary results suggest
that the speedups are much more modest.

8 Further Work

(unsurprisingly)

There are several directions in which this work can be de-

veloped.

8.1 Extending the scope of the transformation

At present we can only use build in the definitions of “built-
in” standard list-processing functions. There are two ways

in which this may be improved. The first is to make build
available to programmers. This would necessitate e extending

the type checker to ensure that its calls are valid, but that

poses no particular difficulty.

More challenging is for the compiler to spot functions which
may be defined in terms of build and foldr and redefine

them accordingly. This is likely to be quite feasible, so long
as the compiler is only expected to notice the more obvious

examples. This has the benefit that the programmer needl
know nothing about optimisations internal to the compiler,,

and may write programs in whatever style is most appropri-
ate for the application.

Another current limitation is that we do not attempt tc}

perform deforestation across function boundaries. That is,
if a function f has a list as its result, and the transformation
system does not inline the function at its call site(s), then nc~
deforestation will occur between f and its callers. Indeed,

it seems impossible to do so without changing the type of
the result of f. Nonetheless, it is interesting to speculate

whether some systematic transformation to build-like form

of such list-returning functions would be possible.

Experiments with inter-function optimisations have been
done by hand with encouraging performance results. For ex-

ample lo-queens showed a further significant speedup when
inter-function optimisations were used in conjunction with
the f oldr/build rule. However the effects of transforming
all list producing functions in this way may be detrimental

to the overall performance, because not all lists are con-
sumed using a f o ldr based function. Some sort of analysis

technique could help here, but some code duplication looks
inevitable.

Another obvious extension is to generalise the idea to arbi-
trary algebraic data types. Both f oldr and build generalise
very naturally to these other types, and corresponding trans-

formations apply. The categorical properties of these oper-
ators (the so-called catarnorphisms) have been well studied.

For example, Fokkinga et al. [1991] show that any attribute
grammar may be expressed by a single catamorphism.

8.2 Dynamic deforestation

The transformation we describe works only for staticaUy-
visible compositions of f oldr and build. Would it be possi-

ble also to spot such compositions at run time? What would
be required would be an extra constmctor in the list data
type, like this:

230

data List a

= Nil

I Cons a (List a)

I Build ((a->b ->b) ->b ->b)

The new Build constmctor has exactly thetype ofbuild
given earlier, namely:

Build: Vcv.(V@.(cr +~-+~)+~+ ~)+ Listcr

Now, the function foldrcan redefined aa follows:

foldr k z Nil =2

foldrk z (Consx XS) =k x (foldrk z XS)
foldrk z (Buildg) =gkz

Iffoldr k misapplied to alist which happens tohave been

built with Built then it applies the fi.mction inside the

Buildtok and z. If any function which expects to a list
to be either a Cons or Nil finds a Build instead, it just ap-

plies the function inside the Build to Cons and Nil, and the
result now really will be a Cons/Nil list.

Among other things, this turns out to implement “bone idle
append”, which is part of the folk lore (Sleep & Holmstrom
[1982]). It is well known that left-bracketed associations of

append, SW-A ss (xs++ys) ++zs, are very inefficient to exe-
cute, because xs gets traversed twice. It has often been sug-

gested that ++ should at runtime take a look at its first argu-

ment to see if it looks like another application of ++, and if so

simply rearrange itself to the more efficient XS++ (ys++zs).

A closely related trick is the “top-level append optimisa-

tion”. When outputting a list of characters to a file, if the
output mechanism recognises that it is being asked to out-
put (xs++ys), then it does not actually need to append xs
and ys; rather it can simply output them one after the other.

This, too, is subsumed by our dynamic deforestation tech-
nique, provided that the list is consumed by a foldr, which

is the case for our monadic form of 1/02 (Peyton Jones &
Wadler [1993]).

9 limitations

A crop of limitations arises when we consider functions such
as tail and f oldr 1. Neither of these functions treat all
the cons cells in their inputs identically. In particular, tail
treats the first cons specially, and f oldrl the last. To try
to adapt the f oldr/build transformation to c.w.es such as
these seems to add so much complication that the original

simplicity is lost. It seems reasonable that functions which

do not have regular recursive patterns really need fti scale

deforestation using fold/unfold transformations, and that
we should not expect to find short cuts in these cases. Of

course, from an engineering point of view, such traversal
may be sufficiently infrequent to mean that it is simply not

worth while going to any effort to remove such intermediate
lists.

A more serious limitation involves zip. Although consider-

ing zip as a list producer is straight ward, there seems to
be no easy way to extend the technique here so that both

input lists to zip may be deforested. Note that it is easy
to ensure that one or other of the input lists is available for

2More commonly, the mechanism which consumes the list of char-
actem to be printed is part of the runtime system.

deforestation as zip may be defined in terms of f oldr as

follows.

zip X8 ys = foldr f (\ - -> [1) Xs ys

iihere f x g [1 = [1
f x g (y:ys) = (X, y) : g ys

The foldr traverses xs constructing a function which takes

ys and builds the zipped list. The list xs may disappear

using the f oldr/build transformation, but ys never will.

10 Related Work

This concept of parameterising over a list haa been con-

sidered before. Parametensing over the nil of a list has
been proposed as a possible optimisation over traditional

lists (Hughes [1984]). In particular, this leads to constant-
time append operationa.

This idea of optimizing append using parameterisation over
nil was taken one step further by Wadler [1987], who de-
scribed a global transformation which removes many ap-
pends from a program using this improved representation of
lists.

After completing this paper we were introduced to an aston-

ishing paper by Burge [1977]. Despite the early date of this
paper, Burge presents many of the essential ideas we have

described, including the key step of parameterising over cons

and nil. However, he requires individual rules for each list

producing expression, therefore stopping just short of giving
the f oldr/build rule, and of course his work predates list

and array comprehensions.

It is interesting to note that the compositional style of pro-
gramming is not restricted to lazy functional languages. Wa-
ters introduces a data type called series into imperative lan-

guages (Pascal and LISP), which behave exactly like lazy

lists except that they are removed by compile time trans-

formation, so never appear in the final object code (Waters
[1991]). A number of fairly stringent conditions are imposed

which guarantee the complete compile-time removal of se-
ries. Were we to apply the same restrictions to lists, we too

could guarantee a “list-less” final program using the tech-
niques here.

Anderson & Hudak [1989] discuss the compilation of Haskell

array comprehensions, but their main focus is on the data-
dependence analysis required to compile recursive array def-

initions into strict computations. The import ant thing for
their work is that the computation of an array element must

depend only on elements which have already been computecl.

This question is quite orthogonal to our work.

Acknowledgements

The implementation
team project. Apart

of the Glasgow
from ourselves,

Haskell compiler is a
the main participants

have been Will Partain, Cordy Hall, Patrick Sansom and

Andr6 Santos. In partic~ar, the simplifier we modified was
written by Andm$, we would like to thank him for directing

us around it. Thanks, also, to Phil Wadler for help with the
“free theorem” for build

This work was done as part of the SERC GRASP project,.

231

It was also supported by the SERC studentship, number
91308622.

Bibliography

SAnderson &P Hudak~arch 1989], “Efficient compilation

of Haakell array comprehensions,” Dept Comp Sci,

Yale University.

LAugustsson [19871, “Compiling lazy functional languages,

part 11,” PhD thesis, Dept Comp Sci, Chalmers
University, Sweden.

R Bird & PL Wadler [1988], Introduction to Functional Pro-

gramming, Prentice Hall.

WH Burge [Ott 1977], “Examples of program optimization,”
RC 6351, IBM Thomas J Watson Research Centre.

RM Burstall & John Darlington [Jan 1977], “A transfor-

mation system for developing recursive programs,”
JACM 24, 44-67.

L Cardelli & G Longo [Ott 1991], “A semantic basis for

Quest ,“ JournaJ of Functional Programming 1,417-
458.

WN Chin [March 1990], “Automatic metlhods for program

transformation,” PhD thesis, Imperial College, Lon-

don.

K Davis [Sept 1987], “Deforestation: Transformation of func-
tional programs to eliminate intermediate trees,”

MSC Thesis, Programming Research Group, Ox-
ford University.

J Fairbaim May 1985], “Design and implementation of a
simple typed language baaed on Ithe lambda calcu-

lus,” TR 75, Computer Lab, Cambridge.

AB Ferguson & PL Wadler [1988], “WherL will deforestation
stop? ,“ in Fictional Programming, Glasgow 1988.

MM Fokkinga, E Meijer, J Jeuring, L Meertens [1992], “FRATS:

a parallel reduction strategy for shared memory,”

The Squiggolist 2, 20-26, KG Langendoen & WG
Wee.

P Hudak, SL Peyton Jones, PL Wadler, .Arvind, B Boutel,
J Fairbairm, J Fasel, M Guzman, K Hammond, J

Hughes, T Johnsson, R Kieburtz, RS Nikhil, W
Partain & J Peterson [May 1992], “Report on the

functional programming language Haskell, Version

1.2,” SIGPLAN Notices 27.

RJM Hughes [July 1983], “The design and implementation
of programming languages,” Phi) thesis, Program-

ming Research Group, Oxford.

RJM Hughes [Ott 1984], “A novel representation of lists and
its application to the function ‘Reverse’,” PMG-38,

Programming Methodology Group, Chalmers Inst,
Sweden.

S Marlow & PL Wadler [1993], “Deforestation for higher-
order functions,” in Zlnctional Programming, Gkw-
gow 1992, J Launchbury, ed., Workshops in Com-

puting, Springer Verlag.

R Milner ~ec 1978], “A theory of type polymorphism in

programming,” JCSS 13.

E Moggi [June 1989], “Computational lambda calculus and
monads,” in Logic in Computer Science, Caliform”a,
IEEE.

SL Peyton Jones [1993], “The Glasgow Haakell compiler: a
technical overview, “ in Joint Fhwnework for infor-

mation Technology Technical Conference, Keele.

SL Peyton Jones & PL Wadler [Jan 1993], “Imperative func-

tional programming,” in 20th ACM Symposium on

Principles of Programming Languages, Charleston,

ACM.

JC Reynolds [1983], “Types, abstraction and parametric poly-

morphism,” in Information Processing 83, REA Ma-
son, ed., North-Holland, 513-523.

MR Sleep & S Holmstrom May 1982], “A short note con-
cerning lazy reduction rules of APPEND ,“ Univer-

sity of East Anglia.

VF Turchin [1988], “The algorithm of generalization in the

supercompiler ,“ in Partial Evaluation and Mixed

Computation, Bj@ner, Ershov & Jones, eda., North-

Holland.

PL Wadler [1987], “List Comprehensions,” in The Irnpk-
mentation of Fmctional Programming Languages,
SL Peyton Jones, cd., Prentice Hall, 127-138.

PL Wadler [1989], “Theorems for free! ,“ in Fourth interna-
tional Conference on Functional Programming and

Computer Architecture, London, MacQueen, ed.,

Ad&son Wesley.

PL Wadler [1990], “Deforestation: transforming programs to

eliminate treea,” Theoretical Computer Science 73,

231-248.

PL Wadler ~ec 1987], “The concatenate vanishes,” Dept of
Computer Science, Glasgow University.

PL Wadler [June 1990], “Comprehending monads,” in Proc

ACM Conference on Lisp and Functional Program-

ming, Nice, ACM.

R Watera [Jan 1991], “Automatic Transformation of Series
Expressions into LOODS.” ACM TOPLAS 13.52-98.

232

