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The proofs of “traditional” proof carrying code (PCC) are type-specialized in the sense that they
require axioms about a specific type system. In contrast, the proofs of foundational PCC explicitly
define all required types and explicitly prove all the required properties of those types assuming
only a fixed foundation of mathematics such as higher-order logic. Foundational PCC is both more
flexible and more secure than type-specialized PCC.

For foundational PCC we need semantic models of type systems on von Neumann machines.
Previous models have been either too weak (lacking general recursive types and first-class
function-pointers), too complex (requiring machine-checkable proofs of large bodies of computability
theory), or not obviously applicable to von Neumann machines. Our new model is strong, simple,
and works either in λ-calculus or on Pentiums.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical verification; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

General Terms: Languages, Theory

1. INTRODUCTION

Proof-carrying code (PCC) [Necula 1997] is a method of assuring that an un-
trusted program does no harm—does not access unauthorized resources, read
private data, or overwrite valuable data. The provider of a PCC program must
provide both the executable code and a machine-checkable proof that this code
does not violate the safety policy of the host computer. The host computer
does not run the given code until it has verified the given proof that the code
is safe.
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In most current approaches to PCC [Necula 1997; Morrisett et al. 1998b], the
machine-checkable proofs are written in a logic with a built-in understanding of
a particular type system. More formally, type constructors appear as primitives
of the logic and certain lemmas about these type constructors are built into the
verification system. The semantics of the type constructors and the validity
of the lemmas concerning them are proved rigorously but without mechnical
verification by the designers of the PCC verification system. We will call this
type-specialized PCC.

Unlike type-specialized PCC, the foundational PCC described by Appel
and Felty [2000] avoids any commitment to a particular type system. In
foundational PCC the operational semantics of the machine code is defined in
some logic L, such as higher-order logic, that is suitably expressive to serve as a
foundation of mathematics. L consists of a small set of axioms and definitional
principles from which it is possible to build up most of modern mathematics.
The operational semantics of machine instructions [Michael and Appel 2000]
and safety policies [Appel and Felton 2001] are easily defined in higher-order
logic. In foundational PCC the code provider must give both the executable
code and a proof in L that the code satisfies the consumer’s safety policy. In
foundational PCC the proof must explicitly define, down to the foundations
of mathematics, all required concepts, and must explicitly prove any needed
properties of these concepts.

Foundational PCC has two main advantages over type-specialized PCC—it
is more flexible and more secure. Foundational PCC is more flexible because
the code producer can “explain” a novel type system or safety argument to the
code consumer. It is more secure because its trusted base is smaller, consisting
only of the foundational verification system, together with the definition of
the machine instruction semantics and the safety policy. A verification system
for higher-order logic can be made quite small [Harper et al. 1993; Pfenning
1994].

This paper presents a new type semantics intended to reduce the complexity
of foundational type-theoretic proofs. The new semantics is particularly well
suited for general recursive types, which are particularly tricky to handle
semantically. Recursive types are closely related to domain equations, which
were first given a semantics by Scott [Scott 1976; Schmidt 1986]. Recursive
polymorphic types have been given a semantics in terms of metric spaces
[MacQueen et al. 1986] and in terms of PER models of Turing machine
computations [Mitchell and Viswanathan 1996]. We are also interested in
polymorphism for our applications. The metric space approach is less powerful
than the PER models—it models which terms are in which types, but does not
properly model equivalences between terms—but it would be adequate for ap-
plications in proof-carrying code. A preliminary investigation by the first author,
however, found no obvious definition of an appropriate metric for types on von
Neumann machines. On the other hand the Mitchell-Viswanathan [1996]
model might be adaptable to von Neumann machines, but would require
years of effort “implementing” machine-checked proofs of basic results in
computability theory.
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Our new semantics is a term model,1 with type judgements that are indexed:
v :k τ intuitively means that, in any computation running for no more than k
steps, the value v behaves as if it were an element of the type τ . The recur-
sive types of interest are well founded, in the sense that in order to determine
whether v :k τ , it suffices to know whether w : j τ for all values w and j < k.
Well founded recursions always have unique fixed points.

Indexed types can also simplify the semantic treatment of the fixed point
rule used to type recursive functions. This rule states that if f : α→α then
fix( f ) : α. The soundness of this rule is usually proved by defining a complete
partial order (CPO) semantics and showing that all functions are monotone
and continuous and hence have a least fixed point. Indexed types provide a
direct soundness proof by induction on index, which avoids any use of semantic
domains, term orders, or monotonicity.

Syntactic Versus Semantic Approaches

We are particularly interested in safety proofs based on type systems and in
theorems stating that typability implies safety. Proofs that typability implies
safety, are typically done by syntactic subject reduction—one proves that
each step of computation preserves typability and that typable states are
safe. However, in foundational PCC, the transmitted proof must contain all
details down to the foundations of mathematics including the definitions of
all concepts used. Foundational subject reduction theorems would require the
explicit definition of inference rules and derivations in terms of foundational
mathematical concepts—sets, pairs, and functions. They would also require
case analyses over the different ways that a given type judgement might be
derived. While this can all be done, we take a different approach to proving
that typability implies safety.

We take a semantic approach, as pioneered in the NuPrl system [Constable
et al. 1986] and as applied to proof-carrying code by Appel and Felty [2000].
In a semantic proof, one assigns a meaning (a semantic truth value) to type
judgements. One then proves that if a type judgement is true, then the typed
machine state is safe. One further proves that the type inference rules are
sound, that is, if the premises are true, then the conclusion is true. This en-
sures that derivable type judgements are true, hence typable machine states
are safe.

To contrast a semantic approach with syntactic subject reduction consider
the following standard inference rule for typing applications.

0 ` f : α→β, 0 ` e : α
0 ` ( f e) : β

A syntactic proof that typability implies safety must formalize the syntactic
notion of typability. The above inference rule must be formalized as part of the
definition of a relation ` between syntactic type environments (mappings from

1There can be β-convertible terms v and w such that v :k τ but not w :k τ (and not v :k′ τ for sufficiently
large k′).
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Fig. 1. Small step semantics.

variable to syntactic type expressions) and syntactic type judgements. This
requires formalizing syntactic type expressions and formalizing the relation
` as the least relation on syntactic expressions closed under a given set of
inference rules.

The semantic approach avoids formalizing syntactic type expressions.
Instead, one formalizes a type as a set of semantic values. One defines the
operator→ as a function taking two sets as arguments, and returning a set.
The above type inference rule for application can then be replaced by the fol-
lowing semantic lemma in the foundational proof.

0 |= f : α→β, 0 |= e : α
0 |= ( f e) : β

Although the two forms of the application type inference rule look very
similar, they are actually significantly different. In the second rule, α and β
range over semantic sets rather than type expressions. Furthermore, in the
second version 0 is a function from program variables to semantic sets, rather
than a function from program variables to type expressions. The relation |= in
the second version is defined directly in terms of a semantics for assertions
of the form e : α. The second “rule” is actually a lemma to be proved while
the first rule is simply a part of the definition of the syntactic relation `. For
the purposes of foundational PCC, we view the semantic proofs as preferable
to syntactic subject-reduction proofs because they lead to shorter and more
manageable foundational proofs. The semantic approach avoids the need for
any formalization of type expressions and avoids the formalization of proofs or
derivations of type judgements involving type expressions.

2. INDEXED TYPES FOR THE LAMBDA CALCULUS

Before giving a semantic treatment of foundational PCC for von Neumann
machine instructions, we give a semantic treatement of recursive types in the
lambda calculus with cartesian products and the constant 0. The syntax of
lambda terms with products and 0 is defined by the following grammar.

e ::= x |0| 〈e1, e2〉 |π1(e)| π2(e) |λx.e| (e1 e2)

A term v is a value if it is 0, a closed term of the form λx.e, or a pair 〈v1, v2〉 of
values. The small-step semantics (Figure 1) is entirely conventional. We write
e 7→ j e′ to mean that there exists a chain of j steps of the form e 7→ e1 7→ · · · 7→ e j
where e j is e′. We write e 7→∗ e′ if e 7→ j e′ for some j ≥ 0. A term is irreducible
if it has no successor in the step relation, that is irred(e) if e is a value or e is a
“stuck” expression such as π1(λx.e′) or 0(e′).
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We say that e is safe for k steps, if for any reduction e 7→ j e′ of j<k steps, either
e′ is a value or e′ 7→ e′′. Note that any term is safe for 0 steps. A term e is called
safe if it is safe for all k≥ 0. In this section we are interested in constructing
methods for proving that a given term is safe. The semantic approach taken
here, is based on types as sets rather than type expressions.

Definition 1. A type is a set τ of pairs of the form 〈k, v〉where k is a nonneg-
ative integer and v is a value, and where the set τ is such that if 〈k, v〉∈ τ and
0≤ j ≤ k then 〈 j , v〉 ∈ τ .

Informally, 〈k, v〉∈ τ means that v “looks” like it belongs to type τ ; perhaps v
is not “really” a member of type τ , but any program of type τ→ σ must execute
for at least k steps on v before getting to a stuck state.

Definition 2. For any closed expression e and type τ we write e :k τ if when-
ever e 7→ j v for j < k and v irreducible, then 〈k − j , v〉∈ τ ; that is,

e :k τ ≡∀ j∀e′.0≤ j < k ∧ e 7→ j e′ ∧ irred(e′)⇒〈k − j , e′〉∈ τ
Intuitively, e :k τ means that e behaves like an element of τ for k steps of

computation. Note that if e :k τ and 0≤ j ≤ k then e : j τ . Also, for a value v and
k> 0, the statements v :k τ and 〈k, v〉∈ τ are equivalent. We now define various
functions from sets to sets and an operation µ which takes a set functional
F—a function from sets to sets—and returns a set that (we will show) is a fixed
point of F . The µ operator allows us to define recursive types.

⊥ ≡ {}
> ≡ {〈k, v〉 | k≥ 0}

int ≡ {〈k, 0〉 | k≥ 0}
τ1 × τ2 ≡ {〈k, (v1, v2)〉| ∀ j < k. 〈 j , v1〉∈ τ1 ∧ 〈 j , v2〉∈ τ2}
σ→ τ ≡ {〈k, λx.e〉| ∀ j < k ∀v. 〈 j , v〉∈ σ⇒ e[v/x] : j τ }
µF ≡ {〈k, v〉 | 〈k, v〉∈ F k+1(⊥)}

The definitions above can all be translated to higher-order logic. For example,
our expression for µF would be written as,

µ(F )= λkλv.∀τ.ncomp(F, k+ 1,⊥, τ )⇒ τ k v

where ncomp(F, k, g, h) means informally that F k(g )=h and can be defined in
higher-order logic using a standard construction.2

Definition 3. A type environment is a mapping from lambda calculus vari-
ables to types. A value environment (also called a ground substitution) is a
mapping from lambda calculus variables to values. For any type environment
0 and value environment σ we write σ :k 0 (“σ approximately obeys 0”) if for all
variables x ∈dom(0) we have σ (x) :k 0(x).

Finally, we define a semantic entailment relation |=. We write 0 |=k e : α to
mean that every free variable of e is mapped by 0 and

∀σ.σ :k 0⇒ σ (e) :k α

2ncomp( f , n, x, y) can be defined as,

∀g. (∀z.g ( f , 0, z, z))⇒ (∀m, z1, z2.m> 0⇒ g ( f , m− 1, z1, z2)⇒ g ( f , m, z1, f (z2)))⇒ g ( f , n, x, y).
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Fig. 2. Type inference lemmas.

Fig. 3. A derivation of |=� : ⊥.

where σ (e) is the result of replacing the free variables in e with their values
under σ . We write 0 |= e : α if for all k≥ 0 we have 0 |=k e : α. We write |= e : α
to mean 00 |= e : α for the empty environment 00.

Each of the type inference lemmas in Figure 2 states that if certain instances
of the relation |= hold, then certain other instances hold. Note that |= can be
viewed as a three place relation where 0 |= e :α means that the relation |=
holds on the type environment 0, the term e, and the type α. Once we have
proved the type inference lemmas in Figure 2, these lemmas can be used in the
same manner as standard type inference rules to prove statements of the form
0 |= e : α. We now observe that definitions 1, 2, and 3 immediately imply the
following.

LEMMA 4. If |= e : α then e is safe.

Power of the type system. Our µ operator is powerful indeed. We can con-
struct a typed Y combinator, but we will first explain the simpler term
�= (λx.xx)(λx.xx), which reduces infinitely and therefore is safe. The derivation
in Figure 3 shows how to use the type lemmas in Figure 2 to derive |= � : ⊥.
By Lemma 4 we then have that � is safe. In the derivation 3α.α→⊥ is the set
functional mapping the set α to the set α→⊥.

THEOREM 5. The call-by-value fixed-point combinator Yv is well typed:

|= λ f .(λx.f (λz.xxz))(λx.f (λz.xxz)) : ((α→β)→ (α→β))→ (α→β)

for any α, β.

PROOF. Similar to the derivation in Figure 3, with the use (as necessary) of
the hypotheses,

f : (α→β)→ (α→β)
x : µ(3δ.δ→ (α→β)
z : α h
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This means that our system can type recursive functions without requiring
a primitive fix operator.

3. PROOFS OF THE TYPING LEMMAS

We now consider each of the type inference lemmas in Figure 2. Note that there
is a type inference lemma for each case in the grammar of lambda terms plus
two rules for the type constructor µ. The lemma for variables, stating that
0 |= x : 0(x), follows immediately from the definition of |=. The fact that int is a
type, and the type inference lemma for 0 stating 0 |= 0 : int, both follow directly
from the definition of int. We now consider the rules for applications and lambda
expressions. First we have the following lemma which follows directly from the
definition of →.

LEMMA 6. If α and β are types then α→β is also a type.

PROOF. By the definition of → it is obvious that α→β is closed under de-
creasing index.

We now prove the type theorems for application and lambda expressions.

LEMMA 7. If e1 and e2 are closed terms and α and β are type sets such that
e1 :k α→β and e2 :k α then (e1 e2) :k β.

PROOF. Since e1 :k α→β and e2 :k α we immediately have that both e1 and
e2 are safe for k steps and that if e1 generates a value in fewer than k steps,
that value must be a lambda expression. Hence, the application (e1 e2) either re-
duces for k steps without any top-level beta-reduction, or there exists a lambda
expression λx.e and a value v such that (e1 e2) 7→ j (λx.e) v with j< k. In the first
case we have that (e1 e2) is safe for k steps and does not generate a value in less
than k steps and hence (e1 e2) :k β (for any β). In the second case definitions 1
and 2 imply that 〈k− j , λx.e〉∈ α→β and (using closure under decreasing index)
〈k − j − 1, v〉∈α. The definition of→ then implies e[v/x] :k− j−1 β. But we now
have (e1 e2) 7→ j+1 e[v/x] and e[v/x] :k−( j+1) β. These two statements imply
(e1 e2) :k β.

THEOREM 8 (APPLICATION). If 0 is a type environment, e1 and e2 are (possibly
open) terms, and α and β are types such that 0 |= e1 : α→β and 0 |= e2 : α then
0 |= (e1 e2) : β

PROOF. We must prove that under the premises of the theorem and for any
k≥ 0 we have 0 |=k (e1 e2) : β. More specifically, for any σ such that σ :k 0 we
must show σ (e1 e2) :k β. By the premises of the theorem we have σ (e1) :k α→β

and σ (e2) :k α. The result now follows from Lemma 7.

THEOREM 9 (ABSTRACTION). Let 0 be a type environment, let α and β be types,
and let 0[x := α] be the type environment that is identical to 0 except that it
maps x to α. If 0[x := α] |= e : β then 0 |= λx.e : α→β.

PROOF. As in Theorem 8, we must show that under the premises of the
theorem we have that for any k ≥ 0 and ground substitution σ such that σ :k 0
we have σ (λx.e) :k α→β. Suppose σ :k 0. Let v and j< k be such that v : j α. By
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the definition of→ it now suffices to show that σ (e[v/x]) : j β. Let σ [x := v] be
the ground substitution identical to σ except that it maps x to v. We now have
that σ [x := v] : j 0[x := α]. By the premise of the theorem, we then have that
σ [x := v](e) : j β; but this implies σ (e[v/x]) : j β.

LEMMA 10. If α and β are types then so is α×β.

LEMMA 11. If α and β are types and e1 and e2 are closed terms such that
e1 :k α and e2 :k β then 〈e1, e2〉 :k α×β.

PROOF. The proof is similar to the proof of Lemma 7. Again we have that e1
and e2 are safe for k steps. If 〈e1, e2〉 does not reduce to a pair of values within
fewer than k steps, then we immediately have 〈e1, e2〉 :k α×β. So without loss of
generality, we can assume that 〈e1, e2〉 7→ j 〈v1, v2〉 with j< k and where v1 and
v2 are values. Since e1 :k α and e2 :k β, we now have v1 :k− j α and v2 :k− j β, which
implies 〈v1, v2〉 :k− j α×β. We now have 〈e1, e2〉 7→ j 〈v1, v2〉 and 〈v1, v2〉 :k− j α×β
and hence 〈e1, e2〉 :k α×β.

The type inference theorem for pair expressions now follows from Lemma 3
in the same manner that Theorem 8 follows from Lemma 7.

LEMMA 12. If α and β are types and e is a closed term such that e :k α×β
then π1(e) :k α and π2(e) :k β.

PROOF. We consider only theπ1 case. Since e is safe for k steps we can assume
without loss of generality that e 7→ j v for some value v and j< k. We now have
v :k− j α×β, which implies that v is a pair 〈v1, v2〉 with v1 :k− j−1 α; but we now
have that π1(e) 7→ j+1 v1 and v1 :k−( j+1) α and hence π1(e) :k α.

The type inference lemmas for projection terms follow from Lemma 3 in the
same way that Theorem 8 follows from Lemma 7.

We have now proved all of the type inference lemmas except those for the
type constructor µ. We will prove that the type inference for µ holds in the case
where F is well founded and that all nontrivial type constructors built from
type constants, →, and × are well founded.

Definition 13. The k-approximation of a set is the subset of its elements
whose index is less than k:

approx(k, τ ) = {〈 j , v〉 | j < k ∧ 〈 j , v〉∈ τ }
We have that if α is a type, then approx(k, α) is a type. We now define a notion

of a well founded functional. Intuitively, a recursive definition of a type α is well
founded if, in order to determine whether or not e :k α, it suffices to know e′ : j α

for all terms e′ and indices j< k.

Definition 14. A well founded functional is a function F from types to types
such that for any type τ and k≥ 0 we have

approx(k+ 1, F (τ ))= approx(k+ 1, F (approx(k, τ )))

Note that if F is a function from types to types and α is a type then F k(α) is
a type for any k≥ 0.
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LEMMA 15. For F well founded and j ≤ k, for any τ, τ1, τ2,

approx( j , F j (τ1)) = approx( j , F j (τ2)) (1)
approx( j , F j (τ )) = approx( j , F k(τ )) (2)

PROOF. (1) By induction.

approx(0, F j (τ1))=⊥=approx(0, F j (τ2)).
approx( j + 1, F j+1(τ1))=
approx( j + 1, F (F j (τ1)))=
approx( j + 1, F (approx( j , F j (τ1))))=
approx( j + 1, F (approx( j , F j (τ2))))=
approx( j + 1, F (F j (τ2)))=
approx( j + 1, F j+1(τ2)))

(2) Using (1), taking τ2= F k− j (τ1).

This says that j applications of a well-founded functional to any type yields
the same thing, to approximation j .

THEOREM 16. If F is well founded, then µF is a type.

PROOF. We must show that µ(F ) is closed under decreasing index. Suppose
that 〈k, v〉∈µ(F ) and consider j≤ k.

〈k, v〉∈µF
〈k, v〉∈ F k+1(⊥) by def ’n of µF
〈 j , v〉∈ F k+1(⊥) by def ’n of type
〈 j , v〉∈approx( j + 1, F k+1(⊥)) by def ’n of approx
〈 j , v〉∈approx( j + 1, F j+1(⊥)) by Lemma 15
〈 j , v〉∈ F j+1(⊥) by def ’n of approx
〈 j , v〉∈µF by def ’n of µF

LEMMA 17. approx(k, approx(k+ 1, τ ))= approx(k, τ ).

LEMMA 18. If F is well founded,

approx(k, µF )= approx(k, F k⊥) (a)

approx(k+ 1, F (µF ))= approx(k+ 1, F k+1⊥) (b)

PROOF. (a) For k= 0, each side is equivalent to ⊥. For k> 0, each of the
following lines is equivalent:

〈 j , v〉∈approx(k, µF )
j< k ∧ 〈 j , v〉∈µF by def ’n of approx
j< k ∧ 〈 j , v〉∈ F j+1⊥ by def ’n of µF
j< k ∧ 〈 j , v〉∈approx( j + 1, F j+1⊥) by def ’n of approx
j< k ∧ 〈 j , v〉∈approx( j + 1, F k⊥) by Lemma 15
j< k ∧ 〈 j , v〉∈ F k⊥ by def ’n of approx
〈 j , v〉∈approx(k, F k⊥) by def ’n of approx
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(b) Each of the following sets is equivalent.

approx(k+ 1, F k+1⊥)
approx(k+ 1, F (F k⊥))
approx(k+ 1, F (approx(k, F k⊥))) well-foundedness
approx(k+ 1, F (approx(k, µF ))) by (a)
approx(k+ 1, F (µF )) well-foundedness.

LEMMA 19. If F is well founded, approx(k, µF )= approx(k, F (µF )).

PROOF. Each of the following sets is equivalent

approx(k, µF )
approx(k, F k⊥) by Lemma 18a
approx(k, F k+1⊥) by Lemma 15
approx(k, approx(k+ 1, F k+1⊥)) by Lemma 17
approx(k, approx(k+ 1, F (µF ))) by Lemma 18b
approx(k, F (µF )) by Lemma 17.

THEOREM 20. If F is well founded, thenµF=F (µF ). Hence the type inference
lemmas for µ in Figure 2 hold for any well founded functional F .

PROOF. We have that 〈k, v〉∈µF iff 〈k, v〉∈approx(k+ 1, µF ) iff 〈k, v〉∈
approx(k+ 1, F (µF )) iff 〈k, v〉∈ F (µF ).

Theorem 20 justifies the derivation in Figure 3 provided that one can show
that the functional 3α.α→⊥ is well founded. Let α be the set µ(3α.α→⊥).
Intuitively, α is defined by the recursive definition α=α→⊥. We can think of
the type α as a predicate on pairs 〈k, v〉. A recursive definition of a predicate is
well founded if every recursive call is on a smaller argument. For the recursive
definition α=α→⊥ we have that 〈k, λx.e〉∈α iff for all j< k and 〈 j , v〉∈α we
have e[v/x] : j ⊥. So we have an infinite number of recursive calls to α, each of
the form 〈 j , v〉∈α with j< k—all recursive calls are on simper arguments. So
we get that the recursive definition α=α→⊥ is well founded. A more rigorous
proof that 3α.α→⊥ is well founded can be given using Lemma 22 below.

In the remainder of this section we use type constructor to mean a function
from type to type.

Definition 21. A nonexpansive type constructor F is one such that

approx(k, F (τ ))= approx(k, F (approx(k, τ )))

The constructor 3α.α is nonexpansive but not well founded. Other examples
(definable as extensions to the tiny type system of this paper) are 3α.α ∩ τ ,
3α.α ∪ τ , and the offset constructor of Appel and Felty [2000].

LEMMA 22 (NONEXPANSIVE CONSTRUCTORS).

a. Every well founded constructor is nonexpansive.
b. 3α.α is nonexpansive.
c. 3α.τ, where α is not free in τ, is well founded.
d. The composition of nonexpansive constructors is nonexpansive.
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e. The composition of a nonexpansive constructor with a well founded construc-
tor (in either order) is well founded.

f. If F and G are nonexpansive, then 3α.Fα→Gα is well founded.
g. If F and G are nonexpansive, then 3α.Fα×Gα is well founded.

PROOF. In the following we assume that F and G are nonexpansive and that
H is well founded.

a. approx(0, H(α))= approx(0, H(approx(0, α)));

approx(k+ 1, H(α))=
approx(k+ 1, H(approx(k, α)))= by Definition 14
approx(k+ 1, H(approx(k, approx(k+ 1, α)))) = by Lemma 17
approx(k+ 1, H(approx(k+ 1, α)))) by Definition 14.

b. Let I be 3α.α. Then approx(k, I (α))= approx(k, I (approx(k, α))).
c. Let K be a constant function. Then approx(k+ 1, K (α))= approx(k+ 1,

K (approx(k, α))).
d. approx(k, F (G(α))) = approx(k, F (approx(k, G(approx(k, α))))) = approx(k,

F (G(approx(k, α)))) by Definition 21 (twice).
e. approx(k+ 1, F (H(α))) = approx(k+ 1, F (approx(k+ 1, H(approx(k, α))))) =

approx(k+ 1, F (H(approx(k, α)))).
approx(k + 1, H(F (α))) = approx(k + 1, H(approx(k, F (approx(k, α))))) =
approx(k+ 1, H(F (approx(k, α)))).

f. By the definition of→we have approx(k+ 1, α→β)= approx(k+ 1, approx(k,
α)→approx(k, β)).
This gives the following.

approx(k+ 1, F (α)→G(α))=
approx(k+ 1, approx(k, F (α))→ approx(k, G(α)))=
approx(k+ 1, approx(k, F (approx(k, α)))→ approx(k, G(approx(k, α))))=
approx(k+ 1, F (approx(k, α))→G(approx(k, α)))

by the above, then Definition 21, and again by the above.
g. By the definition of × we have approx(k+ 1, α×β)= approx(k+ 1, approx(k,
α)×approx(k, β)).
This gives the following.

approx(k+ 1, F (α)×G(α))=
approx(k+ 1, approx(k, F (α))× approx(k, G(α)))=
approx(k+ 1, approx(k, F (approx(k, α)))× approx(k, G(approx(k, α))))=
approx(k+ 1, F (approx(k, α))×G(approx(k, α)))

LEMMA 23. If F is the identity constructor 3α.α, then µF = F (µF ).

PROOF. F j (⊥)=⊥, so both sides are equal to ⊥.

Quantified types. We can also model existential types—useful for data ab-
straction, and universal types—useful for polymorphic functions. The semantic
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constructors are,

∃F ≡
⋃

τ∈type

F τ ∀F ≡
⋂

τ∈type

F τ

where τ ∈ type means, as usual, that τ is closed under decreasing index.

THEOREM 24 (TYPING RULES FOR QUANTIFIED TYPES).

∀τ ∈ type. F τ ∈ type
(∃F )∈ type (∀F )∈ type (a)

τ ∈ type 0 |= v : F τ
0 |= v : ∃F (b)

0 |= v : ∃F
∃τ ∈ type. 0 |= v : F τ (c)

∀τ ∈ type. 0 |= v : F τ
0 |= v : ∀F (d )

0 |= v : ∀F
∀τ ∈ type. 0 |= v : F τ (e)

These rules all follow trivially from the definitions. However, rules b–e are
rather operational; they don’t look exactly like the usual type-checking rules
for quantified types, which involve the explicit management of a set of type
variables. It should be possible to define an extended notion of semantic entail-
ment 1, 0 |=k e : τ , where 1 is a set of type variables, to support this form of
type checking.

Even with our current definitions we can state theorems such as parametric-
ity. For example, we can prove that the only functions of type ∀α.α→α are the
empty (always nonterminating) function and the identity function; the usual
method of considering, for each value v, the singleton type τv works straight-
forwardly in our semantics.

THEOREM 25. The typing rules of Figure 2 are sound.

PROOF. 0 |= x : 0(x) is directly from the definitions of |= and e : τ . 0 |= 0 : int
is similarly trivial. The rules for application have been proved as Theorems 8
and 9; pairing and projection are Lemmas 3 and 12.

By Lemma 22, any type constructor 3α.τ , where τ is built from α and
the operators int,>,⊥, ×, → is either well founded or the identity. Thus, by
Theorem 20 and Lemma 23, µF = F (µF ).

By Lemma 4, any well typed closed expression is safe. Therefore we have
a model of general recursive types that is powerful enough to prove safety of
any simply typed λ-expressions. Theorem 24 hints at how to generalize this to
calculi with existential and polymorphic types.

4. AN INDEXED PER MODEL

We have shown a model of types in which we can reason about the membership
of terms in types. Even more useful, is a model in which we can reason about the
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equivalence of terms. This allows us to use the model to prove, for example, that
a compiler optimization has correctly transformed an expression. Just as useful,
is the ability to prove that some function f produces the same (i.e., equivalent)
result, independent of the representation of its argument; this permits more
perfect information hiding across interfaces.

Readers not interested in PER’s (partial equivalence relations) can skip this
section, as later sections do not depend on it. Moreover, the fact that our seman-
tics doesn’t require operational equivalence, is a significant advantage in some
situations. For example, defining operational equivalence for a calculus with
mutable references requires characterization of the set of references visible
to a given expression—a type-and-effect discipline—but when all we need is
proofs of safety, we can avoid all that work by using the simple non-PER model
described in the previous section.

Our indexed model extends easily to PER models of types. We define a type
as a set of triples 〈k, v, w〉, with the (informal) meaning that in any computation
of no more than k steps, v approximates w—that is, if f (v) halts in k steps, then
f (w) also halts and yields the same result.

We extend this relation from values to expressions, using the four-place re-
lation e≤ f :k τ , defined as

e ≤ f :k τ ≡ ∀ j∀e′.0 < j < k ∧ e 7→ j e′ ∧ irred(e′)
⇒ ∃ f ′. f 7→∗ f ′∧ 〈k − j , e′, f ′〉∈ τ

The statement e :k τ is an abbreviation for e≤ e :k τ , and serves as a
“conventional” typing judgement.

⊥ ≡ {}
int ≡ {〈k, 0, 0〉 | k≥ 0}

τ1× τ2 ≡ {〈k, (v1, v2), (w1, w2)〉 | ∀ j < k. 〈 j , v1, w1〉 ∈ τ1 ∧ 〈 j , v2, w2〉 ∈ τ2}
σ→ τ ≡ {〈k, λx.e, λy . f 〉 | ∀ j < k ∀v, w. 〈 j , v, w〉 ∈ σ⇒ e[v/x]≤ f [w/ y] : j τ }
µF ≡ {〈k, v, w〉 | 〈k, v, w〉 ∈ F k+1(⊥)}

As before, we define well-typed substitutions, and we define typing
entailments 0 |= e≤ f : τ .

σ1≤ σ2 :k 0≡ dom σ1=dom σ2=dom 0 ∧ ∀x. σ1(x)≤ σ2(x) :k 0(x)
0 |=k e≤ f : τ ≡ ∀σ1, σ2. σ1≤ σ2 :k 0⇒ σ1(e)≤ σ2( f ) :k τ
0 |= e≤ f : τ ≡ ∀k. 0 |=k e≤ f : τ

Now we can prove the type entailment theorems corresponding to Figure 2.

LEMMA 26. If e1, f1, e2, f2 are closed terms, and α,β are types such that
e1≤ f1 :k α→β and e2≤ f2 :k α then (e1 f1)≤ (e2 f2) :k β.

PROOF. By analogy with the proof of Lemma 7. Both e1 and e2 are safe for
k steps. If e1 7→ j1 v1 with j1< k, then v1 must be a lambda expression λx.e
and f1 7→∗ f ′1 with 〈k − j1, λx.e, f ′1〉 ∈α→β. Hence, the application e1e2 either
reduces for k steps without any top-level beta-reduction—in which case
e1e2≤ f :k τ for any f and τ—or (e1e2) 7→ j1 (λx.e)e2 7→ j2 (λx.e)v with j1+ j2< k,
f2 7→∗ f ′2, and 〈k − j2, v, f ′2〉 ∈α.
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Since the only values in α→β are lambdas, f ′1= λy.f for some y and f . By
decreasing index, 〈k − j1 − j2 − 1, v, f ′2〉 ∈α, and by the definition of α→β we
have e[v/x]≤ f [ f2/ y] :k− j1− j2−1. Either e[v/x] steps for another k− j1− j2− 1—
in which case e1e2 has now stepped for k steps and e1e2≤ f :k τ for any f and
τ—or (because it is approximately well typed) reduces to a value v3 in j3 steps,
with j3< k − j1 − j2 − 1. Then f [ f2/ y] 7→∗ f3 and 〈k− j1− j2−1− j3, v3, f3〉 ∈β.
Thus, e1e2 7→ j1+ j2+1+ j3 v3; but f1 f2 7→∗ f3, with the required relation between v3
and f3.

THEOREM 27 (APPLICATION).
0 |= e1≤ f1 : α→β 0 |= e2≤ f2 : α

0 |= (e1e2)≤ ( f1 f2) : β

PROOF. By analogy with Theorem 8, but using Lemma 26.

COROLLARY 28.
0 |= e1 : α→β 0 |= e2 : α

0 |= (e1e2) : β

THEOREM 29 (ABSTRACTION).

0[x := α] |= e≤ f : β
0 |= (λx.e)≤ (λx. f ) : α→β

PROOF. We must show that for any k and σ1, σ2 such that σ1≤ σ2 :k 0, we
have σ1(λx.e)≤ σ2(λx. f ) :k α→β. Let v, w and j< k be such that v≤w : j α. By
the definition of→ it suffices to show that σ1(e[v/x])≤ σ2( f [w/x]) : j β. We can
extend σ1 and σ2 so that σ1[x := v]≤ σ2[x :=w] : j 0[x :=α]. By the premise of
the theorem we have σ1[x := v]≤ σ2[x :=w] : j β. This implies σ1(e[v/x])≤
σ2( f [w/x]) : j β.

COROLLARY 30.
0[x :=α] |= e : β
0 |= λx.e : α→β

LEMMA 31. If α and β are types (i.e., closed under decreasing index), then so
are ⊥, int, α×β, and α→β.

Definitions, Lemmas, and Theorems 13–20 hold, using sets of triples instead
of sets of pairs. That is, the definition of approx(k, τ ) and well-foundedness,
and the lemmas and theorems about well founded type constructors, up to and
including µF = F (µF ), are written in exactly the same way.

LEMMA 32. All the statements (a)–(g) of Lemma 22, and Lemma 23, hold for
indexed-per type constructors.

THEOREM 33. Any type constructor F expressible in the “syntax” of construc-
tors int,×,→, µ is well founded, so therefore µF = F (µF ).

LEMMA 34. If |= e : α then e is safe.

In the PER model, however, we get more than just the lemma that typability
implies safety. We also get congruence and extensionality results: a well-typed
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function must map equivalent arguments to equivalent results, and if two func-
tions behave the same, then the type system judges them equivalent.

Define e∼ f : τ to mean e≤ f : τ ∧ f ≤ e : τ .

THEOREM 35 (CONGRUENCE).

0 |= e1∼ f1 : α→β 0 |= e2∼ f2 : α
0 |= (e1e2)∼ ( f1 f2) : β

PROOF. By Theorem 27.

THEOREM 36 (EXTENSIONALITY).

∀v, w. |= v∼w : α⇒ |= f v∼ gw : β
|= f ∼ g : α→β

PROOF. From the definition of α→β.

CLAIM (OBSERVATIONAL EQUIVALENCE). If e∼ f : τ then e and f have the same
observable behavior in any context of type τ .

PROOF. By the definition of ∼, via Theorem 27 (and a similar theorem for
pairing) e is applicatively equivalent to f . Observational equivalence should
follow via an adaption (for this calculus) of Milner’s Context Lemma [Milner
1977].

5. PROOF-CARRYING CODE

A fully mechanized foundational safety proof will have two parts:

(1) Machine-checked proof of the typing rules;
(2) Mechanized application of the typing rules.

This paper concentrates on (1). Section 2 has given proofs of typing rules for
lambda-calculus in excruciating detail, and yet that section is still fairly short.
This should be good evidence for mechanizability. We will not repeat all these
proofs in the same level of detail for von Neumann machines, but the proofs are
almost as simple.

Mechanized application of the typing rules is another story entirely. The
strategy successfully used by Necula [1998] is to use Nelson-Oppen collabo-
rating decision procedures. We intend to follow a different strategy, using our
indexed model of types to directly model Typed Assembly Language [Morrisett
et al. 1998b]. However, both of these are beyond the scope of this paper. We will
show informal proof techniques, but not decision procecures.

For the application of proof-carrying code, we need a soundness proof of recur-
sive types, not in lambda-calculus, but on a von Neumann machine—in Pentium
instructions, for example. The step relation of interest is not a predicate on pairs
of expressions e1 7→ e2, but on pairs of machine states (r1, m1) 7→ (r2, m2), where
r is the contents of the register bank and m is the contents of the memory—the
execution of one instruction can take the machine from state (r1, m1) to state
(r2, m2) [Appel and Felty 2000; Michael and Appel 2000].
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On such machines it is most convenient to define simpler type primitives
than the cartesian product and function arrow of lambda calculus:

int. The type of one-word machine integers.
const(n). The singleton type containing only the integer value n.
ref(τ ). Pointer to a memory location containing a value of type τ .
offset(n, τ ). A value that, if you add n to it, yields a value of type τ .
σ ∩ τ . The intersection of σ and τ . The (boxed) cartesian product σ × τ can

be built from offset(0, ref(σ ))∩offset(1, ref(τ )); a record with a σ value in the
first field and a τ value in the second field.
σ ∪ τ . The union of σ and τ . A (tagged) disjoint union σ + τ can be built from

(const(0)× σ ) ∪ (const(1)× τ ), that is, a record with a tag in the first field and
(depending on the tag value) either a σ or a τ in the second field.
∃α.τ . An existential type.
codeptr(τ ). A first-order continuation; that is, an address in the machine

code that is safe to jump to as long as an argument of type τ is passed in a des-
ignated register. Higher-order continuations (i.e., closures) can be constructed
using first-order closures and existential types; higher-order functions can be
constructed from higher-order closures [Minamide et al. 1996].

A value is a pair (m, x) where m is a finite partial function from integers
to integers (a partial memory) and x is an integer (typically representing an
address).3

To represent a pointer data structure that occupies a certain portion of the
machine’s memory, we let x be the root address of that structure, and the domain
of m, the set of addresses occupied by the data. For example, the boxed pair of
integers 〈5, 7〉 represented at address 108 would be represented as the value
({108 7→ 5, 109 7→ 7}, 108).

To represent a function (actually, a continuation) value, we let x be the entry
address of the function, and the domain of m be the set of addresses contain-
ing machine instructions of the function. Here is the function f (x, k)= k(x+ 1),
assuming that x is in register 1, and k is passed in register 7:

We assume that one of the registers is the program counter—for exam-
ple, register r(37) could be the program counter, pc= 37. Then a machine

3Appel and Felty use a triple (a, m, x) where m is a total function and a is the set describing the
domain of interest—the two formulations are equivalent.
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state (r, m) in which we have just jumped to location 200 has the property
r(pc)= 200.

The step relation (r, m) 7→ (r ′, m′) is defined on total functions m and m′; that
is, a machine instruction might fetch from any location. Any particular data
structure (i.e., value (m1, x1)) occupies only a finite portion of memory (the do-
main of m1 is finite). In order for the program to create and initialize new data
structures, it must know what addresses in m are not part of any already ex-
isting data structures. That is, at any time all existing values live in allocated
address of the heap, and unallocated addresses can be used for new data struc-
tures, and the allocated set must be computable from the current contents of
the register bank and memory. We model this with a function alloc(r, m) that
takes a register bank and memory and returns a set of addresses (integers). An
example of a simple alloc function is

alloc(r, m)={x | 0≤ x< r(6)}
where register 6 points to the boundary between allocated and unallocated
locations. To allocate and initialize a new data structure, the program would
store at locations r(6), r(6)+ 1, . . . and then increment r(6).

The machine has a step relation 7→ that models the decoding and execution of
one instruction. We have described how to model this relation in previous work
[Appel and Felty 2000; Michael and Appel 2000] and will not repeat it here. The
important property of our axiomatization is that the step relation is deliberately
partial: it omits any step that would be illegal under the code consumer’s safety
policy. For example, suppose in some state (r, m) the program counter points at
a instruction that would, if executed, load from an address outside the region
permitted by the policy. Then, by the design of our step relation, there will not
exist r ′, m′ such that (r, m) 7→ (r ′, m′). That is, the state (r, m) is stuck if it has no
successor state in the 7→ relation.

In order to keep the model simple, we won’t represent the notion of safely
halting with a result—the only safe computations are those that continue for-
ever. A safe state is one that cannot evaluate to a stuck state,

safe(r, m)≡∀r ′, m′. (r, m) 7→∗ (r ′, m′)⇒∃r ′′, m′′. (r ′, m′) 7→ (r ′′, m′′)

We say that a machine state (r, m) is safe to execute for k steps if it cannot get
stuck within k instructions:

safen(k, r, m)≡∀ j < k ∀(r ′, m′). (r, m) 7→ j (r ′, m′)⇒∃r ′′, m′′. (r ′, m′) 7→ (r ′′, m′′)

We write m v m′ to mean that one partial memory approximates another,

m v m′ ≡ ∀x ∈dom(m). x ∈dom(m′) ∧m(x)=m′(x)

Sometimes we will want to talk about the safety of partial memories, that is,
partial functions from addresses to integers. We can view a partial memory as
an underspecified total memory, and it will be safe if every possible extension
of it is safe.

safenp(k, r, m)≡∀m′. m v m′ ⇒ safen(k, r, m′)
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6. SETS OF INDEXED VALUES

Unlike values in lambda calculus, von Neumann values are not identified with
terminated computations. A value is a data structure in memory, with a root
pointer.

Just as in our λ-calculus model, a type is a set of indexed values {〈k, m, x〉}
where k is an approximation index, m is a partial memory, and x is an integer
(perhaps the root pointer of a data structure). Unlike the λ model, there are
no expressions that are not values, since we are dealing with machine states.
Therefore we have the correspondence,

(m, x) :k τ ≡〈k, m, x〉 ∈ τ
Intuitively, (m, x) :k τ means that the data structure (m, x) approximately

belongs to τ ; if a continuation of type τ→⊥ is applied to (m, x), then the machine
will not get stuck within k steps.

We say that a set of indexed values is a valid type if it is closed under extension
of the memory and under decreasing index:

type(τ )≡∀m, m′, x, j , k.m v m′ ∧ j ≤ k ∧ 〈k, m, x〉 ∈ τ⇒〈 j , m′, x〉 ∈ τ
As explained by Appel and Felty [2000], closure under extension of the mem-

ory is necessary so that the program can allocate and initialize a new value
while preserving existing typing judgements about old values.

As in our λ-calculus model, we define an approx operator on types,

approx(k, τ )={〈 j , m, x〉 | j < k ∧ 〈 j , m, x〉 ∈ τ }
and we say that a type constructor F is well founded if

∀τ. type(τ )⇒ (type(F τ )
∧∀k.approx(k+ 1, F τ )= approx(k+ 1, F (approx(k, τ ))))

Similarly, F is nonexpansive if

∀τ. type(τ )⇒ (type(F τ ) ∧ ∀k.approx(k, F τ )= approx(k, F (approx(k, τ ))))

A type environment8 or 0 is a finite map from integers to types. We will use
8 to specify local invariants that give the types of (some subset of) the registers
at a certain program point, and 0 to specify the global invariant that gives the
types of various program-counter locations in the program code.

We define (m, f ) :k 8 (“a function f satisfies8 to approximation k”) to mean,

(m, f ) :k 8≡∀x ∈dom(8). (m, f (x)) :k 8(x)

Type environments are used for two purposes: to summarize the types of
the contents of machine registers (in which case f will be a register bank r),
and to summarize the types of all entry points (machine-code addresses) of the
program (in which case f will be the identity function, and we will typically
write (m, id) :k 0).
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A valid type environment is composed of valid types:

typenv(8)≡∀x ∈dom(8). type(8(x))

int = {〈k, m, x〉| true}
const(n) = {〈k, m, x〉| x=n}

ref(τ ) = {〈k, m, x〉| x ∈dom(m) ∧ ∀ j < k. 〈 j , m, m(x)〉 ∈ τ }
σ ∩ τ = σ ∩ τ
σ ∪ τ = σ ∪ τ
∃F = {〈k, m, x〉| ∃α. type(α)∧ 〈k, m, x〉 ∈ F (α)}

codeptr(8) = {〈k, m, x〉| ∀ j , r ′, m′

m v m′ ∧dom(m′)= alloc(r ′, m′)∧ j < k ∧ r ′(pc)= x ∧ (m′, r ′) :j 8
⇒ safenp( j , r ′, m′)}

µF = {〈k, m, x〉| 〈k, m, x〉 ∈ F k+1⊥}
Any value x can be seen as a machine integer (regardless of the memory m
that accompanies it). Intersection (respectively, union) types are defined via
intersection (resp., union) of sets.

THEOREM 38. Each of our types is a valid type:

a. type(int).
b. type(const(n)).
c. type(τ )⇒ type(ref(τ )).
d. type(σ )∧ type(τ )⇒ type(σ ∩ τ )).
e. type(σ )∧ type(τ )⇒ type(σ ∪ τ )).
f. nonexpansive(F )⇒ type(∃F ).
g. type(τ )⇒ type(codeptr(τ )).
h. wellfounded(F )⇒ type(µF ).

THEOREM 39. The following typing lemmas hold:

(m, x) :k int (m, x) :k const(x)

x ∈dom(m) (m, m(x)) :k−1 τ

(m, x) :k ref(τ )
(m, x) :k ref(τ )

x ∈dom(m) (m, m(x)) :k−1 τ

wellfounded(F ) (m, x) :k F (µF )
(m, x) :k µF

wellfounded(F ) (m, x) :k µF
(m, x) :k F (µF )

A program p is a sequence of machine instructions at a specific place in
memory, that is, it is a finite function from address to integer, where the integer
codes for an instruction. Thus p is just a partial memory, and we can say that
p is embedded in a memory m by writing p v m.

At each point in the program there is a precondition, or invariant, such
that if the registers and memory satisfy the precondition it is safe to execute
the program. Necula [1997] would express these preconditions using types, for
example, r(1) : τ1 ∧ r(2) : τ2 ∧ r(5) : τ5.
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But this is like saying that r satisfies a type environment r :8, where
8={1 7→ τ1, 2 7→ τ2, 5 7→ τ5}. And the statement that this is the precondition of
location l is the same as l : codeptr(8), that is, it is safe to execute from location
l as long as the registers satisfy 8.

For the remainder of this section we make the simplifying assumption that
the program p contains only instructions, not data structures. Thus, for all l
in the domain of p, 0(l )= codeptr(8l ) for some 8l . The statement that all the
locations in the program have their respective codeptr types,

∀l ∈dom(p). (p, l ) : codeptr(8l )

is the same as the statement that (p, id) : 0, and id is the identity function; the
identity function because here we are not reasoning about the contents of the
ith register, but the address of the ith program location.

Scenario. A host computer wishes to run untrusted programs p. It will do
so by (1) loading p into memory at address l0, (2) setting register 1 to contain
an integer argument, (3) setting register 6 to point to the beginning of the
program’s heap space, and (4) jumping to location l0. The host’s safety policy is
that under these conditions, the initial state (r, m) must be provably safe; it will
check the proof before doing steps 1–4.

The scenario assures of the initial state (r, m) that (1) p v m, (2) r1 is an in-
teger, (3) alloc(r, m) properly describes the allocated locations, and (4) r(pc)= l0.

THEOREM 40. Let program p have entry point l0 with formal parameters80.
If p is loaded in memory m; the program counter is set to location l0; the program
satisfies invariants 0, where 0(l0)= codeptr(80); the register bank r satisfies
80; then the program is safe:

p v m r(pc)= l0 ∀k.(p, id) :k 0 0(l0)= codeptr(80) ∀k.(m, r) :k 80

safe(r, m)

PROOF. For any k, the premise (p, id) :k 0 gives us l0 :k codeptr(80). Then
safenp(k, r, m) follows from the definition of codeptr(80).

In our scenario, 80(1)= int and for i 6= 1, 80(i)=>. By our definitions of
int and >= int, (m, r) :k 80 is trivially satisfied. The only nontrivial premise of
Theorem 40 is ∀k.(p, id) :k 0; to prove this we define some properties of program
points.

Definition 41. A machine state (r, m) satisifies the precondition at l of
program p to approximation k, if the program counter is at l , the local invari-
ant 8 is satisfied, and the alloc function properly describes the set of allocated
locations:

sat precond(p, 0, l , k, r, m)≡
p v m ∧ r(pc)= l ∧ 0(l )= codeptr(8) ∧ (m, r) :k 8 ∧ dom(m)= alloc(r, m)
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LEMMA 42. If a program satisfies 0 to degree k, and some state satisfies a
precondition in 0 to degree k − 1, then it is safe for k − 1 steps:

(p, id) :k 0 sat precond(p, 0, l , k − 1, r, m)
safenp(k − 1, r, m)

PROOF. From the definition of codeptr, taking r ′ = r, m′ =m.

Definition 43. A program p is safe at l with respect to global invariant 0 if,
whenever the program satisifies 0, and the state satisfies precondition at l to
approximation k, it can take one step to a state that satisfies the precondition
at some l ′ to approximation k − 1:

safe at(p, 0, l )≡
∀r, m, k. (p, id) :k 0⇒

sat precond(p, 0, l , k, r, m)⇒
∃! r ′, m′, l ′. (r, m) 7→ (r ′, m′)∧ sat precond(p, 0, l ′, k − 1, r ′, m′)

THEOREM 44. If a program is safe at every point, then it is safe:

∀l ∈dom(0). safe at(p, 0, l )
∀k.(p, id) :k 0

PROOF. By induction over k. Each 0(l ) is a codeptr type, and these have the
property that they accept any value to approximation zero; this proves the base
case.

To prove the inductive case, assume (p, id) :k 0. We will show (p, id) :k+1 0

by proving for each l that l :k+1 0(l ), that is, l :k+1 codeptr(8l ).
By the definition of codeptr this is,

∀ j , r, m. p v m∧dom(m)= alloc(r, m)∧ j < k+ 1∧ r(pc)= l ∧ (m, r) : j 8l
⇒ safenp( j , r, m)

Pick arbitrary j , r, m and assume the premises pvm, dom(m)= alloc(r, m),
j < k+ 1, r(pc)= l , and (m, r) : j 8l . From this we have sat precond(p, 0, l ,
j, r, m). Using the premise safe at(p, 0, l ) we know that (r, m) 7→ (r ′, m′) such that
sat precond(p, 0, l ′, j − 1, r ′, m′). By Lemma 42, (r ′, m′) is safe for j − 1 steps, so
(r, m) is safe for j steps.

Thus, it suffices to prove safe at l for each location l ∈0. Since
dom(0)=dom(p), we know what instruction i is located at p(l ). We will need a
proof tactic for each kind of instruction i.

LEMMA 45. Suppose p(l ) is an integer that codes for the instruction r3←
m(r4). Suppose 0(l )= codeptr(8l ) and 0(l + 1)= codeptr(8l+1), where

8l = {1 : int, 3 : int, 4 : τ1× τ2}
8l+1 = {1 : int, 3 : τ1, 4 : τ1 × τ2}

Then (safe at(p, 0, l ))
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Informal argument. The precondition 8l of the instruction says, in effect,
r(1) : int, r(3) : int, r(4) : τ1 × τ2. The postcondition is r(1) : int, r(3) : τ1, r(4) :
τ1 × τ2. The instruction fetches the first field of the pair. Since the type of the
first field is τ1, the destination register r3 ends up with type τ1.

PROOF. Assume (p, id) :k 0, and sat precond(p, 0, l , k, r, m).
Since a valid instruction p (and therefore in m) at location l , and (by

satprecond) we know r(pc)= l , therefore the machine can execute a step, leading
to a state (r ′, m′).

By the definition of sat precond, p v m, and by the semantics of the instruc-
tion, m=m′. Thus, p v m′, that is, executing this instruction does not overwrite
the program.

Our instruction has modified neither dom(m) nor the registers within r
that determine the alloc function; that is, m=m′, so dom(m)=dom(m′) and
alloc(r, m)= alloc(r ′, m′). Therefore dom(m′)= alloc(r ′, m′). But if we had an in-
struction that increased the allocated set (as described by Appel and Felty
[2000]), this is where we would need to account for it.

Our example instruction is not a jump, so in the state r ′ we will have in-
cremented the program counter by 1; that is, r ′(pc)= 1+ r(pc)= l ′. If it were a
jump, then we would need to account for l ′ in a more sophisticated way than
just l ′ = l + 1.

Finally, we must prove (m′, r ′) :k−1 8l+1. That is, for all n in the domain
of 8l+1, 〈k− 1, m′, r ′(n)〉 ∈8l+1(n). The domain is just {1, 3, 4}; for n= 1 or 4 the
proposition is trivial, since 〈k, m, r(n)〉 ∈8l (n),8l (n)=8l+1(n), m=m′, r ′(n)=r(n),
and types are closed under decreasing index.

To prove 〈k − 1, m′, r ′(3)〉 ∈ τ1, we work as follows. The premise (m, r) :k 8l
implies 〈k, m, r(4)〉 ∈ τ1 × τ2. By the definition of ×, 〈k, m, r(4)〉 ∈ ref(τ1). By the
definition of ref, 〈k−1, m, m(r(4))〉 ∈ τ1. By the semantics of the fetch instruction,
r ′(3)=m(r(4)), so 〈k − 1, m, r ′(3)〉 ∈ τ1. Since m=m′, 〈k − 1, m′, r ′(3)〉 ∈ τ1.

Therefore sat precond(p, 0, l ′, k − 1, r ′, m′).

To prove a program p safe, we must have a battery of lemmas such as
Lemma 45, and we must find the invariant 0 suitable for p. Neither of these
is easy. We believe that the best way to succeed is to make a semantic model of
Typed Assembly Language [Morrisett et al. 1998b], and then the compiler that
produces p can also produce 0. Such a semantic model would rely on the in-
dexed model of recursive types that we have demonstrated here, but is beyond
the scope of the current paper.

The reasoning in the proof of Lemma 45 is similar to what proof-carrying code
systems do already: a combination of types (in the local invariants) and dataflow
(to model instruction semantics) leads to a proof that the local invariant at
location l naturally leads to the invariant at l + 1. The main difference is that
we don’t assume the typing rules as axioms of our system, but model the types
within a more primitive logic and prove the rules as derived lemmas.

A natural generalization of our technique is to let dom(0) be only a subset of
program locations in p, for example, one 8 at the entrance of each basic block.
Then we need to show that if 8l holds, there is some sequence of n instructions
(the entire basic block) that can be executed, leading to 8l+n (or to some other
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location, if there has been a jump) whose invariant is then satisfied to at least
degree k − n.

7. FIRST-CLASS FUNCTIONS

In a source language with first-class functions, the result of an expression can
be a function value, which can be bound to a variable, stored into a data struc-
ture, and eventually applied to an argument. In a conventional translation to
machine language, we will see the address of a segment of machine code being
bound to a variable, stored into a data structure, and eventually jumped to
(with arguments in the appropriate registers). In languages with higher-order
functions implemented as closures, the machine-code pointers are still there,
hidden inside the closures.

A type system for proof-carrying code must account for function values. Appel
and Felty [2000] give a type system which includes function values (through a
codeptr type similar in spirit to the one we have presented here) and covariant
recursive types (not the general recursive types we have presented here). They
also sketch a proof method for using these types to prove safety of programs.

The problem is that their proof method is too weak to accommodate first-class
function values: it can handle application of first-class functions but not creation
of them. No formal result in their paper is (known to be) wrong, but where they
appear to imply that their method can accommodate function-pointers, they
are mistaken. The example that follows cannot be typed in their system—in
particular, at the instruction r2 ← 102 it cannot be proved that 102 : int→ int.

The problem is that their induction is forward, over execution steps since
the beginning of the program. In contrast, the proof method using indexed
types, as presented in the previous section, is by induction over future execution
steps. Intuitively, codeptr values are (first-order) continuations, so it is natural
that reasoning about future execution is the right way to proceed. And indeed,
our indexed-type method is strong enough to handle programs with function
pointers.

We will show an example, using a short machine-language program that
puts a function-pointer into a register, then calls the function. In this example
we use a very simple-minded notion of continuation type—cont(τ ), which is a
continuation accepting a return-value of type τ in register 1,

cont(τ ) = codeptr{r1 : τ }

and an equally simple notion of function type, that is,

τ1→ τ2 = codeptr{r1 : τ1, r7 : cont(τ2)}

This means that the formal parameter (of type τ1 arrives in register 1, and
the return address (of type cont(τ2) arrives in register 7. Return values (of
type τ2 are passed back in register 1. We ignore here the problem of stack-
ing return addresses for nested calls, which is treated in depth elsewhere
[Morrisett et al. 1998a].
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Our program (with local invariants 8) is

l p(l ) 8l

100 : {}
r2 ← 102

101 : {r2 : int→ int}
jump 104

102 : {r1 : int, r7 : cont(int)}
r1 ← r1 + 1

103 : {r1 : int, r7 : cont(int)}
jump r7

104 : {r2 : int→ int}
r1 ← 3

105 : {r1 : int, r2 : int→ int}
r7 ← 107

106 : {r1 : int, r2 : int→ int, r7 : cont(int)}
jump r2

107 : {r1 : int}
jump 107

Instruction 100 moves the function-pointer 102 into r2, then jumps to 104.
Instruction 104 marshals the argument 3 and return address 107 into registers
r1 and r7, then jumps to the function-pointer. Instruction 107 (safely) infinite-
loops.

We construct the global invariant 0 from the8 functions shown in the table.

LEMMA 46. This program is safe at l = 100.

PROOF. Most of the necessary conclusions are trivial. Certainly if pvm, then
m(100) contains the instruction r2← 102, so (r, m) 7→ (r ′, m′) with r ′(2)= 102 and
r ′(pc)= 101. Certainly 0(101)= codeptr(8101)= codeptr{r2 : int→ int}. Since
m=m′ and the predicate alloc(r, m) is independent of r(2) and r(pc), we have
p v m′ and dom(m′)= alloc(r ′, m′).

Finally, we must show (m′, r ′) :k−1 8101. By hypothesis, (p, id) :k 0, so ∀x ∈
dom(p). [0](p, x) :k 0(x). Thus, (p, 102) :k codeptr(8102). But codeptr(8102)=
codeptr({r1 : int, r7 : cont(int)})= int→ int. Thus,

(p, 102) :k int→ int

Since r ′(2)= 102 and types are closed under v and under decreasing k, we
have

(m′, r ′(2)) :k−1 int→ int

Since 8101 = {r2 : int→ int} we have

(m′, r ′) : j−1 8101

8. RELATED WORK

Appel and Felty [2000] present a type system that defines a semantics for types
on von Neumann machines with higher order types and monotone recursive
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types. However, their proof method involves establishing program invariants
by induction over steps of computation. The classical program-invariant method
can not handle assignments of the form x= f where x is a program variable
and f is a (higher order) procedure constant (or instruction pointer). Here we
give a type semantics that includes general recursive types and give a proof
method approriate for higher order program invariants. The proof method is
analogous to a mutual recursion fixed point rule similar to the λ-calculus fixed
point rule mentioned in the introduction.

Assignments of the form x= f where f is an object (as opposed to a proce-
dure) are handled in a classical program-invariant style in a (type-specialized)
PCC system for Java developed by Colby et al. [2000]. Program-invariant
safety proofs for object-oriented programs can be interpreted as control-flow
analyses—each method invocation transfers control to a known set of possible
instruction locations. Higher order type-theoretic methods, such as the one we
present in this paper, seem more general than first order control-flow methods,
for example, type theoretic methods easily handle the polymorphic case.

Each of our types contains more (operational) information than types used
in other semantics such as D∞ models and the ideal model of MacQueen et al.
[1986]. To strip away the extra information from an indexed type, one can take
the limit (or infinite intersection) over k:

strip(τ )={v | ∀k. 〈k, v〉∈ τ }

An analogous “strip” operator can be defined for indexed PER types.
One implication of this extra internal structure is that an indexed type can

distinguish (just a little bit) between equivalent expressions, depending on the
efficiency (in execution steps) of the computations. For example, take the ex-
pressions e1= 0 and e2= (λx.x)0. We have e2 :1 int→ int, but not e1 :1 int→ int.
However, neither e2 : int→ int nor e1 : int→ int, since as we refine the approx-
imation we can detect that the expressions are not functions.

THEOREM 47 (METRIC SPACES). Well founded type constructors are contrac-
tive in the metric-space sense of MacQueen et al. [1986]. Therefore ourµ operator
is a construction of the fixed point that they prove must exist.

PROOF. Use the metric |τ1− τ2| =2−nearness(τ1,τ2), where the nearness(τ1, τ2) is
the least k such that approx(k, τ1) 6= approx(k, τ2).

Still, they are proving the existence of fixed points directly on the “stripped”
types, which we do not do. On the other hand, they model only membership,
whereas our approach easily generalizes to model equivalence.

Information systems. Winskel [1993] builds a model of recursive types based
on information systems, which account for the size of proofs. He constructs
well-founded recursions based on this size measure. This is a reasonable way
to proceed, at least for lambda-calculus, but constructing the mathematical
infrastructure of the theory of information systems leads to a proof that is
significantly larger overall than ours.
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Recursion-theoretic semantics. Mitchell and Viswanathan’s [1996] PER se-
mantics is powerful and expressive, but it relies on many “elementary” results
of recursion theory. Building a machine-checked proof of these results for a real
machine architecture would require a very large implementation effort, and for
this reason the recursion-theoretic approach is not attractive.

Compactness of evaluation. The notion of minimal invariance—as defined
by Pitts [1996] and adapted by Birkedal and Harper [1997] to an operational
setting—provides a relational interpretation of general recursive types. Like
other earlier approaches, these approaches treat terms extensionally and hence
appear to be fundamentally different from our approach. We have not inves-
tigated generalizing our approach to arbitrary logical relations, but the ease
with which our indexed-sets proof generalized to indexed-PERs is a hint that
such generalizations should be possible.

9. CONCLUSION

We have presented a direct construction of general recursive types that is well
suited for “implementation” as a machine-checked proof in a von Neumann
setting. No significant libraries of mathematics are required as support. In
contrast, previous PER models of computable functions use large bodies of
computability theory, such as simulation theorems. Metric-space models use
the theory of complete metric spaces (Cauchy sequences) and the Banach fixed
point theorem. We have “implemented” a machine-checked proof of Theorems 38
and 39 in about 2000 lines of Twelf [Pfenning and Schürmann 1999] code, using
the logic described by Appel and Felty [2000].

Actually, the theory of complete metric spaces is not so hard to implement
in higher-order logic; the first author (working with Amy Felty) built most
of an implementation, in preparation for a machine-checked model of types
based on MacQueen et al. [1986]. The problem, however, was in finding an
appropriate metric for computation on a von Neumann machine. This paper
demonstrates the metric, but in doing so, it avoids the need for metric spaces
at all.

Our model has a unary (type membership only) variant and a PER (partial
equivalence relation) variant, so it is expressive enough for a wide variety of
applications.

The key feature of our model is that it reasons inductively about the number
of future computation steps. Thus it is well suited to modelling type systems
that use continuations, which are abstractions of future computations.
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