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Abstract

We present a proof technique, based on syntactic logical relations, for showing contextual equivalence
of expressions in a λ-calculus with recursive types and impredicative universal and existential types. We
show that for recursive and polymorphic types, the method is both sound and complete with respect to
contextual equivalence, while for existential types, it is sound but incomplete. Our development builds on
the step-indexed PER model of recursive types presented by Appel and McAllester. We have discovered
that a direct proof of transitivity of that model does not go through, leaving the “PER” status of the
model in question. We show how to extend the Appel-McAllester model to obtain a logical relation that
we can prove is transitive, as well as sound and complete with respect to contextual equivalence. We
then augment this model to support relational reasoning in the presence of quantified types.

Step-indexed relations are indexed not just by types, but also by the number of steps available for
future evaluation. This stratification is essential for handling various circularities, from recursive func-
tions, to recursive types, to impredicative polymorphism. The resulting construction is more elementary
than existing logical relations which require complex machinery such as domain theory, admissibility,
syntactic minimal invariance, and >>-closure.
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1 Introduction

Proving equivalence of programs is important for verifying the correctness of compiler optimizations and other
program transformations, as well as for establishing that program behavior is independent of the representa-
tion of an abstract type. This representation independence principle guarantees that if one implementation
of an abstraction is exchanged for another, client modules will not be able to detect a difference.

Program equivalence is generally defined in terms of contextual equivalence. We say that two programs
are contextually equivalent if they have the same observable behavior when placed in any program context C.
Unfortunately, proving contextual equivalence is difficult in general, since it involves quantification over all
possible contexts. As a result, there’s been much work on finding tractable techniques for proving contextual
equivalence. Many of these are based on the method of logical relations.

Logical relations specify relations on well-typed terms via structural induction on the syntax of types.
Thus, for instance, logically related functions take logically related arguments to related results, while log-
ically related pairs consist of components that are related pairwise. Logical relations may be based on
denotational models (e.g. [1, 2, 3]) or on the operational semantics of a language [4, 5, 6, 7]. The latter are
also known as syntactic logical relations [8] and it is this flavor that is the focus of this paper.

To prove the soundness of a logical relation, one must prove the Fundamental Property (also called
the Basic Lemma) which says that any well-typed term is related to itself. For simple type systems, it is
fairly straightforward to prove the Fundamental Property in the absence of nontermination. The addition
of recursive functions, however, complicates matters: establishing the Fundamental Property now requires
proving additional “unwinding” lemmas [9, 6, 7, 10] which show that in any terminating computation a
recursively defined function is approximated by its finite unrollings. More challenging still is the addition
of recursive types and impredicative quantified types1 since the logical relation can no longer be defined by
induction on types. Thus, showing the existence of a relational interpretation of recursive types requires
proving a nontrivial minimal invariance property [3, 10, 8, 11, 12].

Appel and McAllester [13] proposed a radically different solution to the problem of recursive types. They
defined intensional types, based on the operational semantics of the language, that are indexed by the
number of available (future) execution steps. This extra information is sufficient to solve recursive equations
on types. Appel and McAllester also presented a PER (relational) model of recursive types, which we build
on in this paper. The advantage of step-indexed logical relations is that they avoid complex machinery
like domain theory, admissibility, and syntactic minimal invariance. The approach is promising since unary
step-indexed models have scaled well to advanced features like impredicative quantified types and general
references (i.e., mutable references that can store functions, recursive types, other references, and even
impredicative quantified types) [14, 15].

Appel and McAllester proved the Fundamental Property for their PER model of equi-recursive types,
and conjectured that their model was sound with respect to contextual equivalence. We show that their
claim is correct — to be precise, we show soundness for a calculus with iso-recursive types, but the essence
of the model is the same.

We discovered, however, that the expected proof of transitivity for the Appel-McAllester model does not
go through. To definitively show that their model is not transitive we tried to find a counterexample, but
could not. Thus, we note that the transitivity of the Appel-McAllester model remains an open problem.

In Section 2 we consider a λ-calculus with iso-recursive types and present a sound and complete logical
relation for the language. We also show how a direct proof of transitivity of the Appel-McAllester model
fails, and discuss some of the peculiarities of the step-indexed approach. In Section 3 we extend the logical
relation to support quantified types. Specifically, we present a logical relation for a language with recursive
and polymorphic types that is both sound and complete with respect to contextual equivalence, while for
a language that also has existential types, we show a logical relation that is sound but incomplete. Proofs
of all lemmas in the paper and several examples to illustrate the use of our logical relation are given in the
appendix.

1A quantified type such as ∀α. τ is impredicative if α may be instantiated with any type, including ∀α. τ itself.
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Types τ ::= bool | τ1 × τ2 | τ1 → τ2 | α | µα. τ
Expressions e ::= x | tt | ff | if e0, e1, e2 | 〈e1, e2〉 | let 〈x1, x2〉= e1 in e2 |

λx. e | e1 e2 | fold e | unfold e
Values v ::= tt | ff | 〈v1, v2〉 | λx. e | fold v

Eval Ctxts E ::= [·] | ifE, e1, e2 | let 〈x1, x2〉= E in e | E e | v E | foldE | unfoldE

(iftrue) if tt, e1, e2 7−→ e1

(iffalse) if ff, e1, e2 7−→ e2

(letpair) let 〈x1, x2〉= 〈v1, v2〉 in e 7−→ e[v1/x1][v2/x2]

(app) (λx. e) v 7−→ e[v/x]

(unfold) unfold (fold v) 7−→ v

(ctxt)
e 7−→ e′

E[e] 7−→ E[e′]

Figure 1: λrec Syntax and Operational Semantics

Γ ` e : τ

(Var)
Γ ` x : Γ(x)

(Fn)
Γ, x:τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2
(App)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(Fold)
Γ ` e : τ [µα. τ/α]

Γ ` fold e : µα. τ
(Unfold)

Γ ` e : µα. τ

Γ ` unfold e : τ [µα. τ/α]

Figure 2: λrec Static Semantics (Selected Rules)

2 Recursive Types

We consider a call-by-value λ-calculus with iso-recursive types (dubbed the λrec-calculus). Figure 1 presents
the syntax and small-step operational semantics for the language, which supports booleans and pairs in
addition to recursive types. We define the operational semantics for λrec as a relation between closed terms
e. We use evaluation contexts to lift the primitive rewriting rules to a standard, left-to-right, innermost-to-
outermost, call-by-value interpretation of the language. We say that a term e is irreducible (irred(e)) if e
is a value (val(e)) or if e is a “stuck” expression to which no operational rule applies. We also use e ⇓ as an
abbreviation for ∃e′. e 7−→∗ e′ ∧ val(e ′).

Typing judgments in λrec have the form Γ ` e : τ where the context Γ is defined as follows:

Value Context Γ ::= • | Γ, x:τ .

Thus, Γ is used to track the set of variables in scope, along with their (closed) types. There may be at most
one occurrence of a variable x in Γ. The λrec static semantics is entirely conventional (see, e.g., [17]) so we
only show selected rules in Figure 2. We use the abbreviated judgment ` e : τ when the value context is
empty.

Theorem 2.1 (λrec Safety)

If • ` e : τ and e 7−→∗ e′, then either e′ is a value, or there exists an e′′ such that e′ 7−→ e′′.

2.1 λrec: Contextual Equivalence

A context C is an expression with a single hole [·] in it. Typing judgments for contexts have the form
Γ1 ` C : (Γ . τ) τ1, where (Γ . τ) indicates the type of the hole — that is, if Γ ` e : τ , then Γ1 ` C[e] : τ1.
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Definition 2.2 (λrec Contextual Approximation �ctx & Equivalence 'ctx )

If Γ ` e : τ and Γ ` e′ : τ , we write Γ ` e �ctx e′ : τ to mean

∀C, τ1. • ` C : (Γ . τ) τ1 ∧ C[e] ⇓ =⇒ C[e′] ⇓ .

Two terms are contextually equivalent if they contextually approximate one another:

Γ ` e 'ctx e′ : τ
def
= Γ ` e �ctx e′ : τ ∧ Γ ` e′ �ctx e : τ .

2.2 λrec: Logical Relation

Our step-indexed logical relation for λrec is based on the PER model for equi-recursive types presented by
Appel and McAllester [13] (henceforth AM). The latter claimed, but did not prove, that their PER model
was sound with respect to contextual equivalence. We have proved that this is indeed the case. However,
“PER” may be somewhat of misnomer for the AM model since the status of transitivity is unclear, as we
shall show.

Relτ
def
= {χ ∈ 2Nat×CValues×CValues | ∀(j, v, v′) ∈ χ. • ` v′ : τ ∧

∀i ≤ j. (i, v, v′) ∈ χ}
bχck

def
= {(j, v, v′) | j < k ∧ (j, v, v′) ∈ χ}

RV JαKρ = ρsem(α)

RV JboolKρ = {(k, v, v′) | ` v′ : bool ∧
(v = v′ = tt ∨ v = v′ = ff)}

RV Jτ1 × τ2Kρ = {(k, 〈v1, v2〉, 〈v′1, v′2〉) | ` 〈v′1, v′2〉 : (τ1 × τ2)
[ρ] ∧

(k, v1, v
′
1) ∈ RV Jτ1Kρ ∧ (k, v2, v

′
2) ∈ RV Jτ2Kρ}

RV Jτ1→τ2Kρ = {(k, λx. e, λx. e′) | ` λx. e′ : (τ1 → τ2)
[ρ] ∧

∀j < k, v, v′.
(j, v, v′) ∈ RV Jτ1Kρ =⇒
(j, e[v/x], e′[v′/x]) ∈ RC Jτ2Kρ}

RV Jµα. τKρ = {(k, fold v, fold v′) | ` fold v′ : (µα. τ)[ρ] ∧
∀j < k.

let χ = bRV Jµα. τKρcj+1 in

(j, v, v′) ∈ RV JτKρ[α 7→ (χ, (µα. τ)[ρ] )]}
RC JτK ρ = {(k, e, e′) | ∀j < k, ef .

e 7−→j ef ∧ irred(ef ) =⇒
∃e′f . e′ 7−→∗ e′f ∧ (k − j, ef , e′f ) ∈ RV JτKρ}

RG J•K = {(k, ∅, ∅)}
RG JΓ, x:τK = {(k, γ[x 7→ v], γ′[x 7→ v′]) | (k, γ, γ′) ∈ RG JΓK ∧ (k, v, v′) ∈ RV JτK∅}

Γ ` e ≤ e′ : τ
def
= Γ ` e : τ ∧ Γ ` e′ : τ ∧

∀k ≥ 0. ∀γ, γ′.
(k, γ, γ′) ∈ RG JΓK =⇒ (k, γ(e), γ′(e′)) ∈ RC JτK∅

Γ ` e ∼ e′ : τ
def
= Γ ` e ≤ e′ : τ ∧ Γ ` e′ ≤ e : τ

Figure 3: λrec Relational Model (Shaded 6∈ Appel-McAllester)

In both models, the relational interpretation RV JτK of a type τ is a set of triples of the form (k, v, v′)
where k is a natural number (called the approximation index or step index ), and v and v′ are (closed) values.
Intuitively, (k, v, v′) ∈ RV JτK says that in any computation running for no more than k steps, v approximates
v′ at the type τ . Our model differs from the AM model in that whenever (k, v, v′) ∈ RV JτK, we additionally
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require that • ` v′ : τ . This additional constraint enables us to prove the transitivity of our logical relation.
Moreover, restricting the model to terms that are well-typed seems essential for completeness with respect to
contextual equivalence, as others have also noted [12]. We defer an explanation of why we don’t also require
• ` v : τ till Section 2.3.

Figure 3 gives the definition of our logical relation; shaded parts of the definitions have no analog in the
AM model. We use the meta-variable χ to denote sets of tuples of the form (k, v, v′), where v and v′ are
closed values (v, v′ ∈ CValues). For any set χ, we define the k-approximation of the set (written bχck) as
the subset of its elements whose indices are less than k.

We define Relτ (where τ is a closed syntactic type) as the set of those sets χ ∈ 2Nat×CValues×CValues that
have the following two properties: if (k, v, v′) ∈ χ, then v′ must be well-typed with type τ , and χ must be
closed with respect to a decreasing step-index.

We use the meta-variable ρ to denote type substitutions. These are partial maps from type variables α
to pairs (χ, τ) where χ is the semantic substitution for α and τ (a closed syntactic type) is the syntactic
substitution for α. We note that our definitions ensure that if ρ(α) = (χ, τ) then χ ∈ Relτ . Since types in
λrec may contain free type variables, the interpretation of a type τ is parametrized by a type substitution ρ
such that FTV (τ) ⊆ dom(ρ). We use the following abbreviations:

• Let ρ(α) = (χ, τ). Then ρsem(α) = χ and ρsyn(α) = τ .

• Let ρ = {α1 7→ (χ1, τ1), . . . , αn 7→ (χn, τn)}.
Then τ [ρ] is an abbreviation for τ [τ1/α1, τ2/α2, . . . , τn/αn].

Next, we consider the relational interpretation RV JτK ρ of each type τ . In each case, note that if
(k, v, v′) ∈ RV JτK ρ then ` v′ : (τ)[ρ].

Booleans. Two values are related at the type bool for any number of steps k ≥ 0, if they are both tt or
both ff.

Pairs. The pairs 〈v1, v2〉 and 〈v′1, v′2〉 are related at type τ1 × τ1 for k steps if vi and v′i are related for k
steps at the type τi (for i ∈ {1, 2}).

Functions. Since functions are suspended computations, their interpretation is given in terms of the
interpretation of types as computations (see below). Two functions are related if they map related arguments
to related results. Specifically, λx. e and λx. e′ are related at the type τ1 → τ2 for k steps if, at some point
in the future, when there are j < k steps left to execute, and there are arguments va and v′a that are related
at the type τ1 for j steps, then e[va/x] and e′[v′a/x] are related as computations of type τ2 for j steps.

Recursive Types. One would expect the values fold v and fold v′ to be related at the type µα. τ for k
steps if v and v′ are related at the type τ [µα. τ/α] for j < k steps. We show that the latter is equivalent to
what is required by the definition in Figure 3. Note that by the definition of b·ck

(j, v, v′) ∈ RV Jτ [µα. τ/α]]K ρ ⇔ (j, v, v′) ∈ bRV Jτ [µα. τ/α]K ρcj+1 .

We prove a type substitution lemma (see Appendix B.7) that allows us to conclude that if χ =
bRV Jµα. τK ρcj+1 then:

bRV Jτ [µα. τ/α]K ρcj+1 = bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]cj+1 .

Hence,
(j, v, v′) ∈ RV Jτ [µα. τ/α]K ρ
⇔ (j, v, v′) ∈ bRV Jτ [µα. τ/α]K ρcj+1 by b·ck

⇔ (j, v, v′) ∈ bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]cj+1 by type subst

⇔ (j, v, v′) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])] by b·ck

which is exactly what is required by the definition of RV Jµα. τK ρ.
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Computations. Two closed expressions e and e′ are related as computations of type τ for k steps as
follows. If e steps to an irreducible term ef in j < k steps, then e′ must also step to some irreducible e′f .
Furthermore, both ef and e′f must be values that are related for the remaining k − j steps.

What is surprising about this definition is that e must terminate in j < k steps, while e′ may terminate
in any number of steps, say i. Hence, i may be greater than k. This has ramifications for transitivity in the
AM model and we shall return to this point shortly.

Logical Relation. If Γ ` e : τ and Γ ` e′ : τ , then we write Γ ` e ≤ e′ : τ to mean that for all k ≥ 0,
if γ and γ′ are mappings from variables x to closed values that are related for k steps at Γ, then γ(e) and
γ′(e′) are related for k steps as computations of type τ . We say e and e′ are logically equivalent, written
Γ ` e ∼ e′ : τ , if they logically approximate one another.

We now have to prove that each type τ is a valid type — that is, that the relational interpretation of τ
belongs to Relτ (i.e., RV JτK ρ ∈ Relτ [ρ]). This involves showing well-typedness and closure under decreasing
step-index (see Appendix B.6).

Next, we prove a number of nontrivial lemmas (see Appendix B.7 and B.8). Specifically, we prove that
the logical relation defined in Figure 3 has the compatibility and substitutivity properties (see e.g., [9]).
These allow us to show that the λrec typing rules preserve the logical relation, and hence prove the following
lemma.

Lemma 2.3 (λrec Fundamental Property / Reflexivity)

If Γ ` e : τ , then Γ ` e ≤ e : τ .

2.3 Transitivity and the Appel-McAllester Model

Let us ignore the shaded parts of Figure 3 and try to prove the following lemma with the resulting definitions.

Proposed Lemma (Transitivity: Appel-McAllester)
If Γ ` e1 ≤ e2 : τ and Γ ` e2 ≤ e3 : τ , then Γ ` e1 ≤ e3 : τ .
Proof Attempt: Suppose k ≥ 0 and (k, γ, γ′) ∈ RG JΓK.
Show (k, γ(e1), γ′(e3)) ∈ RC JτK ∅. Suppose j < k, γ(e1) 7−→j ef1 , and irred(ef1).
Show ∃ef3 .γ

′(e3) 7−→∗ ef3 ∧ (k − j, ef1 , ef3) ∈ RV JτK ∅.
Instantiate Γ ` e1 ≤ e2 : τ with k ≥ 0 and (k, γ, γ′) ∈ RG JΓK.
Hence, (k, γ(e1), γ′(e2)) ∈ RC JτK ∅.
Instantiate this with j < k, γ(e1) 7−→j ef1 , and irred(ef1).
Hence, ∃ef2 , i such that i ≥ 0, γ′(e2) 7−→i ef2 , and (k − j, ef1 , ef2) ∈ RV JτK ∅.
Now we need to use the premise Γ ` e2 ≤ e3 : τ . But what should we instantiate this with? We consider
two ways we could proceed.

(i) Instantiate Γ ` e2 ≤ e3 : τ with k, γ, γ′. Note that k ≥ 0 and (k, γ, γ′) ∈ RG JΓK. Hence,
(k, γ(e2), γ′(e3)) ∈ RC JτK ∅.
Problem: We could instantiate this with i and ef2 , but at that point we are stuck since we can-
not show i < k (since i may be greater than k), and we cannot show γ(e2) 7−→i ef2 (we only have
γ′(e2) 7−→i ef2).

(ii) Instantiate Γ`e2≤ e3 :τ with i + 1, γ′, γ′.
Problem: We cannot show (i + 1, γ′, γ′) ∈ RG JΓK. All we know is that (k, γ, γ′) ∈ Γ, where i may be
greater than k.

We note that if we restrict our attention to closed terms e1, e2, e3, then the above lemma can be proved.
In the case of open terms, however, the status of transitivity of the AM model is unclear as we have been
unable to find a counterexample.

There are several things one could attempt in order to rectify the above problem with the AM model
(unshaded parts of Figure 3). One problem we encountered was that i may be greater than k. To get around
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this, we could change the definition of (k, e, e′) ∈ RC JτK to require that e′ must terminate in less than k
steps. Unfortunately, if we step back and examine the resulting meaning of Γ ` e1 ∼ e2 : τ , we see that the
latter now requires that both e1 and e2 must terminate in exactly the same number of steps. Clearly such a
logical relation would not be very useful (unless we are concerned with reasoning about timing leaks in an
information-flow setting). Other formulations involving the use of not one, but two step-indices (where the
second bounds the number of steps in which e′ must terminate) also lead to models where both terms are
required to terminate in exactly the same number of steps.

Since we want a logical relation that considers programs equivalent modulo the number of steps they
take, we will not change the definition of RC JτK. Instead we fix the problem with transitivity by moving to
a typed setting where (k, v, v′) ∈ RV JτK ∅ implies ` v′ : τ . Assuming the definitions in Figure 3, including
the shaded parts, let us again try to prove transitivity.

Lemma 2.4 (λrec : Transitivity)

(Our model: Figure 3, including shaded parts)
If Γ ` e1 ≤ e2 : τ and Γ ` e2 ≤ e3 : τ , then Γ ` e1 ≤ e3 : τ .

Proof

We start at the point where we got stuck before. Now from (k, γ, γ′) ∈ RG JΓK we can conclude that
` γ′ : Γ. By reflexivity (Fundamental Property, Lemma 2.3) it follows that ` γ′ ≤ γ′ : Γ. Hence, we
can show that for all z ≥ 0, (z, γ′, γ′) ∈ RG JΓK holds. Now we may instantiate Γ ` e2 ≤ e3 : τ above
with i+1 since we know that (i+1, γ′, γ′) ∈ RG JΓK. The rest of the proof is relatively straightforward
and is given in Appendix B.10. 2

Seemingly Asymmetric Well-Typedness Requirement. The definitions in Figure 3 may have left
the reader with the impression that we only require terms on one side of our logical relation to be well-typed.
This, however, is not the case. In particular, notice that in the definition of Γ ` e ≤ e′ : τ , we require that
both e and e′ be well-typed. However, once we have picked a step-index k (i.e., once we have moved under the
∀k quantifier), there is an asymmetry in the model in that when (k, e, e′) ∈ RC JτK, k pertains (as a bound)
only to e and not to e′. As a result of this asymmetry, when working with a specific k (in the definition of
RV JτK) we do not need to know that v has type τ in the limit, while the converse is true of v′. Hence, at the
value interpretation level RV JτK, we chose only to require ` v′ : τ . One could add the requirement ` v : τ
in the interest of symmetry, but it would simply lead to additional proof obligations being shuffled around.
It would also complicate definitions when we get to quantified types as Relτ would have to be replaced by
Relτ1,τ2 (since in the presence of quantified types we wish to relate values of different types).

2.4 λrec: Soundness

To prove that our logical relation is sound with respect to contextual equivalence, we first define what it
means for two contexts to be logically related.

Definition 2.5 (λrec Logical Relation: Contexts)

Γ1 ` C ≤ C′ : (Γ . τ) τ1
def
= ∀e, e′. Γ ` e ≤ e′ : τ =⇒ Γ1 ` C[e] ≤ C′[e′] : τ1

Next, we prove the compatibility lemmas for contexts, which allows us to prove the following.

Lemma 2.6 (λrec Reflexivity: Contexts)

If Γ1 ` C : (Γ . τ) τ1, then Γ1 ` C ≤ C : (Γ . τ) τ1.

Theorem 2.7 (λrec Soundness: ≤ ⊆ �ctx )

If Γ ` e ≤ e′ : τ then Γ ` e �ctx e′ : τ .
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Proof

Suppose • ` C : (Γ . τ)  τ1 and C[e] ⇓. Hence, there exist vf , k such that C[e] 7−→k vf . We must
show C[e′] ⇓.
Applying Lemma 2.6 to • ` C : (Γ . τ) τ1, we have • ` C ≤ C : (Γ . τ) τ1.
Instantiate this with Γ ` e ≤ e′ : τ . Hence, • ` C[e] ≤ C[e′] : τ1.
Instantiate this with k + 1 ≥ 0 and (k + 1, ∅, ∅) ∈ RG J•K.
Hence, (k + 1, C[e], C[e′]) ∈ RC Jτ1K ∅.
Instantiate this with k < k + 1, C[e] 7−→k vf , and irred(vf ).
Hence, exists v′f such that C[e′] 7−→∗ v′f . Hence, C[e′] ⇓. 2

2.5 λrec: Completeness

To show that our logical relation is complete with respect to contextual equivalence, we make use of the
notion of ciu-equivalence introduced by Mason and Talcott [18]. Two closed terms of the same closed type
are said to be ciu-equivalent if they have the same termination behavior in any evaluation context E (a use
of the term). The relation is extended to open terms via closing substitutions (i.e., closed instantiations).
We note that evaluation contexts E are a simply a subset of general contexts C and that only closed terms
can be placed in an evaluation context.

Definition 2.8 (λrec Ciu Approximation �ciu & Equivalence 'ciu)

Let Γ ` e : τ and Γ ` e′ : τ .

Γ ` e �ciu e′ : τ
def
= ∀γ, E, τ1. • ` γ : Γ ∧ • ` E : (• . τ) τ1 ∧

E[γ(e)] ⇓ =⇒ E[γ(e′)] ⇓

Γ ` e 'ciu e′ : τ
def
= Γ ` e �ciu e′ : τ ∧ Γ ` e′ �ciu e : τ

Theorem 2.9 (λrec : �ctx ⊆ �ciu)

If Γ ` e �ctx e′ : τ then Γ ` e �ciu e′ : τ .

To prove that two ciu-equivalent terms are logically related, we will need the following lemma which
shows that our logical relation respects ciu equivalence. Pitts [9] proves a similar property which he calls
“equivalence-respecting”.

Lemma 2.10 (λrec Equivalence-Respecting: Closed Values)

If (k, v1, v2) ∈ RV JτK ∅ and • ` v2 �ciu v3 : τ , then (k, v1, v3) ∈ RV JτK ∅.

Proof

By induction on k and nested induction on the structure of the (closed) type τ . 2

Theorem 2.11 (λrec : �ciu ⊆ ≤)

If Γ ` e �ciu e′ : τ then Γ ` e ≤ e′ : τ .

Proof

Suppose k ≥ 0 and (k, γ, γ′) ∈ RG JΓK. Show (k, γ(e), γ′(e′)) ∈ RC JτK ∅. Suppose j < k, γ(e) 7−→j ef ,
and irred(ef ).
Show ∃e′′f . γ′(e′) 7−→∗ e′′f ∧ (k − j, ef , e′′f ) ∈ RV JτK ∅.
From Γ ` e �ciu e′ : τ , we have Γ ` e : τ . Applying Lemma 2.3 to Γ ` e : τ , we have Γ ` e ≤ e : τ .
Instantiate this with k ≥ 0 and (k, γ, γ′) ∈ RG JΓK. Hence, (k, γ(e), γ′(e)) ∈ RC JτK ∅. Instantiate this
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with j < k, γ(e) 7−→j ef , and irred(ef ). Hence, ∃e′f such that γ′(e) 7−→∗ e′f and (k − j, ef , e′f ) ∈
RV JτK ∅. Hence, ef ≡ vf and e′f ≡ v′f . Hence, γ′(e) ⇓ v′f .
Instantiate Γ ` e �ciu e′ : τ with ` γ′ : Γ (follows from (k, γ, γ′) ∈ RG JΓK), and • ` [·] : (• . τ)  τ ,
and γ′(e) ⇓. Hence, ∃v′′f such that γ′(e′) 7−→∗ v′′f .
Remains to show: (k − j, vf , v′′f ) ∈ RV JτK ∅.
This follows from Lemma 2.10 applied to (k − j, vf , v′f ) ∈ RV JτK∅ and v′f �ciu v′′f : τ (which follows
from Γ ` e �ciu e′ : τ and γ′(e) ⇓ v′f and γ′(e′) ⇓ v′′f ). 2

3 Type Abstraction

We now extend λrec with impredicative universal and existential types; we call the extended language the
λ∀∃-calculus. (Note that in Section 3.4 we will consider the λ∀-calculus which is the extension of λrec with
only universal types.) The syntactic extensions to support quantified types are as follows:

Types τ ::= . . . | ∀α. τ | ∃α. τ
Values v ::= . . . | Λ. e | pack v
Expressions e ::= . . . | e [ ] | unpack e1 asx in e2

Note that terms are not decorated with types (which was also the case for λrec). Here we let the vestigial
operators remain in the untyped syntax in order to preserve the operational semantics. For instance, the
term Λ. e is a suspended computation (normally written Λα.e); e [ ] runs the suspended computation. We
extend the λrec operational semantics as follows:

Evaluation Contexts E ::= . . . | E [ ] | unpackE asx in e

(inst) (Λ. e) [ ] 7−→ e

(unpack) unpack (pack v) asx in e 7−→ e[v/x]

∆; Γ ` e : τ

(All)
∆, α; Γ ` e : τ

∆; Γ ` Λ. e : ∀α. τ
(Inst)

∆; Γ ` e : ∀α. τ ∆ ` τ1

∆; Γ ` e [ ] : τ [τ1/α]
(Pack)

∆ ` τ1 ∆; Γ ` e : τ [τ1/α]

∆; Γ ` pack e : ∃α. τ

(Unpack)

∆; Γ ` e1 : ∃α. τ1 ∆ ` τ2
∆, α; Γ, x : τ1 ` e2 : τ2

∆; Γ ` unpack e1 asx in e2 : τ2

Figure 4: λ∀∃ Static Semantics

λ∀∃ typing judgments have the form ∆;Γ ` e : τ , where the context Γ is as before, and the context ∆ is
defined as follows:

Type Context ∆ ::= • | ∆, α .

The type context ∆ is used to track the set of type variables in scope. We modify the typing rules in Figure 2
by adding ∆ to each typing judgment. Figure 4 gives the typing rules for the additional terms in λ∀∃. We
prove soundness of the λ∀∃ typing rules, show that value and type substitution hold, and prove type safety.

Theorem 3.1 (λ∀∃ Safety)

If •; • ` e : τ and e 7−→∗ e′, then either e′ is a value, or there exists an e′′ such that e′ 7−→ e′′.
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3.1 λ∀∃: Contextual Equivalence

Typing judgments for contexts C now have the form ∆1; Γ1 ` C : (∆; Γ.τ) τ1 (where (∆; Γ.τ) represents
the type of the hole) indicating that whenever ∆; Γ ` e : τ , then ∆1; Γ1 ` C[e] : τ1.

Definition 3.2 (λ∀∃ Contextual Approximation �ctx )

If ∆; Γ ` e : τ and ∆; Γ ` e′ : τ , then we write ∆; Γ ` e �ctx e′ : τ to mean

∀C, τ1. •; • ` C : (∆; Γ . τ) τ1 ∧ C[e] ⇓ =⇒ C[e′] ⇓ .

3.2 λ∀∃: Logical Relation and Soundness

In this section, we present a logical relation for λ∀∃ and prove it sound with respect to contextual equivalence.
(Note, however, that this logical relation is not complete with respect to contextual equivalence. We will
discuss properties required for completeness in Section 3.4.)

As in the case of λrec, the relational interpretation of a type RV JτK ρ in λ∀∃ is a set of triples of the
form (k, v, v′). We define Relτ as before (see Figure 3), so that every set χ in Relτ must be closed under
decreasing step index, and the second value of each tuple in χ must be well-typed with type τ .

The relational interpretation of universal and existential types is given in Figure 5. Two values pack v
and pack v′ are related at the type ∃α. τ for k steps if there exists a syntactic type τ2 and a semantic
interpretation χ ∈ Relτ2 such that for all j < k, (j, v, v′) ∈ RV JτK ρ[α 7→ (χ, τ2)]. Here we only pick a type
τ2 for the second value v′ while the type of v is left unrestricted. Intuitively, this suffices because when
showing logical equivalence of two terms (∆; Γ`e∼ e′ :τ), we pick a type for v′ while proving ∆; Γ`e≤ e′ :τ
and we pick a type for v while proving ∆; Γ`e′≤ e :τ . The relational interpretation of universal types is the
dual of existential types.

RV J∀α. τKρ = {(k, Λ. e, Λ. e′) | ` Λ. e′ : (∀α. τ)[ρ] ∧
∀τ2, χ. χ ∈ Relτ2 =⇒

∀j < k. (j, e, e′) ∈ RC JτK ρ[α 7→ (χ, τ2)]}

RV J∃α. τKρ = {(k, pack v, pack v′) | ` pack v′ : (∃α. τ)[ρ] ∧
∃τ2, χ. χ ∈ Relτ2 ∧

∀j < k. (j, v, v′) ∈ RV JτK ρ[α 7→ (χ, τ2)]}

RD J•K = {∅}
RD J∆, αK = {ρ[α 7→ (χ, τ2)]) | ρ ∈ RD J∆K ∧ χ ∈ Relτ2}

RG J•Kρ = {(k, ∅, ∅)}
RG JΓ, x:τKρ = {(k, γ[x 7→ v], γ′[x 7→ v′]) | (k, γ, γ′) ∈ RG JΓKρ ∧ (k, v, v′) ∈ RV JτKρ}

∆; Γ ` e ≤ e′ : τ
def
= ∆; Γ ` e : τ ∧ ∆; Γ ` e′ : τ ∧

∀k ≥ 0. ∀ρ, γ, γ′. ρ ∈ RD J∆K ∧ (k, γ, γ′) ∈ RG JΓKρ =⇒
(k, γ(e), γ′(e′)) ∈ RC JτKρ

Figure 5: λ∀∃ Relational Model

The relational interpretation of types as computations RC JτK is defined exactly as before (see Figure 3).
The definition of the logical relation ∆; Γ ` e ≤ e′ : τ appears in Figure 5.

We prove that each type τ is a valid type: RV JτK ρ ∈ Relτ [ρ] . Specifically, we have to show well-typedness
and closure under decreasing step-index.

To show the Fundamental Property of the logical relation, we prove the new set of compatibility lemmas,
as well as value and type substitutivity. Thus, we can prove the following lemma.
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Lemma 3.3 (λ∀∃ Fundamental Property / Reflexivity)

If ∆; Γ ` e : τ then ∆; Γ ` e ≤ e : τ .

Next, we prove that the logical relation in Figure 5 is sound with respect to contextual equivalence. The
overall proof structure is the same as for λrec.

Theorem 3.4 (λ∀∃ : ≤ ⊆ �ctx )

If ∆; Γ ` e ≤ e′ : τ then ∆; Γ ` e �ctx e′ : τ .

3.3 Example: Simple Existential Packages

For lack of space, we present only one simple example (from Sumii and Pierce[19]) to illustrate the use
of our logical relation to prove contextual equivalence. Additional examples involving existential packages,
recursive types, and higher-order functions are given in Appendix D.

Example: Consider the following existential packages e and e′ of type τ :

e = pack 〈1, λx. x
int
= 0〉 e′ = pack 〈tt, λx.¬x〉 τ = ∃α. α× (α → bool)

Show •; •`e∼e′ :τ . We only show •; •`e≤ e′ :τ . •; •`e′≤ e :τ is symmetric.
Suppose k ≥ 0. Unwinding definitions, we must show (k, e, e′) ∈ RV JτK
≡ (k, pack 〈1, λx. x

int= 0〉, pack 〈tt, λx.¬x〉) ∈ RV J∃α. α× (α → bool)K ∅.
Take τ2 = bool and χ = {(k′, 1, tt) | k′ ≥ 0}.
Note that χ ∈ Relbool (from defn of χ). Suppose j < k.
Show (j, 〈1, λx. x

int= 0〉, 〈tt, λx.¬x〉) ∈ RV Jα× (α → bool)K ∅[α 7→ (χ, bool)], which follows from:

• ` 〈tt, λx.¬x〉 : (α× (α → bool))[bool/α]

• (j, 1, tt) ∈ RV JαK ∅[α 7→ (χ, bool)]
≡ (j, 1, tt) ∈ χ (by defn of RV JαK ρ)

which follows from defn of χ.

• (j, (λx. x
int= 0), (λx.¬x))∈RV Jα→boolK∅[α 7→(χ, bool)], which follows from:

First, note that ` λx.¬x : (α → bool)[bool/α] ≡ ` λx.¬x : bool → bool.
Next, suppose i < j, and (i, v1, v

′
1) ∈ RV JαK ∅[α 7→ (χ, bool)].

Note that RV JαK∅[α 7→(χ, bool)] ≡ χ by defn of RV JαKρ. Hence, (i, v1, v
′
1)∈χ.

Then, from defn of χ, v1 = 1 and v′1 = tt.
Show: (i, (x int= 0)[v1/x], (¬x)[v′1/x]) ∈ RC JboolK ∅[α 7→ (χ, bool)]

≡ (i, v1
int= 0,¬v′1) ∈ RC JboolK ∅[α 7→ (χ, bool)]

≡ (i, 1 int= 0,¬tt) ∈ RC JboolK ∅[α 7→ (χ, bool)] .

Note that (1 int= 0) 7−→1 ff and (¬tt) 7−→∗ ff.
Hence, remains to show: (i− 1, ff, ff) ∈ RV JboolK ∅[α 7→ (χ, bool)], which is immediate.

3.4 λ∀: Completeness

The λ∀∃ logical relation presented in Section 3.2 is sound but not complete with respect to contextual
equivalence. In this section, we present an outline of the desired completeness proof in order to illustrate
where the proof gets stuck and to motivate changes to the earlier logical relation that might make it complete
with respect to contextual equivalence. With a minor modification to the logical relation from Section 3.2,
we are able to show completeness in the presence of recursive and polymorphic types, but not for existential
types (i.e., for the language λ∀, which extends λrec with only universal types).

We start by trying to establish completeness for λ∀∃ in a manner similar to that for λrec. As for λrec, we
rely on the notion of ciu-equivalence, which we define for λ∀∃ as follows.
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Definition 3.5 (λ∀∃ Ciu Approximation �ciu)

Let ∆; Γ ` e : τ and ∆; Γ ` e′ : τ . If δ is a mapping from type variables α to closed syntactic types τ , we write
δ |= ∆ whenever dom(δ) = ∆.

∆; Γ ` e �ciu e′ : τ
def
= ∀δ, γ, E, τ1. δ |= ∆ ∧ ` γ : δ(Γ) ∧

•; • ` E : (•; • . δ(τ)) τ1 ∧
E[γ(e)] ⇓ =⇒ E[γ(e′)] ⇓

To prove completeness as before, we must show (1) that two contextually equivalent terms are ciu equivalent,
and (2) that two ciu equivalent terms are logically related. It is straightforward to prove the first lemma:

Theorem 3.6 (λ∀∃ : �ctx ⊆ �ciu)

If ∆; Γ ` e �ctx e′ : τ then ∆; Γ ` e �ciu e′ : τ .

However, the proof of the second lemma (which states that two ciu equivalent terms are logically related)
fails to go through. To see why, let us return to the proof of completeness of λrec, specifically to Lemma 2.10
which establishes that the relational value interpretation RV JτK is equivalence-respecting: if (k, v1, v2) ∈
RV JτK ∅ and • ` v2 �ciu v3 : τ , then (k, v1, v3) ∈ RV JτK ∅. The proof of that lemma requires induction
on k and nested induction on the structure of the closed type τ . In the case of λ∀∃, when we get to
the proof of the corresponding lemma, τ may have free type variables. Thus, one of the cases we must
consider for the inner induction is τ = α. Assuming that ρ(α) = (χ, τα), we will be required to show that
if (k, v1, v2) ∈ RV JαK ρ ≡ ρsem(α) ≡ χ and ` v2 �ciu v3 : α[ρ] (where α[ρ] ≡ τα), then (k, v1, v3) ∈ χ.
This is where the proof for λ∀∃ gets stuck. Note, however, that χ ∈ Relτα . Thus, for the above proof to
go through for λ∀∃, we must add this requirement directly to the definition of Relτ . Hence, every set χ
in Relτ must satisfy the equivalence-respecting property (in addition to closure under decreasing step-index
and well-typedness of the second value of each tuple in χ).

A more informal justification for this change is that in the presence of quantified types, we can instantiate
a type variable with a relational interpretation of our own choosing. Thus, we have to show that the relation
we pick satisfies certain properties, one of which is that it must be equivalence-respecting.

The modified definition of Relτ is given below. It makes use of a notion of ciu-equivalence restricted to
closed values. With the exception of the definition of Relτ , the logical relation is now defined exactly as in
Figure 5.

v ≺ciu v′ : τ
def
= ∀E, τ1. •; • ` E : (•; • . τ) τ1 ∧ E[v] ⇓ =⇒ E[v′] ⇓

Relτ
def
= {χ ∈ 2Nat×CValues×CValues |

∀(j, v, v′) ∈ χ. ` v′ : τ ∧
∀i ≤ j. (i, v, v′) ∈ χ ∧
(∀v′′. v′ ≺ciu v′′ : τ =⇒ (j, v, v′′) ∈ χ)}

As before, we now prove that each type τ is a valid type (RV JτK ρ ∈ Relτ [ρ]), but now in addition
to showing well-typedness and closure under decreasing step-index, we must also show that RV JτK ρ is
equivalence-respecting. Unfortunately, this property does not hold for existential types. (For details of how
the proof fails, see Appendix E.2, proof of Lemma E.1, the case for existential types.)

Thus, the following lemma holds for the λ∀-calculus (λrec extended with universal types), but not for λ∀∃.

Lemma 3.7 (λ∀ Equivalence-Respecting)

Let ρ ∈ RD J∆K and ∆ ` τ .
If (k, v1, v2) ∈ RV JτKρ and v2 ≺ciu v3 : τ [ρ], then (k, v1, v3) ∈ RV JτKρ.

Note that the change in the definition of Relτ does not affect the proof of the fundamental theorem (for
λ∀) or the proof of soundness with respect to contextual equivalence, which are proved exactly as before.

Since our relational interpretation of existential types fails to be equivalence-respecting, our logical rela-
tion is incomplete with respect to contextual equivalence in the presence of existential types. However, the
relational interpretations of all the other types in λ∀∃ (i.e., all types in λ∀) are equivalence-respecting. Thus,
we are able to prove completeness with respect to contextual equivalence for the language λ∀.
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Theorem 3.8 (λ∀ : �ctx ⊆ �ciu ⊆ ≤)

If ∆; Γ ` e �ctx e′ : τ then ∆; Γ ` e �ciu e′ : τ .
If ∆; Γ ` e �ciu e′ : τ then ∆; Γ ` e ≤ e′ : τ .

4 Related Work and Conclusion

Logical relations were first developed for denotational semantics of typed λ-calculi (e.g., [1, 2]). Early
examples of the use of logical relations based on operational semantics include Tait’s [4] proof of strong
normalization of the simply typed λ-calculus, and Girard’s method of reducibility candidates [5] used to
prove normalization for System F.

Pitts [7, 6, 9] developed syntactic logical relations for a λ-calculus with recursive functions and quantified
types (but no recursive types). To support recursive functions without using denotational techniques, Pitts
makes use of >>-closure (or biorthogonality [12]). Relations that are >>-closed can be immediately shown
to be equivalence-respecting and admissible [9]. We note that Pitts’ logical relations do not support recursive
types; at the end of [9], he poses syntactic logical relations for recursive types as an open problem in need
of a fresh idea for further progress.

In this paper, we have shown that it is possible to construct a logical relation that is sound and com-
plete with respect to contextual equivalence for a language with recursive functions, recursive types, and
polymorphism, without the use of biorthogonality or >>-closure. For existential types, however, our logical
relation is sound but not complete. We conjecture that it should be possible to combine the >>-closure and
step-indexing techniques to obtain a sound and complete logical relation for a language with recursive and
polymorphic types as well as existential types.

Birkedal and Harper [10] and Crary and Harper [8] extended syntactic logical relations with recursive
types (the latter also support polymorphic types, but not existential types) by adapting Pitts’ minimal
invariance [3] technique for use in a purely syntactic setting. Melliès and Vouillon [12, 11] construct a
realizability model of a language with recursive types and polymorphism based on intuitions from the ideal
model of types [20]. They also present a relational model based on an orthogonality relation between
quadruples of terms and contexts [12]. We note that to show completeness, they too must move to a
typed setting. An issue that merits further investigation is the relationship between the different notions of
approximation — i.e., syntactic projections [8], interval types [12], and step counts.

Contextual equivalence may also be proved using bisimulations. Sumii and Pierce [19] present a bisimula-
tion for recursive and quantified types. Using their examples as a point of comparison (see Appendix D) we
show that our logical relations are somewhat easier to use when proving contextual equivalence. Also, unlike
logical relations, Sumii and Pierce note that their bisimulation cannot be used to derive free theorems [21]
based only on types.

We have presented a step-indexed logical relation for recursive and impredicative quantified types. The
construction is far more elementary than that of existing logical relations for such types. In future work,
we intend to investigate the combination of >>-closure with step-indexing to obtain a logical relation for
λ∀∃ that is sound as well as complete with respect to contextual equivalence. We also hope to scale these
techniques up to support dynamically allocated (ML-style) mutable references.
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Appendix: Formal Development

The following appendices present a formal development of the calculi, relational models, and proofs described
in the main body of this technical report, as well as additional examples.

In Appendix A, we present the Appel-McAllester model [13] and show how a direct proof of transitivity
fails to go through. In Appendix B, we present a logical relation for (iso-)recursive types and show that the
relation is transitive, as well as sound and complete with respect to contextual equivalence. In Appendix C,
we present a logical relation for a language with recursive, polymorphic, and existential types that is sound
but incomplete with respect to contextual equivalence. Appendix D presents a number of examples involving
existential packages, higher-order functions, universal types and contravariant recursive types. In Appendix E
we present a slight modification of the logical relation from Appendix C and show that in the absence of
existential types it is sound and complete with respect to contextual equivalence.
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A Appel-McAllester Indexed PER Model (Equi-Recursive Types)

This section gives all the relevant definitions for the Appel-McAllester model (using notational conventions
from [13]) and summarizes the lemmas that should hold of the model. Section A.1 illustrates how a direct
proof of transitivity fails to go through.

Expressions e ::= x | 0 | 〈e1, e2〉 | π1(e) | π2(e) | λx. e | e1 e2

Values v ::= x | 0 | 〈v1, v2〉 | λx. e
Types τ ::= ⊥ | int | τ1 × τ2 | τ1 → τ2 | µF

Figure 6: Appel-McAllester: Syntax

e1 7−→ e′1

e1 e2 7−→ e′1 e2

e2 7−→ e′2

(λx. e1) e2 7−→ λx. e1 e′2 (λx. e) v 7−→ e[v/x]

e1 7−→ e′1

〈e1, e2〉 7−→ 〈e′1, e2〉
e2 7−→ e′2

〈v1, e2〉 7−→ 〈v1, e
′
2〉 π1〈v1, v2〉 7−→ v1 π2〈v1, v2〉 7−→ v2

Figure 7: Appel-McAllester: Operational Semantics

Γ ` e : τ

(Var)
Γ ` x : Γ(x)

(Zero)
Γ ` 0 : int

(Fun)
Γ, x:τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

(App)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(Pair)
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2

(Proj1)
Γ ` e : τ1 × τ2

Γ ` π1(e) : τ1

(Proj2)
Γ ` e : τ1 × τ2

Γ ` π2(e) : τ2

(Fold)
Γ ` e : F (µF )

Γ ` e : µF
(Unfold)

Γ ` e : µF

Γ ` e : F (µF )

Figure 8: Appel-McAllester: Static Semantics
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⊥ ≡ {}
int ≡ {(k,0,0)}

τ1 × τ2 ≡ {(k, 〈v1, v2〉, 〈v′1, v′2〉) | ∀j < k. (j, v1, v
′
1) ∈ τ1 ∧ (j, v2, v

′
2) ∈ τ2}

τ1 → τ2 ≡ {(k, λx. e, λx. e′) | ∀j < k, v, v′. (j, v, v′) ∈ τ1 =⇒ e[v/x] ≤ e′[v′/x] :j τ2}
µF ≡ {(k, v, v′) | (k, v, v′) ∈ F k+1(⊥)}

e ≤ e′ :k τ ≡ ∀j < k, ef . e 7−→j ef ∧ irred(ef ) =⇒
∃e′f . e′ 7−→∗ e′f ∧ (k − j, ef , e′f ) ∈ τ

γ ≤ γ′ :k Γ ≡ dom(γ) = dom(γ′) = dom(Γ)∧
∀x ∈ dom(Γ). γ(x) ≤ γ′(x) :k Γ(x)

Γ � e ≤ e′ : τ ≡ ∀k ≥ 0. ∀γ, γ′. γ ≤ γ′ :k Γ =⇒ γ(e) ≤ γ′(e′) :k τ

Γ � e ∼ e′ : τ ≡ Γ � e ≤ e′ : τ ∧ Γ � e′ ≤ e : τ

Figure 9: Appel-McAllester: Indexed PER Model [13]

Γ � e ∼ e′ : τ

(Reflexivity)
Γ � e : τ

Γ � e ∼ e : τ
(Symmetry)

Γ � e ∼ e′ : τ

Γ � e′ ∼ e : τ
(Transitivity)

Γ � e1 ∼ e2 : τ Γ � e2 ∼ e3 : τ

Γ � e1 ∼ e3 : τ

(Substitutivity)
Γ � v ∼ v′ : τ1 Γ, x:τ1 � e ∼ e′ : τ2

Γ � e[v/x] ∼ e′[v′/x] : τ2

(Compatibility Properties)

(Var)
Γ(x) = τ

Γ � x ∼ x : τ
(Zero)

Γ � 0 ∼ 0 : int

(Fun)
Γ, x:τ1 � e ∼ e′ : τ2

Γ � λx. e ∼ λx. e′ : τ1 → τ2

(App)
Γ � e1 ∼ e′1 : τ1 → τ2 Γ � e2 ∼ e′2 : τ1

Γ � e1 e2 ∼ e′1 e′2 : τ2

(Pair)
Γ � e1 ∼ e′1 : τ1 Γ � e2 ∼ e′2 : τ2

Γ � 〈e1, e2〉 ∼ 〈e′1, e′2〉 : τ1 × τ2

(Proj1)
Γ � e ∼ e′ : τ1 × τ2

Γ � π1(e) ∼ π1(e
′) : τ1

(Proj2)
Γ � e ∼ e′ : τ1 × τ2

Γ � π2(e) ∼ π2(e
′) : τ2

(Fold)
Γ � e ∼ e′ : F (µF )

Γ � e ∼ e′ : µF
(Unfold)

Γ � e ∼ e′ : µF

Γ � e ∼ e′ : F (µF )

Note: ∼ is an equivalence relation if it satisfies the reflexivity, symmetry and transitivity properties.
It is a congruence relation if it satisfies the substitutivity and compatibility properties.

Figure 10: Appel-McAllester: Properties Required of ∼
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A.1 Appel-McAllester: Proof of Transitivity Fails

With the exception of transitivity, all of the lemmas shown in Figure 10 are directly provable in the
Appel-McAllester model [13]. A direct proof of transitivity, however, does not go through.

Proposed Lemma (Transitivity)
If Γ � e1 ≤ e2 : τ and Γ � e2 ≤ e3 : τ then Γ � e1 ≤ e3 : τ .

Proof Attempt: We are required to show Γ � e1 ≤ e3 : τ .
Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• γ ≤ γ′ :k Γ.

We are required to show that γ(e1) ≤ γ′(e3) :k τ .
Consider arbitrary j, ef1 such that

• j < k,

• γ(e1) 7−→j ef1 , and

• irred(ef1).

We are required to show that ∃ef3 . γ′(e3) 7−→∗ ef3 ∧ (k − j, ef1 , ef3) ∈ τ .
Instantiate Γ � e1 ≤ e2 : τ with k, γ, γ′. Note that

• k ≥ 0, and

• γ ≤ γ′ :k Γ.

Hence, γ(e1) ≤ γ′(e2) :k τ .
Instantiate this with j, ef1 . Note that

• j < k,

• γ(e1) 7−→j ef1 , and

• irred(ef1).

Hence, there exist ef2 , i, such that

• i ≥ 0,

• γ′(e2) 7−→i ef2 , and

• irred(ef2).

Now we would like to use the second hypothesis Γ � e2 ≤ e3 : τ .
But what index should we instantiate this with? There are two possible ways to proceed.

(i) Instantiate Γ � e2 ≤ e3 : τ with k, γ, and γ′. Note that

• k ≥ 0, and

• γ ≤ γ′ :k Γ.

Hence, γ(e2) ≤ γ′(e3) :k τ .

Problem: We could instantiate this with i and ef2. But at that point we are stuck since:
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• we cannot show i < k, as i may be greater than k, and

• we cannot show γ(e2) 7−→i ef2, as we only have γ′(e2) 7−→i ef2.

(ii) Instantiate Γ � e2 ≤ e3 : τ with some z such that z > i, γ′, and γ′.

Problem: We cannot show γ′ ≤ γ′ :z Γ. All we know is that γ ≤ γ′ :k Γ, where z > i and i may be
greater than k.
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B Iso-Recursive Types

Types τ ::= bool | τ1 → τ2 | α | µα. τ
Expressions e ::= x | tt | ff | if e0, e1, e2 |

λx. e | e1 e2 | fold e | unfold e
Values v ::= x | tt | ff | λx. e | fold v

Figure 1: λrec Syntax

Evaluation Contexts E ::= [·] | ifE, e1, e2 | E e | v E | foldE | unfoldE

(iftrue) if tt, e1, e2 7−→ e1

(iffalse) if ff, e1, e2 7−→ e2

(app) (λx. e) v 7−→ e[v/x]

(unfold) unfold (fold v) 7−→ v

(ctxt)
e 7−→ e′

E[e] 7−→ E[e′]

Figure 2: λrec Operational Semantics

Notation The notation e 7−→ e′ denotes a single operational step. We write e 7−→j e′ to denote that there
exists a chain of j steps of the form e 7−→ e1 7−→ . . . 7−→ ej where ej is e′. A term e is irreducible (written
irred(e)) if it has no successor in the step relation — that is, if e is a value (written val(e)) or if e is a “stuck”
expression (such as tt(e′)) to which no operational rule applies. We also use the following abbreviations.

e 7−→∗ e′
def
= ∃k ≥ 0. e 7−→k e′

e ⇓ e′
def
= e 7−→∗ e′ ∧ val(e ′)

e ⇓ def
= ∃e′. e ⇓ e′

e ⇑ def
= ∀k ≥ 0. ∃e′. e 7−→k e′
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Type Context ∆ ::= • | ∆, α

∆ ` τ

(VarTy)
α ∈ ∆

∆ ` α
(BoolTy)

∆ ` bool
(FnTy)

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

(RecTy)
∆, α ` τ

∆ ` µα. τ

Figure 3: λrec Static Semantics I

Value Context Γ ::= • | Γ, x:τ where • ` τ

Γ ` e : τ

(True)
Γ ` tt : bool

(False)
Γ ` ff : bool

(If)
Γ ` e0 : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e0, e1, e2 : τ

(Var)
Γ ` x : Γ(x)

(Fn)
Γ, x:τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

(App)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(Fold)
Γ ` e : τ [µα. τ/α]

Γ ` fold e : µα. τ
(Unfold)

Γ ` e : µα. τ

Γ ` unfold e : τ [µα. τ/α]

Figure 4: λrec Static Semantics II
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B.1 λrec Unary Model

Notation

• We write V JτK for the semantic interpretation of types as values, C JτK for the interpretation of types
as computations, and G JΓK for the interpretation of contexts as substitutions (Figure 5).

• We use the metavariable σ to range over sets of tuples of the form (k, v) where k is a natural number
and v is a closed value — i.e., k ∈ Nat and v ∈ CValues.

• We use δ for mappings from type variables α to sets σ ∈ 2Nat×CValues .

Type
def
= {σ ∈ 2Nat×CValues | ∀(j, v) ∈ σ. ∀i ≤ j. (i, v) ∈ σ}

bσck
def
= {(j, v) | j < k ∧ (j, v) ∈ σ}

V JαK δ = δ(α)

V JboolK δ = {(k, v) | v = tt ∨ v = ff}

V Jτ1 → τ2K δ = {(k, λx. e) | ∀j < k, v.
(j, v) ∈ V Jτ1K δ =⇒
(j, e[v/x]) ∈ C Jτ2K δ}

V Jµα. τK δ = {(k, fold v) | ∀j < k.
let σ = bV Jµα. τK δcj+1 in
(j, v) ∈ V JτK δ[α 7→ σ]}

C JτK δ = {(k, e) | ∀j < k, ef .
e 7−→j ef ∧ irred(ef ) =⇒
(k − j, ef ) ∈ V JτK δ}

G J•K = {(k, ∅)}
G JΓ, x : τK = {(k, γ[x 7→ v]) |

(k, γ) ∈ G JΓK ∧ (k, v) ∈ V JτK ∅}

JΓ ` e : τK = ∀k ≥ 0. ∀γ. (k, γ) ∈ G JΓK =⇒ (k, γ(e)) ∈ C JτK ∅

Figure 5: λrec Step-Indexed Unary Model

D J•K = {∅ | True}
D J∆, αK = {δ[α 7→ σ] | δ ∈ D J∆K ∧ σ ∈ Type}

Figure 6: λrec Step-Indexed Unary Model (Additional Notation for Proofs)
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B.2 λrec Relational (PER) Model

Notation

• We write RV JτK for the relational interpretation of types as values, RC JτK for the relational interpreta-
tion of types as computations, and RG JΓK for the relational interpretation of contexts as substitutions
(Figure 7).

• We use the metavariable χ to range over sets of tuples of the form (k, v, v′) where k is a natural number
and v, v′ are closed values — i.e., k ∈ Nat and v, v′ ∈ CValues.

• We use ρ for mappings from type variables α to pairs (χ, τ) of sets χ ∈ 2Nat×CValues×CValues and
syntactic types τ .

• If ρ(α) = (χ, τ), the notation ρsem(α) denotes χ, while ρsyn(α) denotes τ .

• If dom(γ) = dom(Γ), we use ` γ : Γ as shorthand for ∀x ∈ dom(Γ). • ` γ(x) : Γ(x).

• If ρ = {α1 7→ (χ1, τ1), . . . , αn 7→ (χn, τn)}, the notation τ [ρ] is an abbreviation for
τ [τ1/α1, τ2/α2, . . . , τn/αn].
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Relτ
def
= {χ ∈ 2Nat×CValues×CValues | ∀(j, v, v′) ∈ χ.

• ` v′ : τ ∧
∀i ≤ j. (i, v, v′) ∈ χ}

bχck
def
= {(j, v, v′) | j < k ∧ (j, v, v′) ∈ χ}

RV JαK ρ = ρsem(α)

RV JboolK ρ = {(k, v, v′) | • ` v′ : bool ∧
(v = v′ = tt ∨ v = v′ = ff)}

RV Jτ1 → τ2K ρ = {(k, λx. e, λx. e′) | • ` λx. e′ : (τ1 → τ2)
[ρ] ∧

∀j < k, v, v′.
(j, v, v′) ∈ RV Jτ1K ρ =⇒
(j, e[v/x], e′[v′/x]) ∈ RC Jτ2K ρ}

RV Jµα. τK ρ = {(k, fold v, fold v′) | • ` fold v′ : (µα. τ)[ρ] ∧
∀j < k.

let χ = bRV Jµα. τK ρcj+1 in

(j, v, v′) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ] )]}

RC JτK ρ = {(k, e, e′) | ∀j < k, ef .
e 7−→j ef ∧ irred(ef ) =⇒
∃e′f . e′ 7−→∗ e′f ∧ (k − j, ef , e′f ) ∈ RV JτK ρ}

RG J•K = {(k, ∅, ∅)}
RG JΓ, x : τK = {(k, γ[x 7→ v], γ′[x 7→ v′]) |

(k, γ, γ′) ∈ RG JΓK ∧ (k, v, v′) ∈ RV JτK ∅}

Γ ` e ≤ e′ : τ
def
= Γ ` e : τ ∧ Γ ` e′ : τ ∧

∀k ≥ 0. ∀γ, γ′.
(k, γ, γ′) ∈ RG JΓK =⇒
(k, γ(e), γ′(e′)) ∈ RC JτK ∅

Γ ` e ∼ e′ : τ
def
= Γ ` e ≤ e′ : τ ∧ Γ ` e′ ≤ e : τ

Figure 7: λrec Step-Indexed Relational Model (Shaded = Not in Appel-McAllester)

RD J•K = {∅}
RD J∆, αK = {ρ[α 7→ (χ, τ)] | ρ ∈ RD J∆K ∧ χ ∈ Relτ}

Figure 8: λrec Step-Indexed Relational Model (Additional Notation for Proofs)
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B.3 λrec Contexts and Contextual Equivalence

Contexts C ::= [·] | ifC, e1, e2 | if e0, C, e2 | if e0, e1, C |
λx. C | C e | e C | foldC | unfoldC

Figure 9: λrec Syntax - Contexts

Γ′ ` C : (Γ . τ) τ ′

(C-id)
Γ′ ` [·] : (Γ . τ) τ

(Γ′ ⊇ Γ) (C-if1)
Γ′ ` C : (Γ . τ) bool Γ′ ` e1 : τ ′ Γ′ ` e2 : τ ′

Γ′ ` ifC, e1, e2 : (Γ . τ) τ ′

(C-if2)
Γ′ ` e0 : bool Γ′ ` C : (Γ . τ) τ ′ Γ′ ` e2 : τ ′

Γ′ ` if e0, C, e2 : (Γ . τ) τ ′

(C-if3)
Γ′ ` e0 : bool Γ′ ` e1 : τ ′ Γ′ ` C : (Γ . τ) τ ′

Γ′ ` if e0, e1, C : (Γ . τ) τ ′
(C-fn)

Γ′, x : τ1 ` C : (Γ, x : τ1 . τ) τ2

Γ′ ` λx. C : (Γ, x : τ1 . τ) (τ1 → τ2)

(C-app1)
Γ′ ` C : (Γ . τ) (τ1 → τ2) Γ′ ` e : τ1

Γ′ ` C e : (Γ . τ) τ2

(C-app2)
Γ′ ` e : τ1 → τ2 Γ′ ` C : (Γ . τ) τ1

Γ′ ` e C : (Γ . τ) τ2

(C-fold)
Γ′ ` C : (Γ . τ) τ ′[µα. τ ′/α]

Γ′ ` foldC : (Γ . τ) µα. τ ′
(C-unfold)

Γ′ ` C : (Γ . τ) µα. τ ′

Γ′ ` unfoldC : (Γ . τ) τ ′[µα. τ ′/α]

(C-ctxt)
Γ′ ` C : (Γ1 . τ1) τ ′ Γ1 ` C1 : (Γ . τ) τ1

Γ′ ` C[C1[·]] : (Γ . τ) τ ′

Γ′ ` C[e] : τ ′

(C-exp)
Γ′ ` C : (Γ . τ) τ ′ Γ ` e : τ

Γ′ ` C[e] : τ ′

Figure 10: λrec Static Semantics - Contexts
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Definition B.1 (Contextual Approximation (�ctx ) and Equivalence ('ctx ))

Let e and e′ be expressions such that Γ ` e : τ and Γ ` e′ : τ .

Γ ` e �ctx e′ : τ
def
= ∀C, τ1. • ` C : (Γ . τ) τ1 ∧ C[e] ⇓ =⇒ C[e′] ⇓

Γ ` e 'ctx e′ : τ
def
= Γ ` e �ctx e′ : τ ∧

Γ ` e′ �ctx e : τ

Figure 11: λrec Contextual Approximation and Equivalence

Note: To prove that our logical relation (≤) is sound with respect to contextual equivalence (�ctx ) (see
Section B.11), we first define what it means for two contexts to be logically related as follows:

Γ1 ` C ≤ C′ : (Γ . τ) τ1
def
= ∀e, e′. Γ ` e ≤ e′ : τ =⇒ Γ1 ` C[e] ≤ C′[e′] : τ1

Γ1 ` C ∼ C′ : (Γ . τ) τ1
def
= Γ1 ` C ≤ C′ : (Γ . τ) τ1 ∧

Γ1 ` C′ ≤ C : (Γ . τ) τ1

Figure 12: λrec Step-Indexed Logical Relation: Contexts
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B.4 λrec Evaluation Contexts and Ciu Equivalence

• The syntax of λrec evaluation contexts E is given in Figure 2.

• Note that evaluation contexts E are simply a subset of general contexts C and that only closed terms
can be placed in an evaluation context. Hence, typing judgments for evaluation contexts have the form
Γ1 ` (• . τ) τ1.

Definition B.2 (Ciu Approximation (�ciu) and Equivalence ('ciu))

Let e and e′ be expressions such that Γ ` e : τ and Γ ` e′ : τ .

Γ ` e �ciu e′ : τ
def
= ∀γ, E, τ1.

` γ : Γ ∧ • ` E : (• . τ) τ1 ∧
E[γ(e)] ⇓ =⇒ E[γ(e′)] ⇓

Γ ` e 'ciu e′ : τ
def
= Γ ` e �ciu e′ : τ ∧

Γ ` e′ �ciu e : τ

Figure 13: λrec Ciu Approximation and Equivalence
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B.5 λrec Proofs: Type Soundness and Substitution

Lemma B.3 (λrec Valid Type: V JτK δ ∈ Type)

Let δ ∈ D J∆K and ∆ ` τ .
Then V JτK δ ∈ Type.

Proof

By the definition of Type, it suffices to show:

∀(k, v) ∈ V JτK δ. ∀j ≤ k. (j, v) ∈ V JτK δ

The proof is by induction on the derivation ∆ ` τ . 2

Lemma B.4 (λrec Safety)

If • ` e : τ and e 7−→∗ e′, then either e′ is a value, or there exists an e′′ such that e′ 7−→ e′′.

Proof

Prove the soundness of each typing rule using the unary indexed model of λrec (Figure 5). 2

Lemma B.5 (λrec Substitution)

If Γ ` v : τ1 and Γ, x : τ1 ` e : τ2,
then Γ ` e[v/x] : τ2.

Proof

2
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B.6 λrec Proofs: Validity of Pers

Lemma B.6 (λrec Per Values Well-Typed)

Let ρ ∈ RD J∆K and ∆ ` τ .
If (k, v, v′) ∈ RV JτK ρ,
then • ` v′ : τ [ρ].

Proof

By induction on the derivation ∆ ` τ .
We only show the (VarTy) case.
In each of the remaining cases, the result is immediate from the definition of (k, v, v′) ∈ RV JτK ρ,
which requires that • ` v′ : τ [ρ].

Case (VarTy)
α ∈ ∆
∆ ` α

:

Note that α[ρ] ≡ ρsyn(α).
Hence, we are required to show that • ` v′ : ρsyn(α).
Note that from (k, v, v′) ∈ RV JαK ρ it follows that (k, v, v′) ∈ ρsem(α).
Note that from ρ ∈ RD J∆K and α ∈ ∆ it follows that there exists τ such that

• ρsem(α) ∈ Relτ , and
• ρsyn(α) ≡ τ .

By the definition of Relτ , since (k, v, v′) ∈ ρsem(α) ∈ Relτ , it follows that • ` v′ : τ .
Hence, • ` v′ : ρsyn(α).

2

Lemma B.7 (λrec Per Value-Context Substitutions Well-Typed)

If (k, γ, γ′) ∈ RG JΓK,
then ` γ′ : Γ.

Proof

By induction on Γ.

Case Γ = •:
From (k, γ, γ′) ∈ RG J•K we conclude that γ = γ′ = ∅.
Hence, we are required to show that • ` ∅ : •, which follows trivially.

Case Γ = Γ1, x : τ , where • ` τ :
From (k, γ, γ′) ∈ RG JΓ1, x : τK we conclude that there exist γ1, γ′1, v, and v′ such that

• γ ≡ γ1[x 7→ v],
• γ′ ≡ γ′1[x 7→ v′],
• (k, γ1, γ

′
1) ∈ RG JΓ1K, and

• (k, v, v′) ∈ RV JτK ∅.
Hence, we are required to show that ` γ′1[x 7→ v′] : Γ1, x : τ ,
which follows from

• ` γ′1 : Γ1,
which follows from the induction hypothesis applied to (k, γ1, γ

′
1) ∈ RG JΓ1K, and

• • ` v′ : τ ,
which follows from Lemma B.6 applied to • ` τ and (k, v, v′) ∈ RV JτK ∅.

2
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Lemma B.8 (λrec Per Types Downward Closed)

Let ρ ∈ RD J∆K and ∆ ` τ .
If (k, v, v′) ∈ RV JτK ρ and j ≤ k,
then (j, v, v′) ∈ RV JτK ρ.

Proof

The proof is by induction on the derivation ∆ ` τ .

Case (VarTy)
α ∈ ∆
∆ ` α

:

From (k, v, v′) ∈ RV JαK ρ, it follows that (k, v, v′) ∈ ρsem(α).
We are required to show that (j, v, v′) ∈ RV JαK ρ

≡ (j, v, v′) ∈ ρsem(α).
Note that

• ρsem(α) ∈ Relρsyn(α),
which follows from ρ ∈ RD J∆K, α ∈ ∆, and the definition of RD J∆K.

Hence, by the definition of Relρsyn(α), since (k, v, v′) ∈ ρsem(α) ∈ Relρsyn(α) and j ≤ k, it follows
that (j, v, v′) ∈ ρsem(α).

Case (BoolTy)
∆ ` bool

:

From (k, v, v′) ∈ RV JboolK ρ it follows that

• • ` v′ : bool, and

• either v = v′ = tt or v = v′ = ff.

We are required to show that (j, v, v′) ∈ RV JboolK ρ,
which follows from

• • ` v′ : bool, and

• v = v′ = tt ∨ v = v′ = ff.

Case (FnTy)
∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2
:

From (k, v, v′) ∈ RV Jτ1 → τ2K ρ it follows that v ≡ λx. e and v′ ≡ λx. e′.
Note that

(A) • ` λx. e′ : (τ1 → τ2)[ρ], and
(B) ∀i < k, v1, v

′
1. (i, v1, v

′
1) ∈ RV Jτ1K ρ =⇒

(i, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ρ.

We are required to show that (j, v, v′) ∈ RV Jτ1 → τ2K ρ
≡ (j, λx. e, λx. e′) ∈ RV Jτ1 → τ2K ρ.

(C) Consider arbitrary, i, v1, v′1 such that
• i < j, and
• (i, v1, v

′
1) ∈ RV Jτ1K ρ.

Instantiate (B) with i, v1, and v′1. Note that
• i < k, which follows from i < j and j ≤ k, and
• (i, v1, v

′
1) ∈ RV Jτ1K ρ.

Hence, (i, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ρ.

From (A) and (C) it follows that (j, λx. e, λx. e′) ∈ RV Jτ1 → τ2K ρ.
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Case (RecTy)
∆, α ` τ1

∆ ` µα. τ1
:

From (k, v, v′) ∈ RV Jµα. τ1K ρ it follows that v ≡ fold v1 and v′ ≡ fold v′1.
Note that
(A) • ` fold v′1 : (µα. τ1)[ρ], and
(B) ∀i < k. let χ = bRV Jµα. τ1K ρci+1 in

(i, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ])].

We are required to show that (j, v, v′) ∈ RV Jµα. τ1K ρ
≡ (j, fold v1, fold v′1) ∈ RV Jµα. τ1K ρ.

(C) Consider arbitrary i such that
• i < j.

Let χ = bRV Jµα. τ1K ρci+1.
Instantiate (B) with i, noting that
• i < k, which follows from i < j and j ≤ k.

Hence, (i, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ])].

From (A), and (C) it follows that (j, fold v1, fold v′1) ∈ RV Jµα. τ1K ρ.

2

Lemma B.9 (λrec Per Value Contexts Downward Closed)

Let (k, γ, γ′) ∈ RG JΓK.
If j ≤ k, then (j, γ, γ′) ∈ RG JΓK.

Proof

Proof by induction on Γ.

Case Γ = •:
We are required to show that (j, γ, γ′) ∈ RG J•K.
Note that γ = γ′ = ∅, which follows from (k, γ, γ′) ∈ RG J•K.
Hence, we are required to show that (j, ∅, ∅) ∈ RG J•K, which follows trivially.

Case Γ = Γ1, x : τ , where • ` τ :
From (k, γ, γ′) ∈ RG JΓ1, x : τK, we conclude that there exist γ1, γ′1, v, and v′ such that

• γ ≡ γ1[x 7→ v],
• γ′ ≡ γ′1[x 7→ v′],
• (k, γ1, γ

′
1) ∈ RG JΓ1K, and

• (k, v, v′) ∈ RV JτK ∅.
Hence, we are required to show that (j, γ1[x 7→ v], γ′1[x 7→ v′]) ∈ RG JΓ1, x : τK,
which follows from

• (j, γ1, γ
′
1) ∈ RG JΓ1K,

which follows from the induction hypothesis applied to (k, γ1, γ
′
1) ∈ RG JΓ1K and j ≤ k, and

• (j, v, v′) ∈ RV JτK ∅,
which follows from Lemma B.8 applied to

• ∅ ∈ RD J•K,
• • ` τ ,
• (k, v, v′) ∈ RV JτK ∅ ∈ Relτ , and
• j ≤ k.

2
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Lemma B.10 (λrec Valid Per: RV JτK ρ ∈ Relτ [ρ])

Let ρ ∈ RD J∆K and ∆ ` τ .
Then RV JτK ρ ∈ Relτ [ρ] .

Proof

By the definition of Relτ [ρ] , it suffices to show:

∀(k, v, v′) ∈ RV JτK ρ. • ` v′ : τ [ρ] ∧
∀j ≤ k. (j, v, v′) ∈ RV JτK ρ

Consider arbitrary (k, v, v′) ∈ RV JτK ρ.

• Applying Lemma B.6 to ρ ∈ RD J∆K, ∆ ` τ , and (k, v, v′) ∈ RV JτK ρ it follows that • ` v′ : τ [ρ].

• Consider arbitrary j ≤ k.

Applying Lemma B.8 to ρ ∈ RD J∆K, ∆ ` τ , (k, v, v′) ∈ RV JτK ρ, and j ≤ k it follows that
(j, v, v′) ∈ RV JτK ρ.

2
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B.7 λrec Proofs: Per Type Substitution

Lemma B.11 (λrec Per Type Substitution: Recursive Types)

Let ρ ∈ RD J∆K and ∆, α ` τ .
Let χ = bRV Jµα. τK ρci+1.
Then bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 = bRV Jτ [µα. τ/α]K ρci+1.

Proof

We are required to show that for all k ≤ i, v, and v′,

(k, v, v′) ∈ bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 iff (k, v, v′) ∈ bRV Jτ [µα. τ/α]K ρci+1

The proof is by induction on i and nested induction on ∆, α ` τ .

Case (VarTy)
β ∈ ∆

∆, α ` β
:

Case β = α:

(k, v, v′) ∈ bRV JαK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 Note that k ≤ i

⇔ (k, v, v′) ∈ RV JαK ρ[α 7→ (χ, (µα. τ)[ρ])] by defn of b·ci+1

⇔ (k, v, v′) ∈ χ by defn of RV JαK
⇔ (k, v, v′) ∈ bRV Jµα. τK ρci+1 by premise χ = bRV Jµα. τK ρci+1

⇔ (k, v, v′) ∈ bRV Jα[µα. τ/α]K ρci+1 by substitution

Case β 6= α:

(k, v, v′) ∈ bRV JβK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1

⇔ (k, v, v′) ∈ bRV JβK ρci+1 since α /∈ FTV (β)
⇔ (k, v, v′) ∈ bRV Jβ[µα. τ/α]K ρci+1 by substitution

Case (BoolTy)
∆, α ` bool

:

(k, v, v′) ∈ bRV JboolK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 Note that k ≤ i

⇔ (k, v, v′) ∈ RV JboolK ρ[α 7→ (χ, (µα. τ)[ρ])] by defn of b·ci+1

⇔ (k, v, v′) ∈ RV JboolK ρ since α /∈ FTV (bool)
⇔ (k, v, v′) ∈ RV Jbool[µα. τ/α]K ρ by substitution
⇔ (k, v, v′) ∈ bRV Jbool[µα. τ/α]K ρci+1 by defn of b·ci+1 since k ≤ i

Case (FnTy)
∆, α ` τ1 ∆, α ` τ2

∆, α ` τ1 → τ2
:

(k, v, v′) ∈ bRV Jτ1 → τ2K ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 Note that k ≤ i

⇔ (k, v, v′) ∈ RV Jτ1 → τ2K ρ[α 7→ (χ, (µα. τ)[ρ])] by defn of b·ci+1

⇔ (k, λx. e, λx. e′) ∈ RV Jτ1 → τ2K ρ[α 7→ (χ, (µα. τ)[ρ])] since v ≡ λx. e and v′ ≡ λx. e′

≡ • ` λx. e′ : (τ1 → τ2)
[ρ][((µα. τ)[ρ])/α] ∧

∀j < k, v1, v
′
1.

(j, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ])] =⇒

(j, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ρ[α 7→ (χ, (µα. τ)[ρ])]

(A)
by defn of RV Jτ1 → τ2K

⇔ • ` λx. e′ : (τ1[µα. τ/α] → τ2[µα. τ/α])[ρ] ∧
∀j < k, v1, v

′
1.

(j, v1, v
′
1) ∈ RV Jτ1[µα. τ/α]K ρ =⇒

(j, e[v1/x], e′[v′1/x]) ∈ RC Jτ2[µα. τ/α]K ρ

(B)
see proof of (A) ⇔ (B) below

≡ (k, λx. e, λx. e′) ∈ RV Jτ1[µα. τ/α] → τ2[µα. τ/α]K ρ
⇔ (k, v, v′) ∈ RV Jτ1[µα. τ/α] → τ2[µα. τ/α]K ρ since v ≡ λx. e and v′ ≡ λx. e′

⇔ (k, v, v′) ∈ RV J(τ1 → τ2)[µα. τ/α]K ρ by substitution
⇔ (k, v, v′) ∈ bRV J(τ1 → τ2)[µα. τ/α]K ρci+1 by defn of b·ci+1 since k ≤ i

34



Proof: (A) ⇒ (B)
The proof is in 2 parts.
I. From the first conjunct of (A) we have • ` λx. e′ : (τ1 → τ2)[ρ][((µα. τ)[ρ])/α].

Hence, • ` λx. e′ : (τ1[(µα. τ)[ρ]/α] → τ2[(µα. τ)[ρ]/α])[ρ], which follows by substitution.
We are required to show that • ` λx. e′ : (τ1[µα. τ/α] → τ2[µα. τ/α])[ρ],
which follows by substitution.

II. Consider arbitrary j, v1, v′1 such that
• j < k, and
• (j, v1, v

′
1) ∈ RV Jτ1[µα. τ/α]K ρ.

Note that (j, v1, v
′
1) ∈ bRV Jτ1[µα. τ/α]K ρci+1,

which follows from the definition of b·ck and j < i + 1,
which follows from j < k ≤ i.
Applying the induction hypothesis to ∆, α ` τ1, we conclude that

bRV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 = bRV Jτ1[µτ. α/α]K ρci+1

Hence, (j, v1, v
′
1) ∈ bRV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1.

Hence, (j, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ])], which follows from the definition of

b·ck.
Instantiate the second conjunct of (A) with j, v1, and v′1. Note that
• j < k, and
• (j, v1, v

′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ])].

Hence, (j, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ρ[α 7→ (χ, (µα. τ)[ρ])].
We are required to show that (j, e[v1/x], e′[v′1/x]) ∈ RC Jτ2[µτ. α/α]K ρ.
Consider arbitrary j′ and ef such that
• j′ < j,
• e[v1/x] 7−→j′

ef , and
• irred(ef ).

Instantiate (j, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ρ[α 7→ (χ, (µα. τ)[ρ])] with j′ and ef . Note that
• j′ < j,
• e[v1/x] 7−→j′

ef , and
• irred(ef ).

Hence, there exists e′f such that
• e′[v′1/x] 7−→∗ e′f , and

• (j − j′, ef , e′f ) ∈ RV Jτ2K ρ[α 7→ (χ, (µα. τ)[ρ])].

Note that (j − j′, ef , e′f ) ∈ bRV Jτ2K ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1,
which follows from the definition of b·ck and j − j′ < i + 1,
which follows from j < k ≤ i.
Applying the induction hypothesis to ∆, α ` τ2, we conclude that

bRV Jτ2K ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 = bRV Jτ2[µτ. α/α]K ρci+1

Hence, (j − j′, ef , e′f ) ∈ bRV Jτ2[µτ. α/α]K ρci+1.
Hence, (j − j′, ef , e′f ) ∈ RV Jτ2[µτ. α/α]K ρ, which follows from the definition of b·ck.
Let e′f = e′f .
We are required to show that
• e′[v′1/x] 7−→∗ e′f ,

which follows from above, and
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• (j − j′, ef , e′f ) ∈ RV Jτ2[µτ. α/α]K ρ,
which follows from above.

Proof: (B) ⇒ (A)
Analogous to proof of (A) ⇒ (B).

Case (RecTy)
∆, α, β ` τ1

∆, α ` µβ. τ1
:

(k, v, v′) ∈ bRV Jµβ. τ1K ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 Note that k ≤ i

⇔ (k, v, v′) ∈ RV Jµβ. τ1K ρ[α 7→ (χ, (µα. τ)[ρ])] by defn of b·ci+1

⇔ (k, fold v1, fold v′1) ∈ RV Jµβ. τ1K ρ[α 7→ (χ, (µα. τ)[ρ])] since v ≡ fold v, v′ ≡ fold v′1
≡ • ` fold v′1 : (µβ. τ1)

[ρ][((µα. τ)[ρ])/α] ∧
∀j < k.

let χ′ = bRV Jµβ. τ1K ρ[α 7→ (χ, (µα. τ)[ρ])]cj+1 in

(j, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ]),

β 7→ (χ′, (µβ. τ1)
[ρ][((µα. τ)[ρ])/α])]

(A)
by defn of RV Jµβ. τ1K

⇔ • ` fold v′1 : (µβ. (τ1[µα. τ/α]))[ρ] ∧
∀j < k.

let χ′ = bRV Jµβ. (τ1[µα. τ/α])K ρcj+1 in

(j, v1, v
′
1) ∈ RV Jτ1[µα. τ/α]K ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])]

(B)
see proof of (A) ⇔ (B) below

≡ (k, fold v1, fold v′1) ∈ RV Jµβ. (τ1[µα. τ/α])K ρ
⇔ (k, v, v′) ∈ RV Jµβ. (τ1[µα. τ/α])K ρ since v ≡ fold v1, v′ ≡ fold v′1
⇔ (k, v, v′) ∈ RV J(µβ. τ1)[µα. τ/α]K ρ by substitution
⇔ (k, v, v′) ∈ bRV J(µβ. τ1)[µα. τ/α]K ρci+1 by defn of b·ci+1 since k ≤ i

Proof: (A) ⇒ (B)
The proof is in 2 parts.
I. From the first conjunct of (A) we have • ` fold v′1 : (µβ. τ1)[ρ][((µα. τ)[ρ])/α].

Hence, • ` fold v′1 : (µβ. (τ1[((µα. τ)[ρ])/α]))[ρ], which follows by substitution.
We are required to show that • ` fold v′1 : (µβ. (τ1[µα. τ/α]))[ρ],
which follows by substitution.

II. Consider arbitrary j such that
• j < k

Let χ′ = bRV Jµβ. (τ1[µα. τ/α])K ρcj+1.
Hence, χ′ = bRV J(µβ. τ1)[µα. τ/α]K ρcj+1, which follows by substitution.
Note that j + 1 < i + 1, which follows from j < k and k ≤ i.
Hence, applying the induction hypothesis to ∆, α ` µβ. τ1, we conclude that

bRV Jµβ. τ1K ρ[α 7→ (χ, (µα. τ)[ρ])]cj+1 = bRV J(µβ. τ1)[µα. τ/α]K ρcj+1.

Instantiate the second conjunct of (A) with j, noting that
• j < k.

Note that χ′ = bRV Jµβ. τ1K ρ[α 7→ (χ, µα. τ)]cj+1.
Hence, (j, v1, v

′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ]), β 7→ (χ′, (µβ. τ1)[ρ][((µα. τ)[ρ])/α])]

≡ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ]), β 7→ (χ′, (µβ. (τ1[((µα. τ)[ρ])/α]))[ρ])]
≡ RV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ]), β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])]

which follows by substitution.
Hence, (j, v1, v

′
1) ∈ bRV Jτ1K ρ[α 7→ (χ, (µα. τ)[ρ]), β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])]ci+1,

which follows from the definition b·ck and j < i + 1.
Hence, (j, v1, v

′
1) ∈ bRV Jτ1K ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ]), α 7→ (χ, (µα. τ)[ρ])]ci+1.

Note that ∆, α, β ` τ1 iff ∆, β, α ` τ1.
Also note that ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])] ∈ RD J∆, βK, which follows from
• ρ ∈ RD J∆K, and
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• χ′ ∈ Rel (µβ. (τ1[µα. τ/α]))[ρ] , which follows from

RV Jµβ. (τ1[µα. τ/α])K ρ ∈ Rel (µβ. (τ1[µα. τ/α]))[ρ] ,
which follows from Lemma B.10 applied to ρ ∈ RD J∆K and ∆ ` µβ. (τ1[µα. τ/α])

⇒ bRV Jµβ. (τ1[µα. τ/α])K ρcj+1 ∈ Rel (µβ. (τ1[µα. τ/α]))[ρ] ,
which follows from the definition of b·ck

⇒ χ′ ∈ Rel (µβ. (τ1[µα. τ/α]))[ρ] ,
which follows from χ′ = bRV Jµβ. (τ1[µα. τ/α])K ρcj+1.

Applying the induction hypothesis to
• ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])] ∈ RD J∆, βK,
• ∆, β, α ` τ1, and
• χ = bRV Jµα. τK ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])]ci+1,

which follows from χ = bRV Jµα. τK ρci+1 since β /∈ FTV (µα. τ),
we conclude that

bRV Jτ1K ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ]), α 7→ (χ, (µα. τ)[ρ])]ci+1

= bRV Jτ1[µα. τ/α]K ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])]ci+1

Hence, (j, v1, v
′
1) ∈ bRV Jτ1[µα. τ/α]K ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])]ci+1.

Hence, (j, v1, v
′
1) ∈ RV Jτ1[µα. τ/α]K ρ[β 7→ (χ′, (µβ. (τ1[µα. τ/α]))[ρ])] , which follows

from the definition of b·ck.
Proof: (B) ⇒ (A)

Analogous to proof of (A) ⇒ (B).

2
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B.8 λrec Proofs: Fundamental Property of the Logical Relation

The Fundamental Property of a logical relation holds if the latter is a congruence — that is, if it satisfies
the compatibility and substitutivity properties.

Lemma B.12 (λrec Compatibility-True)

Γ ` tt ≤ tt : bool.

Proof

The proof is in 2 parts.

I. We are required to show Γ ` tt : bool, which is immediate.

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(tt), γ′(tt)) ∈ RC JboolK ∅
≡ (k, tt, tt) ∈ RC JboolK ∅.

Consider arbitrary j, ef such that

• j < k,

• tt 7−→j ef , and

• irred(ef ).

Since tt is a value, we have irred(tt).
Hence, j = 0 and ef ≡ tt.
Let e′f = tt.
We are required to show that

• tt 7−→∗ tt,
which is immediate, and

• (k − 0, tt, tt) ∈ RV JboolK ∅,
which follows from

• • ` tt : bool, and

• tt = tt = tt.

2
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Lemma B.13 (λrec Compatibility-False)

Γ ` ff ≤ ff : bool.

Proof

The proof is in 2 parts.

I. We are required to show Γ ` ff : bool, which is immediate.

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(ff), γ′(ff)) ∈ RC JboolK ∅
≡ (k, ff, ff) ∈ RC JboolK ∅.

Consider arbitrary j, ef such that

• j < k,

• ff 7−→j ef , and

• irred(ef ).

Since ff is a value, we have irred(ff).
Hence, j = 0 and ef ≡ ff.
Let e′f = ff.
We are required to show that

• ff 7−→∗ ff,
which is immediate, and

• (k − 0, ff, ff) ∈ RV JboolK ∅,
which follows from

• • ` ff : bool, and

• ff = ff = ff.

2

39



Lemma B.14 (λrec Compatibility-If)

If Γ ` e0 ≤ e′0 : bool, Γ ` e1 ≤ e′1 : τ , and Γ ` e2 ≤ e′2 : τ ,
then Γ ` if e0, e1, e2 ≤ if e′0, e

′
1, e

′
2 : τ .

Proof

The proof is in 2 parts.

I. We are required to show

• Γ ` if e0, e1, e2 : bool, which follows from

• Γ ` e0 : bool, which follows from Γ ` e0 ≤ e′0 : bool,

• Γ ` e1 : τ , which follows from Γ ` e1 ≤ e′1 : τ , and

• Γ ` e2 : τ , which follows from Γ ` e2 ≤ e′2 : τ .

• Γ ` if e′0, e
′
1, e

′
2 : bool, which follows analogously.

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(if e0, e1, e2), γ′(if e′0, e
′
1, e

′
2)) ∈ RC JτK ∅

≡ (k, if γ(e0), γ(e1), γ(e2), if γ′(e′0), γ
′(e′1), γ

′(e′2)) ∈ RC JτK ∅.
Consider arbitrary j, ef such that

• j < k,

• if γ(e0), γ(e1), γ(e2) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j0 and ef0 such that

• γ(e0) 7−→j0 ef0 ,

• irred(ef0), and

• j0 ≤ j.

Instantiate the second conjunct of Γ ` e0 ≤ e′0 : bool with k, γ, and γ′.
Note that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

Hence, (k, γ(e0), γ′(e′0)) ∈ RC JboolK ∅.
Instantiate this with j0, ef0 . Note that

• j0 < k, which follows from j0 ≤ j and j < k,

• γ(e0) 7−→j0 ef0 , and

• irred(ef0).

Hence, there exists e′f0
such that

• γ′(e′0) 7−→∗ e′f0
, and

• (k − j0, ef0 , e
′
f0

) ∈ RV JboolK ∅.

Hence, either ef0 ≡ e′f0
≡ tt or ef0 ≡ e′f0

≡ ff.
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Case ef0 ≡ e′f0
≡ tt:

Note that
γ(if e0, e1, e2) ≡ if γ(e0), γ(e1), γ(e2)

7−→j0 if ef0 , γ(e1), γ(e2)
≡ if tt, γ(e1), γ(e2)
7−→1 γ(e1)
7−→j1 ef1

where irred(ef1) and ef1 ≡ ef and j = j0 + 1 + j1.
Instantiate the second conjunct of Γ ` e1 ≤ e′1 : τ with k − j0 − 1, γ, and γ′. Note that
• k − j0 − 1 ≥ 0, which follows from j0 < k, and
• (k − j0 − 1, γ, γ′) ∈ RG JΓK,

which follows from Lemma B.9 applied to (k, γ, γ′) ∈ RG JΓK and k − j0 − 1 ≤ k.
Hence, (k − j0 − 1, γ(e1), γ′(e′1)) ∈ RC JτK ∅.
Instantiate this with j1 and ef1 . Note that
• j1 < k − j0 − 1, which follows from j1 = j − j0 − 1 and j < k,
• γ(e1) 7−→j1 ef1 , and
• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′1) 7−→∗ e′f1
, and

• (k − j0 − 1− j1, ef1 , e
′
f1

) ∈ RV JτK ∅
≡ (k − j, ef1 , e

′
f1

) ∈ RV JτK ∅, since j = j0 + 1 + j1

.

Let e′f = e′f1
.

We are required to show
• γ′(if e′0, e

′
1, e

′
2) 7−→∗ e′f1

,
which follows from

γ′(if e′0, e
′
1, e

′
2) ≡ if γ′(e′0), γ

′(e′1), γ
′(e′2)

7−→∗ if e′f0 , γ′(e′1), γ
′(e′2)

≡ if tt, γ′(e′1), γ
′(e′2)

7−→1 γ′(e′1)
7−→∗ e′f1

and
• (k − j, ef , e′f1

) ∈ RV JτK ∅
≡ (k − j, ef1 , e

′
f1

) ∈ RV JτK ∅,
which follows from above.

Case ef0 ≡ e′f0
≡ ff:

Note that
γ(if e0, e1, e2) ≡ if γ(e0), γ(e1), γ(e2)

7−→j0 if ef0 , γ(e1), γ(e2)
≡ if ff, γ(e1), γ(e2)
7−→1 γ(e2)
7−→j2 ef2

where irred(ef2) and ef2 ≡ ef and j = j0 + 1 + j2.
Instantiate the second conjunct of Γ ` e2 ≤ e′2 : τ with k − j0 − 1, γ, and γ′. Note that
• k − j0 − 1 ≥ 0, which follows from j0 < k, and
• (k − j0 − 1, γ, γ′) ∈ RG JΓK,

which follows from Lemma B.9 applied to (k, γ, γ′) ∈ RG JΓK and k − j0 − 1 ≤ k.
Hence, (k − j0 − 1, γ(e2), γ′(e′2)) ∈ RC JτK ∅.
Instantiate this with j2 and ef2 . Note that
• j2 < k − j0 − 1, which follows from j2 = j − j0 − 1 and j < k,
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• γ(e2) 7−→j2 ef2 , and
• irred(ef2).

Hence, there exists e′f2
such that

• γ′(e′2) 7−→∗ e′f2
, and

• (k − j0 − 1− j2, ef2 , e
′
f2

) ∈ RV JτK ∅
≡ (k − j, ef2 , e

′
f2

) ∈ RV JτK ∅, since j = j0 + 1 + j2

.

Let e′f = e′f2
.

We are required to show
• γ′(if e′0, e

′
1, e

′
2) 7−→∗ e′f2

,
which follows from

γ′(if e′0, e
′
1, e

′
2) ≡ if γ′(e′0), γ

′(e′1), γ
′(e′2)

7−→∗ if e′f0 , γ′(e′1), γ
′(e′2)

≡ if ff, γ′(e′1), γ
′(e′2)

7−→1 γ′(e′2)
7−→∗ e′f2

and
• (k − j, ef , e′f2

) ∈ RV JτK ∅
≡ (k − j, ef2 , e

′
f2

) ∈ RV JτK ∅,
which follows from above.

2
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Lemma B.15 (λrec Compatibility-Var)

Γ ` x ≤ x : Γ(x).

Proof

The proof is in 2 parts.

I. We are required to show Γ ` x : Γ(x), which is immediate.

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(x), γ′(x)) ∈ RC JΓ(x)K ∅.
Consider arbitrary j, ef such that

• j < k,

• γ(x) 7−→j ef , and

• irred(ef ).

Since γ(x) is a value, we have irred(γ(x)).
Hence, j = 0 and ef ≡ γ(x).
Let e′f = γ′(x).
We are required to show that

• γ′(x) 7−→∗ γ′(x),
which is immediate, and

• (k − 0, γ(x), γ′(x)) ∈ RV JΓ(x)K ∅,
which follows from (k, γ, γ′) ∈ RG JΓK.

2
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Lemma B.16 (λrec Compatibility-Fn)

If Γ, x : τ ` e ≤ e′ : τ2,
then Γ ` λx. e ≤ λx. e′ : τ1 → τ2.

Proof

The proof is in 2 parts.

I. We are required to show Γ ` λx. e : τ1 → τ2 and Γ ` λx. e′ : τ1 → τ2,
which follow (respectively) from Γ, x : τ1 ` e : τ2 and Γ, x : τ1 ` e′ : τ2,
which follow from Γ, x : τ1 ` e ≤ e′ : τ2.

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(λx. e), γ′(λx. e′)) ∈ RC Jτ1 → τ2K ∅
≡ (k, λx. γ(e), λx. γ′(e′)) ∈ RC Jτ1 → τ2K ∅.

Consider arbitrary j, ef such that

• j < k,

• λx. γ(e) 7−→j ef , and

• irred(ef ).

Since λx. γ(e) is a value, we have irred(λx. γ(e)).
Hence, j = 0 and ef ≡ λx. γ(e).
Let e′f = λx. γ′(e′).
We are required to show that

• λx. γ′(e′) 7−→∗ λx. γ′(e′),
which is immediate, and

• (k − 0, λx. γ(e), λx. γ′(e′)) ∈ RV Jτ1 → τ2K ∅
≡ (k, λx. γ(e), λx. γ′(e′))
∈ {(k, λx. e, λx. e′) | • ` λx. e′ : (τ1 → τ2)[∅] ∧

∀j < k, v1, v
′
1.

(j, v1, v
′
1) ∈ RV Jτ1K ∅ =⇒

(j, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ∅},
which follows from

• • ` λx. γ′(e′) : τ1 → τ2,
which follows from

• Note that Γ, x : τ1 ` e′ : τ2, which follows from Γ, x : τ1 ` e ≤ e′ : τ2.
Hence, we have Γ ` λx. e′ : τ1 → τ2.
Note that ` γ′ : Γ, which follows from Lemma B.7 applied to (k, γ, γ′) ∈ RG JΓK.
Note that • ` γ′(λx. e′) : τ1 → τ2, which follows from Lemma B.5 applied to
` γ′ : Γ and Γ ` λx. e′ : τ1 → τ2.
Hence, • ` λx. γ′(e′) : τ1 → τ2.

• ∀j < k, v1, v1. . . .
Consider arbitrary j, v1, v′1 such that

• j < k, and
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• (j, v1, v
′
1) ∈ RV Jτ1K ∅.

We are required to show that (j, γ(e)[v1/x], γ′(e′)[v′1/x]) ∈ RC Jτ2K ∅.
Instantiate the second conjunct of Γ, x : τ ` e ≤ e′ : τ2 with j, γ[x 7→ v1], and γ′[x 7→ v′1].
Note that

• j ≥ 0, and

• (j, γ[x 7→ v1], γ′[x 7→ v′1]) ∈ RG JΓ, x : τ1K, which follows from

• (j, γ, γ′) ∈ RG JΓK,
which follows from Lemma B.9 applied to (k, γ, γ′) ∈ RG JΓK and j ≤ k, and

• (j, v1, v
′
1) ∈ RV Jτ1K ∅,

which follows from above.

Hence, (j, γ[x 7→ v1](e), γ′[x 7→ v′1](e
′)) ∈ RC Jτ2K ∅.

Thus, (j, γ(e)[x/v1], γ′(e′)[x/v′1]) ∈ RC Jτ2K ∅.

2
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Lemma B.17 (λrec Compatibility-App)

If Γ ` e1 ≤ e′1 : τ1 → τ2, and Γ ` e2 ≤ e′2 : τ1,
then Γ ` e1 e2 ≤ e′1 e′2 : τ2.

Proof

The proof is in 2 parts.

I. We are required to show

• Γ ` e1 e2 : τ2,
which follows from

• Γ ` e1 : τ1 → τ2,
which follows from Γ ` e1 ≤ e′1 : τ1 → τ2, and

• Γ ` e2 : τ1,
which follows from Γ ` e2 ≤ e′2 : τ1.

• Γ ` e′1 e′2 : τ2, which follows analogously.

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(e1 e2), γ′(e′1 e′2)) ∈ RC Jτ2K ∅
≡ (k, γ(e1) γ(e2), γ′(e′1) γ′(e′2)) ∈ RC Jτ2K ∅.

Consider arbitrary j, ef such that

• j < k,

• γ(e1)γ(e2) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e1) 7−→j1 ef1 ,

• irred(ef1), and

• j1 ≤ j.

Instantiate the second conjunct of Γ ` e1 ≤ e′1 : τ1 → τ2 with k, γ, and γ′. Note that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

Hence, (k, γ(e1), γ′(e′1)) ∈ RC Jτ1 → τ2K ∅.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j and j < k,

• γ(e1) 7−→j1 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′1) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV Jτ1 → τ2K ∅.
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Hence, ef1 ≡ λx. ef11 and e′f1
≡ λx. e′f11

.
Note that

γ(e1 e2) ≡ γ(e1) γ(e2)
7−→j1 ef1 γ(e2)
≡ (λx. ef11) γ(e2)
7−→j−j1 ef

Hence, by inspection of the operational semantics it follows that there exist j2 and ef2 such that

• γ(e2) 7−→j2 ef2 ,

• irred(ef2), and

• j2 ≤ j − j1.

Instantiate the second conjunct of Γ ` e2 ≤ e′2 : τ1 with k − j1, γ, and γ′. Note that

• k − j1 ≥ 0, which follows from j1 < k, and

• (k − j1, γ, γ′) ∈ RG JΓK,
which follows from Lemma B.9 applied to (k, γ, γ′) ∈ RG JΓK and k − j1 ≤ k.

Hence, (k − j1, γ(e2), γ′(e′2)) ∈ RC Jτ1K ∅.
Instantiate this with j2 and ef2 . Note that

• j2 < k − j1, which follows from j2 ≤ j − j1 and j < k,

• γ(e2) 7−→j2 ef2 , and

• irred(ef2).

Hence, there exists e′f2
such that

• γ′(e′2) 7−→∗ e′f2
, and

• (k − j1 − j2, ef2 , e
′
f2

) ∈ RV Jτ1K ∅.

Hence, ef2 ≡ vf2 and e′f2
≡ v′f2

.
Note that

γ(e1 e2) ≡ γ(e1) γ(e2)
7−→j1 ef1 γ(e2)
≡ (λx. ef11) γ(e2)
7−→j2 (λx. ef11) ef2

≡ (λx. ef11) vf2

7−→1 ef11 [vf2/x]
7−→j3 ef

and irred(ef ), where j = j1 + j2 + 1 + j3.
Instantiate the second conjunct of (k− j1, λx. ef11 , λx. e′f11

) ∈ RV Jτ1 → τ2K ∅ with k− j1− j2− 1,
vf2 , and v′f2

. Note that

• k − j1 − j2 − 1 < k − j1, and

• (k − j1 − j2 − 1, vf2 , v
′
f2

) ∈ RV Jτ1K ∅,
which follows from Lemma B.8 applied to

• ∅ ∈ RD J•K,
• • ` τ1,

• (k − j1 − j2, vf2 , v
′
f2

) ∈ RV Jτ1K ∅, and

• k − j1 − j2 − 1 ≤ k − j1 − j2.

Hence, (k − j1 − j2 − 1, ef11 [vf2/x], e′f11
[v′f2

/x]) ∈ RC Jτ2K ∅.
Instantiate this with j3 and ef . Note that
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• j3 < k − j1 − j2 − 1, which follows from j3 = j − j1 − j2 − 1 and j < k,

• ef11 [vf2/x] 7−→j3 ef , and

• irred(ef ).

Hence, there exists e′f such that

• e′f11
[v′f2

/x] 7−→∗ e′f , and

• (k − j1 − j2 − 1− j3, ef , e′f ) ∈ RV Jτ2K ∅
≡ (k − j, ef , e′f ) ∈ RV Jτ2K ∅, since j = j1 + j2 + 1 + j3.

Pick e′f = e′f .
We are required to show that

• γ′(e′1 e′2) 7−→∗ e′f ,
which follows from

γ′(e′1 e′2) ≡ γ′(e′1) γ′(e′2)
7−→∗ e′f1 γ′(e′2)
≡ (λx. e′f11) γ′(e′2)
7−→∗ (λx. e′f11) e′f2

≡ (λx. e′f11) v′f2

7−→1 e′f11 [v
′
f2/x]

7−→∗ e′f

and

• (k − j, ef , e′f ) ∈ RV Jτ2K ∅,
which follows from above.

2
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Lemma B.18 (λrec Compatibility-Fold)

If Γ ` e ≤ e′ : τ [µα. τ/α],
then Γ ` fold e ≤ fold e′ : µα. τ .

Proof

The proof is in 2 parts.

I. We are required to show Γ ` fold e : µα. τ and Γ ` fold e′ : µα. τ ,
which follow (respectively) from Γ ` e : τ [µα. τ/α] and Γ ` e′ : τ [µα. τ/α],
which follow from Γ ` e ≤ e′ : τ [µα. τ/α].

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and
• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(fold e), γ′(fold e′)) ∈ RC Jµα. τK ∅
≡ (k, fold γ(e), fold γ′(e′)) ∈ RC Jµα. τK ∅.

Consider arbitrary j, ef such that

• j < k,
• fold γ(e) 7−→j ef , and
• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e) 7−→j1 ef1 ,
• irred(ef1), and
• j1 ≤ j.

Instantiate the second conjunct of Γ ` e ≤ e′ : τ [µα. τ/α] with k, γ, and γ′.
Note that

• k ≥ 0, and
• (k, γ, γ′) ∈ RG JΓK.

Hence, (k, γ(e), γ′(e′)) ∈ RC Jτ [µα. τ/α]K ∅.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j < k,
• γ(e) 7−→j1 ef1 , and
• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV Jτ [µα. τ/α]K ∅.
Hence, ef1 ≡ vf1 and e′f1

≡ v′f1
.

Note that
γ(fold e) ≡ fold γ(e)

7−→j1 fold ef1

≡ fold vf1

7−→j−j1 ef

Since fold vf1 is a value, we have irred(fold vf1).
Hence, j − j1 = 0 (and j = j1) and ef ≡ fold vf1 .
Let e′f = fold v′f1

.
We are required to show that
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• fold γ′(e′) 7−→∗ e′f
≡ fold γ′(e′) 7−→∗ fold v′f1

which follows from above, and

• (k − j, ef , e′f ) ∈ RV Jµα. τK ∅
≡ (k − j, fold vf1 , fold v′f1

)
∈ {(k, fold v, fold v′) |

• ` fold v′ : (µα. τ)[∅] ∧
∀j < k.

let χ = bRV Jµα. τK ∅cj+1 in
(j, v, v′) ∈ RV JτK ∅[α 7→ (χ, (µα. τ)[∅])]}

which follows from

• • ` fold v′f1
: (µα. τ)[∅]

Note that • ` v′f1
: τ [µα. τ/α], which follows from (k − j, vf1 , v

′
f1

) ∈ RV Jτ [µα. τ/α]K ∅.
Hence, • ` fold v′f1

: µα. τ .

• ∀i < k − j. let χ = bRV Jµα. τK ∅ci+1 in (i, vf1 , v
′
f1

) ∈ RV JτK ∅[α 7→ (χ, (µα. τ)[∅])]).
Consider arbitrary i such that

• i < k − j.

Let χ = bRV Jµα. τK ∅ci+1.
We are required to show that (i, vf1 , v

′
f1

) ∈ RV JτK ∅[α 7→ (χ, (µα. τ)[∅])].
Applying Lemma B.8 to

• ∅ ∈ RD J•K,
• • ` τ [µα. τ/α],

• (k − j, vf1 , v
′
f1

) ∈ RV Jτ [µα. τ/α]K ∅, and

• i ≤ k − j,

we conclude that (i, vf1 , v
′
f1

) ∈ RV Jτ [µα. τ/α]K ∅.
Hence, (i, vf1 , v

′
f1

) ∈ bRV Jτ [µα. τ/α]K ∅ci+1, which follows from the definition of b·ck.
Applying Lemma B.11 to • ` µα. τ and χ = bRV Jµα. τK ∅ci+1 we conclude that
bRV JτK ∅[α 7→ (χ, (µα. τ)[∅])]ci+1 = bRV Jτ [µα. τ/α]K ∅ci+1.
Hence, (i, vf1 , v

′
f1

) ∈ bRV JτK ∅[α 7→ (χ, (µα. τ)[∅])]ci+1.

Hence, (i, vf1 , v
′
f1

) ∈ RV JτK ∅[α 7→ (χ, (µα. τ)[∅])], which follows from the definition of
b·ck.

2
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Lemma B.19 (λrec Compatibility-Unfold)

If Γ ` e ≤ e′ : µα. τ ,
then Γ ` unfold e ≤ unfold e′ : τ [µα. τ/α].

Proof

The proof is in 2 parts.

I. We are required to show Γ ` unfold e : τ [µα. τ/α] and Γ ` unfold e′ : τ [µα. τ/α],
which follow (respectively) from Γ ` e : µα. τ and Γ ` e′ : µα. τ ,
which follow from Γ ` e ≤ e′ : µα. τ .

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(unfold e), γ′(unfold e′)) ∈ RC Jτ [µα. τ/α]K ∅
≡ (k, unfold γ(e), unfold γ′(e′)) ∈ RC Jτ [µα. τ/α]K ∅.

Consider arbitrary j, ef such that

• j < k,

• unfold γ(e) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e) 7−→j1 ef1 ,

• irred(ef1), and

• j1 ≤ j.

Instantiate the second conjunct of Γ ` e ≤ e′ : µα. τ with k, γ, and γ′. Note that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

Hence, (k, γ(e), γ′(e′)) ∈ RC Jµα. τK ∅.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j < k,

• γ(e) 7−→j1 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV Jµα. τK ∅.

Hence, ef1 ≡ fold vf11 and e′f1
≡ fold v′f11

.
Note that

γ(unfold e) ≡ unfold γ(e)
7−→j1 unfold ef1

≡ unfold (fold vf11)
7−→1 vf11 7−→j−j1−1 ef

Since vf11 is a value, we have irred(vf11).
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Hence, j − j1 − 1 = 0 (and j = j1 + 1) and ef ≡ vf11 .
Furthermore, note that

γ′(unfold e′) ≡ unfold γ′(e′)
7−→∗ unfold e′f1

≡ unfold (fold v′f11)
7−→1 v′f11

Since v′f11
is a value, we have irred(v′f11

).
Let e′f = v′f11

.
We are required to show that

• unfold γ′(e′) 7−→∗ e′f
≡ unfold γ′(e′) 7−→∗ v′f11

which follows from above, and

• (k − j, ef , e′f ) ∈ RV Jτ [µα. τ/α]K ∅
≡ (k − j, vf11 , v

′
f11

)RV Jτ [µα. τ/α]K ∅,
which we conclude as follows:
From (k − j1, ef1 , e

′
f1

) ≡ (k − j1, fold vf11 , fold v′f11
) ∈ RV Jµα. τK ∅, we have

• • ` fold v′f11
: (µα. τ)[∅], and

• ∀i < k − j1. let χ = bRV Jµα. τK ∅ci+1 in (i, vf11 , v
′
f11

) ∈ RV JτK ∅[α 7→ (χ, (µα. τ)[∅])].

Instantiate ∀i < k − j1. let χ = bRV Jµα. τK ∅ci+1 in (i, vf11 , v
′
f11

) ∈ RV JτK ∅[α 7→
(χ, (µα. τ)[∅])] with k − j.
Note that

• k − j < k − j1, which follows from j = j1 + 1.

Let χ = bRV Jµα. τK ∅ck−j+1.
Hence, (k − j, vf11 , v

′
f11

) ∈ RV JτK ∅[α 7→ (χ, (µα. τ)[∅])].

Hence, (k − j, vf11 , v
′
f11

) ∈ bRV JτK ∅[α 7→ (χ, (µα. τ)[∅])]ck−j+1, which follows from the defi-
nition of b·ck.
Applying Lemma B.11 to ∅ ∈ RD J•K, • ` µα. τ , and χ = bRV Jµα. τK ∅ck−j+1, we conclude
that
bRV JτK ∅[α 7→ (χ, (µα. τ)[∅])]ck−j+1 = bRV Jτ [µα. τ/α]K ∅ck−j+1.
Hence, (k − j, vf11 , v

′
f11

) ∈ bRV Jτ [µα. τ/α]K ∅ck−j+1.
Thus, (k − j, vf11 , v

′
f11

) ∈ RV Jτ [µα. τ/α]K ∅, which follows from the definition of b·ck.

2
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Lemma B.20 (λrec Substitutivity)

If Γ ` v ≤ v′ : τ1 and Γ, x : τ1 ` e ≤ e′ : τ2,
then Γ ` e[v/x] ≤ e′[v′/x] : τ2.

Proof

The proof is in 2 parts.

I. We are required to show

• Γ ` e[v/x] : τ2,
which follows from Lemma B.5 applied to

• Γ ` v : τ1,
which follows from Γ ` v ≤ v′ : τ1, and

• Γ, x : τ1 ` e : τ2,
which follows from Γ, x : τ1 ` e ≤ e′ : τ2.

• Γ ` e′[v′/x] : τ2, which follows analogously.

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and
• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(e[v/x]), γ′(e′[v′/x])) ∈ RC Jτ2K ∅.
Instantiate the second conjunct of Γ ` v ≤ v′ : τ1 with k, γ, and γ′. Note that

• k ≥ 0, and
• (k, γ, γ′) ∈ RG JΓK.

Hence, (k, γ(v), γ′(v′)) ∈ RC Jτ1K ∅.
Instantiate this with 0 and γ(v).
Note that γ(v) is a value. Hence,

• γ(v) 7−→0 γ(v), and
• irred(γ(v)).

Hence, there exists e′f such that

• γ′(v′) 7−→∗ e′f , and
• (k − 0, γ(v), e′f ) ∈ RV Jτ1K ∅.

Since γ′(v′) is a value, it follows that γ′(v′) 7−→0 γ′(v′). Hence e′f ≡ γ′(v′).
Thus, (k − 0, γ(v), e′f ) ∈ RV Jτ1K ∅

≡ (k, γ(v), γ′(v′)) ∈ RV Jτ1K ∅.
Instantiate the second conjunct of Γ, x : τ1 ` e ≤ e′ : τ2 with k, γ[x 7→ γ(v)], and γ′[x 7→ γ′(v′)].
Note that

• k ≥ 0, and
• (k, γ[x 7→ γ(v)], γ′[x 7→ γ′(v′)]) ∈ RG JΓ, x : τ1K,

which follows from

• (k, γ, γ′) ∈ RG JΓK, and
• (k, γ(v), γ′(v′)) ∈ RV Jτ1K ∅, which follows from above.

Hence, (k, γ[x 7→ γ(v)](e), γ′[x 7→ γ′(v′)](e′) ∈ RC Jτ2K ∅
≡ (k, γ(e[γ(v)/x]), γ′(e′[γ′(v′)/x]) ∈ RC Jτ2K ∅
≡ (k, γ(e[v/x]), γ′(e′[v′/x]) ∈ RC Jτ2K ∅.

2
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B.9 λrec Proofs: Reflexivity

Lemma B.21 (λrec Reflexivity)

If Γ ` e : τ , then Γ ` e ≤ e : τ .

Proof

By induction on the derivation Γ ` e : τ .

Each case follows from the corresponding compatibility lemma (i.e., Lemmas B.12 through B.19). 2
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B.10 λrec Proofs: Transitivity

Lemma B.22 (λrec Transitivity: Closed Terms)

Let • ` τ .

(A) If (k, v1, v2) ∈ RV JτK ∅ and ∀z ≥ 0. (z, v2, v3) ∈ RV JτK ∅,
then (k, v1, v3) ∈ RV JτK ∅.

(B) If (k, e1, e2) ∈ RC JτK ∅ and ∀z ≥ 0. (z, e2, e3) ∈ RC JτK ∅,
then (k, e1, e3) ∈ RC JτK ∅.

Proof

We simultaneously prove both (A) and (B) by induction on k and nested induction on the structure
of the (closed) type τ .

(A) Case k = 0:

Case (BoolTy)
• ` bool

:

We have as premises
(1) (0, v1, v2) ∈ RV JboolK ∅, and
(2) ∀z ≥ 0. (z, v2, v3) ∈ RV JboolK ∅.
Hence, from (1) it follows that (v1 = v2 = tt) ∨ (v1 = v2 = ff).
Instantiate (2) with 0, noting that 0 ≥ 0.
Hence, (0, v2, v3) ∈ RV JboolK ∅.
From the latter it follows that (v2 = v3 = tt) ∨ (v2 = v3 = ff).
We are required to show (0, v1, v3) ∈ RV JboolK ∅,
which follows from
• • ` v3 : bool,

which follows from (0, v2, v3) ∈ RV JboolK ∅.
• (v1 = v3 = tt) ∨ (v1 = v3 = ff),

which follows from (v1 = v2 = v3 = tt) ∨ (v1 = v2 = v3 = ff),
which follows from
• (v1 = v2 = tt) ∨ (v1 = v2 = ff), and
• (v2 = v3 = tt) ∨ (v2 = v3 = ff).

Case (FnTy)
• ` τ1 • ` τ2

• ` τ1 → τ2
:

We have as premises
(1) (0, v1, v2) ∈ RV Jτ1 → τ2K ∅, and
(2) ∀z ≥ 0. (z, v2, v3) ∈ RV Jτ1 → τ2K ∅.
Hence, from (1) it follows that v1 ≡ λx. e1 and v2 ≡ λx. e2.
Instantiate (2) with 0, noting that 0 ≥ 0.
Hence, (0, v2, v3) ∈ RV Jτ1 → τ2K ∅.
From the latter it follows that v3 ≡ λx. e3.
We are required to show (0, λx. e1, λx. e3) ∈ RV Jτ1 → τ2K ∅,
which follows from
• • ` λx. e3 : (τ1 → τ2)[∅],

which follows from (0, λx. e2, λx. e3) ∈ RV Jτ1 → τ2K ∅.
• ∀j < 0, v, v′. (j, v, v′) ∈ RV Jτ1K ∅ =⇒ (j, e1[v/x], e3[v′/x]) ∈ RC Jτ2K ∅,

which follows trivially since there is no j such that 0 ≤ j < 0.
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Case (RecTy)
•, α ` τ1

• ` µα. τ1
:

We have as premises
(1) (0, v1, v2) ∈ RV Jµα. τ1K ∅, and
(2) ∀z ≥ 0. (z, v2, v3) ∈ RV Jµα. τ1K ∅.
Hence, from (1) it follows that v1 ≡ fold v11 and v2 ≡ fold v22.
Instantiate (2) with 0, noting that 0 ≥ 0.
Hence, (0, v2, v3) ∈ RV Jµα. τ1K ∅.
From the latter it follows that v3 ≡ fold v33.
We are required to show (0, fold v11, fold v33) ∈ RV Jµα. τ1K ∅, which follows from
• • ` fold v33 : (µα. τ1)[∅],

which follows from (0, fold v22, fold v33) ∈ RV Jµα. τ1K ∅.
• ∀j < 0. let χ = bRV Jµα. τ1K ∅cj+1 in(j, v11, v33) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])],

which follows trivially since there is no j such that 0 ≤ j < 0.
Case k > 0:

Case (BoolTy)
• ` bool

:

We have as premises
(1) (k, v1, v2) ∈ RV JboolK ∅, and
(2) ∀z ≥ 0. (z, v2, v3) ∈ RV JboolK ∅.
Hence, from (1) it follows that (v1 = v2 = tt) ∨ (v1 = v2 = ff).
Instantiate (2) with 0, noting that 0 ≥ 0.
Hence, (0, v2, v3) ∈ RV JboolK ∅.
From the latter it follows that (v2 = v3 = tt) ∨ (v2 = v3 = ff).
We are required to show (k, v1, v3) ∈ RV JboolK ∅,
which follows from
• • ` v3 : bool,

which follows from (0, v2, v3) ∈ RV JboolK ∅.
• (v1 = v3 = tt) ∨ (v1 = v3 = ff),

which follows from (v1 = v2 = v3 = tt) ∨ (v1 = v2 = v3 = ff),
which follows from
• (v1 = v2 = tt) ∨ (v1 = v2 = ff), and
• (v2 = v3 = tt) ∨ (v2 = v3 = ff).

Case (FnTy)
• ` τ1 • ` τ2

• ` τ1 → τ2
:

We have as premises
(1) (k, v1, v2) ∈ RV Jτ1 → τ2K ∅, and
(2) ∀z ≥ 0. (z, v2, v3) ∈ RV Jτ1 → τ2K ∅.
Hence, from (1) it follows that v1 ≡ λx. e1 and v2 ≡ λx. e2.
Instantiate (2) with 0, noting that 0 ≥ 0.
Hence, (0, v2, v3) ∈ RV Jτ1 → τ2K ∅.
From the latter it follows that v3 ≡ λx. e3.
We are required to show (k, λx. e1, λx. e3) ∈ RV Jτ1 → τ2K ∅,
which follows from
• • ` λx. e3 : (τ1 → τ2)[∅],

which follows from (0, λx. e2, λx. e3) ∈ RV Jτ1 → τ2K ∅.
• ∀j < k, v, v′. (j, v, v′) ∈ RV Jτ1K ∅ =⇒ (j, e1[v/x], e3[v′/x]) ∈ RC Jτ2K ∅:

Consider arbitrary j, v, v′ such that
• j < k, and

56



• (j, v, v′) ∈ RV Jτ1K ∅.
Instantiate (1) with j, v, and v′. Note that
• j < k, and
• (j, v, v′) ∈ RV Jτ1K ∅.

Hence, (j, e1[v/x], e2[v′/x]) ∈ RC Jτ2K ∅.
Applying Lemma B.6 to • ` τ1 and (j, v, v′) ∈ RV Jτ1K ∅, we conclude that • ` v′ : τ

[∅]
1 .

Hence, by reflexivity (Lemma B.21) we conclude that • ` v′ ≤ v′ : τ1.
Hence, unwinding definitions, we have ∀z ≥ 0. (z, v′, v′) ∈ RV Jτ1K ∅.
Consider arbitrary z′ such that z′ ≥ 0.
Instantiate (2) with z′ + 1.
Hence, (z′ + 1, λx. e2, λx. e3) ∈ RV Jτ1 → τ2K ∅.
Instantiate this with z′, v′, and v′. Note that
• z′ < z′ + 1, and
• (z′, v′, v′) ∈ RV Jτ1K ∅,

which follows from ∀z ≥ 0. (z, v′, v′) ∈ RV Jτ1K ∅,
which follows from above.

Hence, (z′, e2[v′/x], e3[v′/x]) ∈ RC Jτ2K ∅.
Thus, ∀z′ ≥ 0. (z′, e2[v′/x], e3[v′/x]) ∈ RC Jτ2K ∅.
Applying induction hypothesis (B) to (j, e1[v/x], e2[v′/x]) ∈ RC Jτ2K ∅ and
∀z′ ≥ 0. (z′, e2[v′/x], e3[v′/x]) ∈ RC Jτ2K ∅, we conclude that
(j, e1[v/x], e3[v′/x]) ∈ RV Jτ2K ∅.

Case (RecTy)
•, α ` τ1

• ` µα. τ1
:

We have as premises
(1) (k, v1, v2) ∈ RV Jµα. τ1K ∅, and
(2) ∀z ≥ 0. (z, v2, v3) ∈ RV Jµα. τ1K ∅.
Hence, from (1) it follows that v1 ≡ fold v11 and v2 ≡ fold v22.
Instantiate (2) with 0, noting that 0 ≥ 0.
Hence, (0, v2, v3) ∈ RV Jµα. τ1K ∅.
From the latter it follows that v3 ≡ fold v33.
We are required to show (k, fold v11, fold v33) ∈ RV Jµα. τ1K ∅, which follows from
• • ` fold v33 : (µα. τ1)[∅],

which follows from (0, fold v22, fold v33) ∈ RV Jµα. τ1K ∅.
• ∀j < k. let χ = bRV Jµα. τ1K ∅cj+1 in(j, v11, v33) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])]:

Consider arbitrary j such that
• j < k.

Let χ = bRV Jµα. τ1K ∅cj+1.
Note that from (1) we have
• • ` fold v22 : (µα. τ)[∅], and
• ∀j < k. let χ = bRV Jµα. τ1K ∅cj+1 in (j, v11, v22) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])].

Instantiate ∀j < k. let χ = bRV Jµα. τ1K ∅cj+1 in (j, v11, v22) ∈ RV Jτ1K ∅[α 7→
(χ, (µα. τ1)[∅])] with j and χ. Note that
• j < k, and
• χ = bRV Jµα. τ1K ∅cj+1.

Hence, (j, v11, v22) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])].
Hence, (j, v11, v22) ∈ bRV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])]cj+1, which follows from the
definition of b·ck.
Applying Lemma B.11 to • ` µα. τ1 and χ, we conclude that bRV Jτ1K ∅[α 7→
(χ, (µα. τ1)[∅])]cj+1 = bRV Jτ1[µα. τ1/α]K ∅cj+1.
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Hence, (j, v11, v22) ∈ bRV Jτ1[µα. τ1/α]K ∅cj+1.
Hence, (j, v11, v22) ∈ RV Jτ1[µα. τ1/α]K ∅, which follows from the definition of b·ck.
Consider arbitrary z′ such that z′ ≥ 0.
Instantiate (2) with z′ + 1.
Hence, (z′ + 1, fold v22, fold v33) ∈ RV Jµα. τ1K ∅, from which we have
• • ` fold v33 : (µα. τ)[∅], and
• ∀j < z′ + 1. let χ = bRV Jµα. τ1K ∅cj+1 =⇒ (j, v22, v33) ∈ RV Jτ1K ∅[α 7→

(χ, (µα. τ1)[∅])].
Instantiate ∀j < z′ + 1. let χ = bRV Jµα. τ1K ∅cj+1 in (j, v22, v33) ∈ RV Jτ1K ∅[α 7→
(χ, (µα. τ1)[∅])] with z′. Note that
• z′ < z′ + 1.

Let χ′ = bRV Jµα. τ1K ∅cz′+1.
Hence, (z′, v22, v33) ∈ RV Jτ1K ∅[α 7→ (χ′, (µα. τ1)[∅])].
Hence, (z′, v22, v33) ∈ bRV Jτ1K ∅[α 7→ (χ′, (µα. τ1)[∅])]cz′+1, which follows from the
definition of b·ck.
Applying Lemma B.11 to • ` µα. τ1 and χ′, we conclude that
bRV Jτ1K ∅[α 7→ (χ′, (µα. τ1)[∅])]cz′+1 = bRV Jτ1[µα. τ1/α]K ∅cz′+1.
Hence, (z′, v22, v33) ∈ bRV Jτ1[µα. τ1/α]K ∅cz′+1.
Hence, (z′, v22, v33) ∈ RV Jτ1[µα. τ1/α]K ∅, which follows from the definition of b·ck.
Thus, ∀z′ ≥ 0. (z′, v22, v33) ∈ RV Jτ1[µα. τ1/α]K ∅.
Applying the induction hypothesis (A) to (j, v11, v22) ∈ RV Jτ1[µα. τ1/α]K ∅ and
∀z′ ≥ 0. (z′, v22, v33) ∈ RV Jτ1[µα. τ1/α]K ∅ — noting that we can apply the induction
hypothesis here since j < k — we conclude that (j, v11, v33 ∈ RV Jτ1[µα. τ1/α]K ∅.
Hence, (j, v11, v33 ∈ bRV Jτ1[µα. τ1/α]K ∅cj+1, which follows from the definition of
b·ck.
Applying Lemma B.11 to • ` µα. τ1 and χ = bRV Jµα. τ1K ∅cj+1, we conclude that
bRV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])]cj+1 = bRV Jτ1[µα. τ1/α]K ∅cj+1.
Hence, (j, v11, v33) ∈ bRV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])]cj+1.
Hence, (j, v11, v33) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])], which follows from the definition
of b·ck.

(B) Case k = 0:
We are required to show (0, e1, e3) ∈ RC JτK ∅, which is immediate from the definition of
RC JτK ∅.

Case k > 0:
We have as premises
(1) (k, e1, e2) ∈ RC JτK ∅, and
(2) ∀z ≥ 0. (z, e2, e3) ∈ RV JτK ∅.
Consider arbitrary j1 and ef1 such that
• j1 < k,
• e1 7−→j1 ef1 , and
• irred(ef1).

Instantiate (1) with j1 and ef1 . Note that
• j1 < k,
• e1 7−→j1 ef1 , and
• irred(ef1).

Hence, there exists ef2 such that
• e2 7−→∗ ef2 , and
• (k − j1, ef1 , ef2) ∈ RV JτK ∅.
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Hence, there exists j2 ≥ 0 such that e2 7−→j2 ef2 .
Consider arbitrary z′ such that z′ ≥ 0.
Instantiate (2) with z′ + 1 + j2. Note that
• z′ + 1 + j2 ≥ 0.

Hence, (z′ + 1 + j2, e2, e3) ∈ RC JτK ∅.
Instantiate this with j2 and ef2 . Note that
• j2 < z′ + 1 + j2,
• e2 7−→j2 ef2 , and
• irred(ef2).

Hence, there exists ef3 such that
• e3 7−→∗ ef3 , and
• (z′ + 1 + j2 − j2, ef2 , ef3) ∈ RV JτK ∅

≡ (z′ + 1, ef2 , ef3) ∈ RV JτK ∅.
Applying Lemma B.8 to • ` τ , we conclude that RV JτK ∅ ∈ Relτ .
By the definition of Relτ together with (z′+1, ef2 , ef3) ∈ RV JτK ∅ and z′ ≤ z′+1, we conclude
that (z′, ef2 , ef3) ∈ RV JτK ∅.
Thus, ∀z′ ≥ 0. (z′, ef2 , ef3) ∈ RV JτK ∅.
Pick e′f = ef3 .
We are required to show
• e3 7−→∗ ef3 ,

which follows from above, and
• (k − j1, ef1 , ef3) ∈ RV JτK ∅,

which follows from (A) applied to (k− j1, ef1 , ef2 ∈ RV JτK ∅ and ∀z′ ≥ 0. (z′, ef2 , ef3) ∈
RV JτK ∅,

2
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Lemma B.23 (λrec Transitivity)

If Γ ` e1 ≤ e2 : τ and Γ ` e2 ≤ e3 : τ ,
then Γ ` e1 ≤ e3 : τ .

Proof

The proof is in 2 parts.

I. We are required to show Γ ` e1 : τ and Γ ` e3 : τ ,
which follow (respectively) from Γ ` e1 ≤ e2 : τ and Γ ` e2 ≤ e3 : τ .

II. Consider arbitrary k, γ, γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(e1), γ′(e3)) ∈ RC JτK ∅.
Consider arbitrary j1, ef1 such that

• j1 < k,

• γ(e1) 7−→j1 ef1 , and

• irred(ef1).

Instantiate the second conjunct of Γ ` e1 ≤ e2 : τ with k, γ, and γ′. Note that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

Hence, (k, γ(e1), γ′(e2)) ∈ RC JτK ∅.
Consider arbitrary z′ such that z′ ≥ 0.
Applying Lemma B.7 to (k, γ, γ′) ∈ RG JΓK, we conclude that ` γ′ : Γ.
Hence, by reflexivity (Lemma B.21) we conclude that ∀x ∈ dom(Γ).• ` γ′(x) ≤ γ′(x) : Γ(x).
Hence, unwinding several definitions, we have ∀z ≥ 0. (z, γ′, γ′) ∈ RG JΓK.
Hence, (z′, γ′, γ′) ∈ RG JΓK.
Instantiate the second conjunct of Γ ` e2 ≤ e3 : τ with z′, γ′, and γ′. Note that

• z′ ≥ 0, and

• (z′, γ′, γ′) ∈ RG JΓK, which follows from above.

Hence, (z′, γ′(e2), γ′(e3)) ∈ RC JτK ∅.
Thus, ∀z′ ≥ 0. (z′, γ′(e2), γ′(e3)) ∈ RC JτK ∅.
Applying Lemma B.22 (B) to • ` τ , (k, γ(e1), γ′(e2)) ∈ RC JτK ∅, and ∀z′ ≥ 0. (z′, γ′(e2), γ′(e3)) ∈
RC JτK ∅, we conclude that (k, γ(e1), γ′(e3)) ∈ RC JτK ∅.

2
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B.11 λrec Proofs: Soundness w.r.t. Contextual Equivalence

In this section, we show that ≤ ⊆ �ctx .

Lemma B.24 (λrec Context Compatibility: Id)

If Γ0 ⊇ Γ,
then Γ0 ` [·] ≤ [·] : (Γ . τ) τ .

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .

We are required to show that Γ0 ` [e] ≤ [e′] : τ ≡ Γ0 ` e ≤ e′ : τ .

Consider arbitrary k, γ0, and γ′0 such that

• k ≥ 0, and

• (k, γ0, γ
′
0) ∈ RG JΓ0K.

We are required to show that (k, γ0(e), γ′0(e
′)) ∈ RC JτK ∅.

Let γ = γ0|dom(Γ) and γ′ = γ′0|dom(Γ). Note that

• (k, γ, γ′) ∈ RG JΓK,
which follows from (k, γ0, γ

′
0) ∈ RG JΓ0K and Γ0 ⊇ Γ, and

• (k, γ0(e), γ′0(e
′)) ∈ RC JτK ∅

≡ (k, γ(e), γ′(e′)) ∈ RC JτK ∅,
which follows from FV (e) ⊆ dom(Γ) and FV (e′) ⊆ dom(Γ).

Hence, it suffices to show that (k, γ(e), γ′(e′)) ∈ RC JτK ∅.
Instantiate the second conjunct of Γ ` e ≤ e′ : τ with k, γ, and γ′. Note that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK,
which follows from above.

Hence, (k, γ(e), γ′(e′)) ∈ RC JτK ∅. 2
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Lemma B.25 (λrec Context Compatibility: If1)

If Γ0 ` C ≤ C ′ : (Γ . τ) bool, Γ0 ` e2 ≤ e′2 : τ0, and Γ0 ` e3 ≤ e′3 : τ0,
then Γ0 ` ifC, e2, e3 ≤ ifC ′, e′2, e

′
3 : (Γ . τ) τ0.

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .

We are required to show that
Γ0 ` ifC[e], e2, e3 ≤ ifC ′[e′], e′2, e

′
3 : τ0.

Instantiate Γ0 ` C ≤ C ′ : (Γ . τ) bool with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, Γ0 ` C[e] ≤ C ′[e′] : bool.

Applying Lemma B.14 to

• Γ0 ` C[e] ≤ C ′[e′] : bool,

• Γ0 ` e2 ≤ e′2 : τ0, and

• Γ0 ` e3 ≤ e′3 : τ0,

we conclude that Γ0 ` ifC[e], e2, e3 ≤ ifC ′[e′], e′2, e
′
3 : τ0. 2

Lemma B.26 (λrec Context Compatibility: If2)

If Γ0 ` e1 ≤ e′1 : bool, Γ0 ` C ≤ C ′ : (Γ . τ) τ0, and Γ0 ` e3 ≤ e′3 : τ0,
then Γ0 ` if e1, C, e3 ≤ if e′1, C

′, e′3 : (Γ . τ) τ0.

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .

We are required to show that
Γ0 ` if e1, C[e], e3 ≤ if e′1, C

′[e′], e′3 : τ0.

Instantiate Γ0 ` C ≤ C ′ : (Γ . τ) τ0 with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, Γ0 ` C[e] ≤ C ′[e′] : τ0.

Applying Lemma B.14 to

• Γ0 ` e1 ≤ e′1 : bool,

• Γ0 ` C[e] ≤ C ′[e′] : τ0, and

• Γ0 ` e3 ≤ e′3 : τ0,

we conclude that Γ0 ` if e1, C[e], e3 ≤ if e′1, C
′[e′], e′3 : τ0. 2
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Lemma B.27 (λrec Context Compatibility: If3)

If Γ0 ` e1 ≤ e′1 : bool, Γ0 ` e2 ≤ e′2 : τ0, and Γ0 ` C ≤ C ′ : (Γ . τ) τ0,
then Γ0 ` if e1, e2, C ≤ if e′1, e

′
2, C

′ : (Γ . τ) τ0.

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .

We are required to show that
Γ0 ` if e1, e2, C[e] ≤ if e′1, e

′
2, C

′[e′] : τ0.

Instantiate Γ0 ` C ≤ C ′ : (Γ . τ) τ0 with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, Γ0 ` C[e] ≤ C ′[e′] : τ0.

Applying Lemma B.14 to

• Γ0 ` e1 ≤ e′1 : bool,

• Γ0 ` e2 ≤ e′2 : τ0, and

• Γ0 ` C[e] ≤ C ′[e′] : τ0,

we conclude that Γ0 ` if e1, e2, C[e] ≤ if e′1, e
′
2, C

′[e′] : τ0. 2

Lemma B.28 (λrec Context Compatibility: Fn)

If Γ0, x : τ1 ` C ≤ C ′ : (Γ, x : τ1 . τ) τ2,
then Γ0 ` λx.C ≤ λx.C ′ : (Γ, x : τ1 . τ) (τ1 → τ2).

Proof

Consider arbitrary e and e′ such that

• Γ, x : τ1 ` e ≤ e′ : τ .

We are required to show that Γ0 ` λx.C[e] ≤ λx.C ′[e′] : τ1 → τ2.

Instantiate Γ0, x : τ1 ` C ≤ C ′ : (Γ, x : τ1 . τ) τ2 with e and e′, noting that Γ, x : τ1 ` e ≤ e′ : τ .

Hence, Γ0, x : τ1 ` C[e] ≤ C ′[e′] : τ2.

Applying Lemma B.16 to Γ0, x : τ1 ` C[e] ≤ C ′[e′] : τ2, we conclude that Γ0 ` λx.C[e] ≤ λx.C ′[e′] :
τ1 → τ2. 2

Lemma B.29 (λrec Context Compatibility: App1)

If Γ0 ` C ≤ C ′ : (Γ . τ) (τ1 → τ2), and Γ0 ` e2 ≤ e′2 : τ1,
then Γ0 ` C e2 ≤ C ′ e′2 : (Γ . τ) τ2.

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .
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We are required to show that Γ0 ` (C[e]) e2 ≤ (C ′[e′]) e′2 : τ2.

Instantiate Γ0 ` C ≤ C ′ : (Γ . τ) (τ1 → τ2) with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, Γ0 ` C[e] ≤ C ′[e′] : τ1 → τ2.

Applying Lemma B.17 to

• Γ0 ` C[e] ≤ C ′[e′] : τ1 → τ2, and

• Γ0 ` e2 ≤ e′2 : τ1,

we conclude that Γ0 ` (C[e]) e2 ≤ (C ′[e′]) e′2 : τ2. 2

Lemma B.30 (λrec Context Compatibility: App2)

If Γ0 ` e ≤ e′ : τ1 → τ2, and Γ0 ` C ≤ C ′ : (Γ . τ) τ1,
then Γ0 ` eC ≤ e′ C ′ : (Γ . τ) τ2.

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .

We are required to show that Γ0 ` e1 (C[e]) ≤ e′1 (C ′[e′]) : τ2.

Instantiate Γ0 ` C ≤ C ′ : (Γ . τ) τ1 with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, Γ0 ` C[e] ≤ C ′[e′] : τ1.

Applying Lemma B.17 to

• Γ0 ` e1 ≤ e′1 : τ1 → τ2, and

• Γ0 ` C[e] ≤ C ′[e′] : τ1,

we conclude that Γ0 ` e1 (C[e]) ≤ e′1 (C ′[e′]) : τ2. 2

Lemma B.31 (λrec Context Compatibility: Fold)

If Γ0 ` C ≤ C ′ : (Γ . τ) τ1[µα. τ1/α],
then Γ0 ` foldC ≤ foldC ′ : (Γ . τ) (µα. τ1).

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .

We are required to show that Γ0 ` foldC[e] ≤ foldC ′[e′] : µα. tau1.

Instantiate Γ0 ` C ≤ C ′ : (Γ . τ) τ1[µα. τ1/α] with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, Γ0 ` C[e] ≤ C ′[e′] : τ1[µα. τ1/α].

Applying Lemma B.18 to Γ0 ` C[e] ≤ C ′[e′] : τ1[µα. τ1/α], we conclude that Γ0 ` foldC[e] ≤
foldC ′[e′] : µα. τ1. 2
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Lemma B.32 (λrec Context Compatibility: Unfold)

If Γ0 ` C ≤ C ′ : (Γ . τ) (µα. τ1),
then Γ0 ` unfoldC ≤ unfoldC ′ : (Γ . τ) τ1[µα. τ1/α].

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .

We are required to show that Γ0 ` unfoldC[e] ≤ unfoldC ′[e′] : τ1[µα. τ1/α].

Instantiate Γ0 ` C ≤ C ′ : (Γ . τ) µα. τ1 with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, Γ0 ` C[e] ≤ C ′[e′] : µα. τ1.

Applying Lemma B.19 to Γ0 ` C[e] ≤ C ′[e′] : µα. τ1, we conclude that Γ0 ` foldC[e] ≤ foldC ′[e′] :
τ1[µα. τ1/α]. 2

Lemma B.33 (λrec Context Compatibility: ctxt)

If Γ0 ` C0 ≤ C ′
0 : (Γ1 . τ1) τ0, and Γ1 ` C1 ≤ C ′

1 : (Γ . τ) τ1,
then Γ0 ` C0[C1[·]] ≤ C ′

0[C
′
1[·]] : (Γ . τ) τ0.

Proof

Consider arbitrary e and e′ such that

• Γ ` e ≤ e′ : τ .

We are required to show that Γ0 ` C0[C1[e]] ≤ C ′
0[C

′
1[e

′]] : τ0.

Instantiate Γ1 ` C1 ≤ C ′
1 : (Γ . τ) τ1 with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, Γ1 ` C1[e] ≤ C ′
1[e

′] : τ1.

Instantiate Γ0 ` C0 ≤ C ′
0 : (Γ1 . τ1) τ0 with C1[e] and C ′

1[e
′], noting that Γ1 ` C1[e] ≤ C ′

1[e
′] : τ1.

Hence, Γ0 ` C0[C1[e]] ≤ C ′
0[C

′
1[e

′]] : τ0. 2

Lemma B.34 (λrec Context Reflexivity)

If Γ1 ` C : (Γ . τ) τ1, then Γ1 ` C ≤ C : (Γ . τ) τ1.

Proof

By induction on the derivation Γ1 ` C : (Γ . τ) τ1.

Each case follows from the corresponding compatibility lemma (i.e., Lemmas B.24 through B.32). 2
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Lemma B.35 (λrec : ≤ ⊆ �ctx )

If Γ ` e ≤ e′ : τ , then Γ ` e �ctx e′ : τ .

Proof

Consider arbitrary C and τ1 such that

• • ` C : (Γ . τ) τ1, and

• C[e] ⇓.

Hence, there exists some value vf and some k such that

• C[e] 7−→k vf .

We are required to show that C[e′] ⇓.

Note that • ` C ≤ C : (Γ . τ) τ1, which follows from Lemma B.34 applied to • ` C : (Γ . τ) τ1.

Instantiate • ` C ≤ C : (Γ . τ) τ1 with e and e′, noting that Γ ` e ≤ e′ : τ .

Hence, • ` C[e] ≤ C[e′] : τ1.

Instantiate this with k + 1, ∅, and ∅. Note that

• k + 1 ≥ 0, and

• (k + 1, ∅, ∅) ∈ RG J•K.

Hence, (k + 1, C[e], C[e′]) ∈ RC Jτ1K ∅.
Instantiate this with k and vf . Note that

• k < k + 1,

• C[e] 7−→k vf , and

• irred(vf ), which follows from the fact that vf is value.

Hence, there exists v′f such that

• C[e′] 7−→∗ v′f , and

• (k + 1− k, vf , v′f ) ∈ RV Jτ1K ∅.

Hence, C[e′] ⇓ v′f . 2
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B.12 λrec Proofs: Completeness w.r.t. Contextual Equivalence

In this section, we show that �ctx ⊆ �ciu ⊆ ≤.

Lemma B.36 (λrec : �ctx Congruence)

If Γ ` e �ctx e′ : τ and Γ1 ` C1 : (Γ . τ) τ1,
then Γ1 ` C1[e] �ctx C1[e′] : τ1.

Proof

Consider arbitrary C and τ0 such that

• • ` C : (Γ1 . τ1) τ0, and

• C[C1[e]] ⇓.

We are required to show that C[C1[e′]] ⇓.

Instantiate Γ ` e �ctx e′ : τ with C[C1[·]] and τ0. Note that

• • ` C[C1[·]] : (Γ . τ) τ0, which follows using the (C-ctxt) rule:

(C-ctxt)
• ` C : (Γ1 . τ1) τ0 Γ1 ` C1 : (Γ . τ) τ1

• ` C[C1[·]] : (Γ . τ) τ0

• C[C1[e]] ⇓.

Hence, C[C1[e′]] ⇓. 2
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Lemma B.37 (λrec : �ctx ⊆ �ciu)

If Γ ` e �ctx e′ : τ
then Γ ` e �ciu e′ : τ .

Proof

Consider arbitrary γ, E, and τ1 such that

• ` γ : Γ,

• • ` E : τ  τ1, and

• E[γ(e)] ⇓.

If γ = {x1 7→ v1, x2 7→ v2, . . . , xn 7→ vn}, then let Cγ = (λx1. λx2. . . . λxn. [·]) v1 v2 . . . vn.
Note that • ` Cγ : (Γ . τ) τ . This follows (assuming Γ = x1:τ1, . . . , xn:τn) from:

x1:τ1, . . . , xn:τn ` [·] : (Γ . τ) τ

• ` λ(x1, . . . , xn). [·] : (Γ . τ) (τ1, . . . , τn) → τ • ` (v1, . . . , vn) : (τ1, . . . , τn)

• ` (λ(x1, . . . , xn). [·]) (v1, . . . , vn) : (Γ . τ) τ

Note that

• • ` Cγ [e] �ctx Cγ [e′] : τ ,
which follows from Lemma B.36 applied to Γ ` e �ctx e′ : τ and • ` Cγ : (Γ . τ) τ .

Instantiate this with E and τ1. Note that

• • ` E : (• . τ) τ1,
which is immediate from • ` E : τ  τ1, and

• E[Cγ [e]] ⇓, which follows from

• E[Cγ [e]] 7−→∗ E[γ(e)],
which follows from the operational semantics and an examination of Cγ , and

• E[γ(e)] ⇓,
which follows from above.

Hence, E[Cγ [e′]] ⇓.

By the operational semantics, it must be that E[Cγ [e′]] 7−→∗ E[γ(e′)].

Hence, it must be that E[γ(e′)] ⇓.

2
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Lemma B.38 (λrec Equivalence-Respecting: Closed Values)

Let • ` τ .
If (k, v1, v2) ∈ RV JτK ∅ and • ` v2 �ciu v3 : τ ,
then (k, v1, v3) ∈ RV JτK ∅.

Proof

By induction on k and nested induction on the structure of the (closed) type τ .

Case (BoolTy)
• ` bool

:

We have as premises

(1) (k, v1, v2) ∈ RV JboolK ∅, and
(2) • ` v2 �ciu v3 : bool.

Hence, from (1) it follows that (v1 = v2 = tt) ∨ (v1 = v2 = ff).
From (2) it follows that • ` v3 : bool. Hence, either v3 = tt or v3 = ff.
We show that v2 = v3 by contradiction:

• Suppose v2 6= v3. Then, either v2 = tt ∧ v3 = ff, or v2 = ff ∧ v3 = tt.

Case v2 = tt ∧ v3 = ff:
Instantiate (2) with ∅, if [·], tt, diverge, and bool. Note that
• • ` ∅ : •,
• • ` if [·], tt, diverge : bool bool, and
• if [v2], tt, diverge ⇓, since v2 = tt.

Hence, if v3, tt, diverge ⇓ ≡ if ff, tt, diverge ⇓, since v3 = ff.
But clearly, if ff, tt, diverge 7−→ diverge and diverge ⇑. Hence, we have a contra-
diction.

Case v2 = ff ∧ v3 = tt:
Instantiate (2) with ∅, if [·], diverge, tt, and bool. Note that
• • ` ∅ : •,
• • ` if [·], diverge, tt : bool bool, and
• if [v2], diverge, tt ⇓, since v2 = ff.

Hence, if v3, diverge, tt ⇓ ≡ if tt, diverge, tt ⇓, since v3 = tt.
But clearly, if tt, diverge, tt 7−→ diverge and diverge ⇑. Hence, we have a contra-
diction.

Thus, it must be that v2 = v3.

We are required to show that (k, v1, v3) ∈ RV JboolK ∅,
which follows from

• • ` v3 : bool,
which follows from • ` v2 �ctx v3 : bool.

• (v1 = v3 = tt) ∨ (v1 = v3 = ff),
which follows from (v1 = v2 = v3 = tt) ∨ (v1 = v2 = v3 = ff),
which follows from

• (v1 = v2 = tt) ∨ (v1 = v2 = ff), and

• (v2 = v3 = tt) ∨ (v2 = v3 = ff).

Case (FnTy)
• ` τ1 • ` τ2

• ` τ1 → τ2
:

We have as premises
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(1) (k, v1, v2) ∈ RV Jτ1 → τ2K ∅, and
(2) • ` v2 �ciu v3 : τ1 → τ2.

Hence, from (1) it follows that v1 ≡ λx. e1 and v2 ≡ λx. e2.
From (2) it follows that • ` v3 : τ1 → τ2. Hence, v3 ≡ λx. e3.
We are required to show that (k, λx. e1, λx. e3) ∈ RV Jτ1 → τ2K ∅,
which follows from

• • ` λx. e3 : (τ1 → τ2)[∅],
which follows from (2).

• ∀j < k, v11, v
′
11. (j, v11, v

′
11) ∈ RV Jτ1K ∅ =⇒ (j, e1[v11/x], e3[v′11/x]) ∈ RC Jτ2K ∅:

Consider arbitrary j, v11, v′11 such that

• j < k, and

• (j, v11, v
′
11) ∈ RV Jτ1K ∅.

We are required to show that (j, e1[v11/x], e3[v′11/x]) ∈ RC Jτ2K ∅.
Consider arbitrary i and ef11 such that

• i < j,

• e1[v11/x] 7−→i ef11 , and

• irred(ef11).

We are required to show that ∃e′f . e3[v′11/x] 7−→∗ e′f ∧ (j − i, ef11 , e
′
f ) ∈ RV Jτ2K ∅.

Instantiate the second conjunct of (1) with j, v11, and v′11. Note that

• j < k, and

• (j, v11, v
′
11) ∈ RV Jτ1K ∅.

Hence, (j, e1[v11/x], e2[v′11/x]) ∈ RC Jτ2K ∅.
Instantiate this with i and ef11 . Note that

• i < j,

• e1[v11/x] 7−→i ef11 , and

• irred(ef11).

Hence, there exists ef22 such that

• e2[v′11/x] 7−→∗ ef22 , and

• (j − i, ef11 , ef22) ∈ RV Jτ2K ∅.

Hence, ef11 ≡ vf11 and ef22 ≡ vf22 .
Instantiate (2) with ∅, [·] v′11, and τ2. Note that

• • ` ∅ : •,
• • ` [·] v′11 : (τ1 → τ2) τ2, and

• (λx. e2) v′11 ⇓,
which follows from (λx. e2) v′11 7−→1 e2[v′11/x] and e2[v′11/x] 7−→∗ vf22 ,
which follow from above.

Hence, there exists vf33 such that (λx. e3) v′11 ⇓ vf33 .
By the operational semantics, it must be that (λx. e3) v′11 7−→1 e3[v′11/x].
Hence, it must be that e3[v′11/x] ⇓ vf33 .
We show that • ` vf22 �ciu vf33 : τ2:
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• Consider arbitrary γ0, E0 and τ0 such that

• •γ0 : •, from which it follows that γ0 = ∅,
• • ` E0 : τ2  τ0, and

• E0[vf22 ] ⇓.

We are required to show that E0[vf33 ] ⇓.
Instantiate (2) with ∅, E0[[·] v′11], and τ0. Note that

• • ` ∅ : •,
• • ` E0[[·] v′11] : (τ1 → τ2) τ0, and

• E0[[λx. e2] v′11] 7−→1 E0[e2[v′11/x]] 7−→∗ E0[vf22 ] ⇓.

Hence, E0[[λx. e3] v′11] ⇓.
By the operational semantics, it must be that E0[[λx. e3] v′11] 7−→1 E0[e3[v′11/x]] 7−→∗

E0[vf33 ].
Hence, it must be that E0[vf33 ] ⇓.

Take e′f = vf33 .
We are required to show

• e3[v′11/x] 7−→∗ vf33 ,
which follows from above, and

• (j − i, ef11 , e
′
f ) ∈ RV Jτ2K ∅,

which follows from the induction hypothesis applied to • ` τ2, (j − i, vf11 , vf22) ∈
RV Jτ2K ∅, and • ` vf22 �ciu vf33 : τ2.

Case (RecTy)
•, α ` τ1

• ` µα. τ1
:

We have as premises

(1) (k, v1, v2) ∈ RV Jµα. τ1K ∅, and
(2) • ` v2 �ciu v3 : µα. τ1.

Hence, from (1) it follows that v1 ≡ fold v11 and v2 ≡ fold v22.
From (2) it follows that • ` v3 : µα. τ1. Hence, v3 ≡ fold v33.
We are required to show that (k, fold v11, fold v33) ∈ RV Jµα. τ1K ∅,
which follows from

• • ` fold v33 : (µα. τ1)[∅],
which follows from (2).

• ∀j < k. let χ = bRV Jµα. τ1K ∅cj+1 in (j, v11, v33) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])]:
Consider arbitrary j such that

• j < k

Let χ = bRV Jµα. τ1K ∅cj+1.
We are required to show that (j, v11, v33) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])].
Instantiate the second conjunct of (1) with j. Note that

• j < k, and

• χ = bRV Jµα. τ1K ∅cj+1.

71



Hence, (j, v11, v22) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])].
Note that (j, v11, v22) ∈ bRV Jτ1K ∅[α 7→ χ, (µα. τ1)[∅]]cj+1, which follows from the definition
of b·ck.
Applying Lemma B.11 to • ` µα. τ1 and χ, we conclude that bRV Jτ1K ∅[α 7→
(χ, (µα. τ1)[∅])]cj+1 = bRV Jτ1[µα. τ1/α]K ∅cj+1.
Hence, (j, v11, v22) ∈ bRV Jτ1[µα. τ1/α]K ∅cj+1.
Hence, (j, v11, v22) ∈ RV Jτ1[µα. τ1/α]K ∅, which follows from the definition of b·ck.
We show that • ` v22 �ciu v33 : τ1[µα. τ1/α]:

• Consider arbitrary γ0, E0 and τ0 such that

• •γ0 : •, from which it follows that γ0 = ∅,
• • ` E0 : τ1[µα. τ1/α] τ0, and

• E0[v22] ⇓.

We are required to show that E0[v33] ⇓.
Instantiate (2) with ∅, E0[unfold [·]], and τ0. Note that

• • ` ∅ : •,
• • ` E0[unfold [·]] : µα. τ1  τ0, and

• E0[unfold [fold v22]] 7−→1 E0[v22] ⇓.

Hence, E0[unfold [fold v33]] ⇓.
By the operational semantics, it must be that E0[unfold [fold v33]] 7−→1 E0[v33].
Hence, it must be that E0[v33] ⇓.

Applying the induction hypothesis to • ` τ1[µα. τ1/α], (j, v11, v22) ∈ RV Jτ1[µα. τ1/α]K ∅,
and • ` v22 �ciu v33 : τ1[µα. τ1/α], we conclude that (j, v11, v33) ∈ RV Jτ1[µα. τ1/α]K ∅.
Hence, (j, v11, v33) ∈ bRV Jτ1[µα. τ1/α]K ∅cj+1, which follows from the definition of b·ck.
Applying Lemma B.11 to • ` µα. τ1 and χ = bRV Jµα. τ1K ∅cj+1, we conclude that
bRV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])]cj+1 = bRV Jτ1[µα. τ1/α]K ∅cj+1.
Hence, (j, v11, v33) ∈ bRV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])]cj+1.
Hence, (j, v11, v33) ∈ RV Jτ1K ∅[α 7→ (χ, (µα. τ1)[∅])], which follows from the definition of b·ck.

2
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Lemma B.39 (λrec : �ciu ⊆ ≤)

If Γ ` e �ciu e′ : τ
then Γ ` e ≤ e′ : τ .

Proof

Consider arbitrary k, γ, and γ′ such that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

We are required to show that (k, γ(e), γ′(e′)) ∈ RC JτK ∅.
Consider arbitrary j and ef such that

• j < k,

• γ(e) 7−→j ef , and

• irred(ef ).

Note that Γ ` e ≤ e : τ , which follows from Lemma B.21 applied to Γ ` e : τ .

Instantiate Γ ` e ≤ e : τ with k, γ, and γ′. Note that

• k ≥ 0, and

• (k, γ, γ′) ∈ RG JΓK.

Hence, (k, γ(e), γ′(e)) ∈ RC JτK ∅.
Instantiate this with j and ef . Note that

• j < k,

• γ(e) 7−→j ef , and

• irred(ef ).

Hence, there exists e′f such that

• γ′(e) 7−→∗ e′f , and

• (k − j, ef , e′f ) ∈ RV JτK ∅.

Note that ef ≡ vf and e′f ≡ v′f .

Hence, γ′(e) ⇓ v′f .

Instantiate Γ ` e �ciu e′ : τ with γ′, [·], and τ . Note that

• ` γ′ : Γ,
which follows from Lemma B.7 applied to (k, γ, γ′) ∈ RG JΓK,

• • ` [·] : τ  τ , and

• γ′(e) ⇓.
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Hence, there exists v′′f such that γ′(e′) ⇓ v′′f .

Let e′′f = v′′f .

We are required to show that

• γ′(e′) 7−→∗ v′′f ,
which follows from above, and

• (k − j, vf , v′′f ) ∈ RV JτK ∅,
which follows from Lemma B.38 applied to

• • ` τ ,

• (k − j, vf , v′f ) ∈ RV JτK ∅, and

• v′f �ciu v′′f : τ ,
which follows from

• Consider arbitrary E1 and τ1 such that

• • ` E1 : τ  τ1, and

• E1[v′f ] ⇓.

We are required to show that E1[v′′f ] ⇓.

Instantiate Γ ` e �ciu e′ : τ with γ′, E1, and τ1. Note that

• ` γ′ : Γ,
which follows from Lemma B.7 applied to (k, γ, γ′) ∈ RG JΓK,

• • ` E1 : τ  τ1, and

• E1[γ′(e)] ⇓,
which follows from

• E1[γ′(e)] 7−→∗ E1[vf ],
which follows from γ′(e) 7−→∗ vf , and

• E1[vf ] ⇓,
which follows from above.

Hence, E1[γ′(e′)] ⇓.

By the operational semantics, it must be that E1[γ′(e′)] 7−→∗ E1[v′′f ], which follows
from γ′(e′) 7−→∗ v′′f above.

Hence, it must be that E1[v′′f ] ⇓.

2
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C Quantified Types

Types τ ::= bool | τ1 → τ2 | α | µα. τ | ∀α. τ | ∃α. τ
Expressions e ::= x | tt | ff | if e0, e1, e2 |

λx. e | e1 e2 | fold e | unfold e |
Λ. e | e [ ] | pack e | unpack e1 asx in e2

Values v ::= x | tt | ff | λx. e | fold v | Λ. e | pack v

Figure 1: λ∀∃ Syntax

Evaluation Contexts E ::= [·] | ifE, e1, e2 | E e | v E | foldE | unfoldE |
E [ ] | packE | unpackE asx in e

(iftrue) if tt, e1, e2 7−→ e1

(iffalse) if ff, e1, e2 7−→ e2

(app) (λx. e) v 7−→ e[v/x]

(unfold) unfold (fold v) 7−→ v

(inst) (Λ. e) [ ] 7−→ e

(unpack) unpack (pack v) asx in e 7−→ e[v/x]

(ctxt)
e 7−→ e′

E[e] 7−→ E[e′]

Figure 2: λ∀∃ Operational Semantics

Notation The notation e 7−→ e′ denotes a single operational step. We write e 7−→j e′ to denote that there
exists a chain of j steps of the form e 7−→ e1 7−→ . . . 7−→ ej where ej is e′. A term e is irreducible if it has no
successor in the step relation, that is, irred(e) if e is a value or if e is a “stuck” expression (such as tt(e′))
to which no operational rule applies. We also use the following abbreviations.

e 7−→∗ e′
def
= ∃k ≥ 0. e 7−→k e′

e ⇓ e′
def
= e 7−→∗ e′ ∧ irred(e′)

e ⇓ def
= ∃e′. e ⇓ e′

e ⇑ def
= ∀k ≥ 0. ∃e′. e 7−→k e′
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Type Context ∆ ::= • | ∆, α

∆ ` τ

(VarTy)
α ∈ ∆

∆ ` α
(BoolTy)

∆ ` bool
(FnTy)

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

(RecTy)
∆, α ` τ

∆ ` µα. τ

(AllTy)
∆, α ` τ

∆ ` ∀α. τ
(ExTy)

∆, α ` τ

∆ ` ∃α. τ

Figure 3: λ∀∃ Static Semantics I

Type Context ∆ ::= • | ∆, α
Value Context Γ ::= • | Γ, x:τ

∆; Γ ` e : τ

(True)
∆; Γ ` tt : bool

(False)
∆; Γ ` ff : bool

(If)
∆; Γ ` e0 : bool ∆; Γ ` e1 : τ ∆; Γ ` e2 : τ

∆; Γ ` if e0, e1, e2 : τ

(Var)
∆; Γ ` x : Γ(x)

(Fn)
∆; Γ, x:τ1 ` e : τ2

∆; Γ ` λx. e : τ1 → τ2

(App)
∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1 e2 : τ2

(Fold)
∆; Γ ` e : τ [µα. τ/α]

∆; Γ ` fold e : µα. τ
(Unfold)

∆; Γ ` e : µα. τ

∆; Γ ` unfold e : τ [µα. τ/α]

(All)
∆, α; Γ ` e : τ

∆; Γ ` Λ. e : ∀α. τ
(Inst)

∆; Γ ` e : ∀α. τ ∆ ` τ1

∆; Γ ` e [ ] : τ [τ1/α]
(Pack)

∆ ` τ1 ∆; Γ ` e : τ [τ1/α]

∆; Γ ` pack e : ∃α. τ

(Unpack)
∆; Γ ` e1 : ∃α. τ1 ∆ ` τ2 ∆, α; Γ, x : τ1 ` e2 : τ2

∆; Γ ` unpack e1 asx in e2 : τ2

Figure 4: λ∀∃ Static Semantics II
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C.1 λ∀∃ Unary Model

Notation

• We write V JτK for the semantic interpretation of types as values, C JτK for the interpretation of types
as computations, G JΓK for the interpretation of value contexts as value substitutions, and D J∆K for
the interpretation of type contexts as type substitutions (Figure 5).

• We use the metavariable σ to range over sets of tuples of the form (k, v) where k is a natural number
and v is a closed value — i.e., k ∈ Nat and v ∈ CValues.

• We use δ for mappings from type variables α to sets σ ∈ 2Nat×CValues .
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Type
def
= {σ ∈ 2Nat×CValues | ∀(j, v) ∈ σ. ∀i ≤ j. (i, v) ∈ σ}

bσck
def
= {(j, v) | j < k ∧ (j, v) ∈ σ}

V JαK δ = δ(α)

V JboolK δ = {(k, v) | v = tt ∨ v = ff}

V Jτ1 → τ2K δ = {(k, λx. e) | ∀j < k, v.
(j, v) ∈ V Jτ1K δ =⇒
(j, e[v/x]) ∈ C Jτ2K δ}

V Jµα. τK δ = {(k, fold v) | ∀j < k.
let σ = bV Jµα. τK δcj+1 in
(j, v) ∈ V JτK δ[α 7→ σ]}

V J∀α. τK δ = {(k, Λ. e) | ∀j < k, σ.
σ ∈ Type =⇒ (j, e) ∈ C JτK δ[α 7→ σ]}

V J∃α. τK δ = {(k, pack v) | ∃σ. σ ∈ Type ∧
∀j < k. (j, v) ∈ V JτK δ[α 7→ σ]}

C JτK δ = {(k, e) | ∀j < k, ef .
e 7−→j ef ∧ irred(ef ) =⇒
(k − j, ef ) ∈ V JτK δ}

D J•K = {∅}
D J∆, αK = {δ[α 7→ σ] | δ ∈ D J∆K ∧ σ ∈ Type}

G J•K δ = {(k, ∅)}
G JΓ, x : τK δ = {(k, γ[x 7→ v]) |

(k, γ) ∈ G JΓK δ ∧ (k, v) ∈ V JτK δ}

J∆; Γ ` e : τK = ∀k ≥ 0. ∀δ, γ.
δ ∈ D J∆K ∧ (k, γ) ∈ G JΓK δ =⇒
(k, γ(e)) ∈ C JτK δ

Figure 5: λ∀∃ Step-Indexed Unary Model
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C.2 λ∀∃ Relational (PER) Model

Notation

• We write RV JτK for the relational interpretation of types as values, RC JτK for the relational inter-
pretation of types as computations, RG JΓK for the relational interpretation of value contexts as value
substitutions, and RD J∆K for the interpretation of type contexts as type substitutions (Figures 6-7).

• We use the metavariable χ to range over sets of tuples of the form (k, v, v′) where k is a natural number
and v,v′ are closed values — i.e., k ∈ Nat and v, v′ ∈ CValues.

• We use ρ for mappings from type variables α to pairs (χ, τ) of sets χ ∈ 2Nat×CValues×CValues and
syntactic types τ .

• If ρ(α) = (χ, τ), the notation ρsem(α) denotes χ, while ρsyn(α) denotes τ .

• We write ` e : τ as an abbreviation for •; • ` e : τ .

• If dom(γ) = dom(Γ), we use ∆ ` γ : Γ as shorthand for ∀x ∈ dom(Γ). ∆; • ` γ(x) : Γ(x).

• If ρ = {α1 7→ (χ1, τ1), . . . , αn 7→ (χn, τn)}, the notation τ [ρ] is an abbreviation for
τ [τ1/α1, τ2/α2, . . . , τn/αn].
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Relτ
def
= {χ ∈ 2Nat×CValues×CValues | ∀(j, v, v′) ∈ χ.

` v′ : τ ∧
∀i ≤ j. (i, v, v′) ∈ χ}

bχck
def
= {(j, v, v′) | j < k ∧ (j, v, v′) ∈ χ}

RV JαK ρ = ρsem(α)

RV JboolK ρ = {(k, v, v′) | ` v′ : bool ∧
(v = v′ = tt ∨ v = v′ = ff)}

RV Jτ1 → τ2K ρ = {(k, λx. e, λx. e′) | ` λx. e′ : (τ1 → τ2)
[ρ] ∧

∀j < k, v, v′.
(j, v, v′) ∈ RV Jτ1K ρ =⇒
(j, e[v/x], e′[v′/x]) ∈ RC Jτ2K ρ}

RV Jµα. τK ρ = {(k, fold v, fold v′) | ` fold v′ : (µα. τ)[ρ] ∧
∀j < k.

let χ = bRV Jµα. τK ρcj+1 in

(j, v, v′) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]}

RV J∀α. τK ρ = {(k, Λ. e, Λ. e′) | ` Λ. e′ : (∀α. τ)[ρ] ∧
∀τ2, χ.

χ ∈ Relτ2 =⇒
∀j < k. (j, e, e′) ∈ RC JτK ρ[α 7→ (χ, τ2)]}

RV J∃α. τK ρ = {(k, pack v, pack v′) | ` pack v′ : (∃α. τ)[ρ] ∧
∃τ2, χ.

χ ∈ Relτ2 ∧
∀j < k. (j, v, v′) ∈ RV JτK ρ[α 7→ (χ, τ2)]}

RC JτK ρ = {(k, e, e′) | ∀j < k, ef .
e 7−→j ef ∧ irred(ef ) =⇒
∃e′f . e′ 7−→∗ e′f ∧ (k − j, ef , e′f ) ∈ RV JτK ρ}

Figure 6: λ∀∃ Step-Indexed Relational Model I
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RD J•K = {∅}
RD J∆, αK = {ρ[α 7→ (χ, τ2)]) | ρ ∈ RD J∆K ∧ χ ∈ Relτ2}

RG J•K ρ = {(k, ∅, ∅)}
RG JΓ, x : τK ρ = {(k, γ[x 7→ v], γ′[x 7→ v′]) |

(k, γ, γ′) ∈ RG JΓK ρ ∧ (k, v, v′) ∈ RV JτK ρ}

∆; Γ ` e ≤ e′ : τ
def
= ∆; Γ ` e : τ ∧ ∆; Γ ` e′ : τ ∧

(∀k ≥ 0. ∀ρ, γ, γ′.
ρ ∈ RD J∆K ∧ (k, γ, γ′) ∈ RG JΓK ρ =⇒
(k, γ(e), γ′(e′)) ∈ RC JτK ρ)

∆; Γ ` e ∼ e′ : τ
def
= ∆; Γ ` e ≤ e′ : τ ∧ ∆; Γ ` e′ ≤ e : τ

Figure 7: λ∀∃ Step-Indexed Relational Model II
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C.3 λ∀∃ Contexts and Contextual Equivalence

Contexts C ::= [·] | ifC, e1, e2 | if e0, C, e2 | if e0, e1, C |
λx. C | C e | e C | foldC | unfoldC
Λ. C | C [ ] | packC | unpackC asx in e | unpack e asx inC

Figure 8: λ∀∃ Syntax - Contexts
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∆′; Γ′ ` C : (∆; Γ . τ) τ ′

(C-id)
∆′; Γ′ ` [·] : (∆; Γ . τ) τ

(∆′ ⊇ ∆, Γ′ ⊇ Γ)

(C-if1)
∆′; Γ′ ` C : (∆; Γ . τ) bool ∆′; Γ′ ` e1 : τ ′ ∆′; Γ′ ` e2 : τ ′

∆′; Γ′ ` ifC, e1, e2 : (∆; Γ . τ) τ ′

(C-if2)
∆′; Γ′ ` e0 : bool ∆′; Γ′ ` C : (∆; Γ . τ) τ ′ ∆′; Γ′ ` e2 : τ ′

∆′; Γ′ ` if e0, C, e2 : (∆; Γ . τ) τ ′

(C-if3)
∆′; Γ′ ` e0 : bool ∆′; Γ′ ` e1 : τ ′ ∆′; Γ′ ` C : (∆; Γ . τ) τ ′

∆′; Γ′ ` if e0, e1, C : (∆; Γ . τ) τ ′

(C-fn)
∆′; Γ′, x : τ1 ` C : (∆; Γ, x : τ1 . τ) τ2

∆′; Γ′ ` λx. C : (∆; Γ, x : τ1 . τ) (τ1 → τ2)

(C-app1)
∆′; Γ′ ` C : (∆; Γ . τ) (τ1 → τ2) ∆′; Γ′ ` e : τ1

∆′; Γ′ ` C e : (∆; Γ . τ) τ2

(C-app2)
∆′; Γ′ ` e : τ1 → τ2 ∆′; Γ′ ` C : (∆; Γ . τ) τ1

∆′; Γ′ ` e C : (∆; Γ . τ) τ2

(C-fold)
∆′; Γ′ ` C : (∆; Γ . τ) τ ′[µα. τ ′/α]

∆′; Γ′ ` foldC : (∆; Γ . τ) µα. τ ′

(C-unfold)
∆′; Γ′ ` C : (∆; Γ . τ) µα. τ ′

∆′; Γ′ ` unfoldC : (∆; Γ . τ) τ ′[µα. τ ′/α]
(C-all)

∆′, α; Γ′ ` C : (∆, α; Γ . τ) τ1

∆′; Γ′ ` Λ. C : (∆, α; Γ . τ) ∀α. τ1

(C-inst)
∆′; Γ′ ` C : (∆; Γ . τ) ∀α. τ1 ∆′ ` τ2

∆′; Γ′ ` C [ ] : (∆; Γ . τ) (τ1[τ2/α])
(C-pack)

∆′ ` τ2 ∆′; Γ′ ` C : (∆; Γ . τ) τ1[τ2/α]

∆′; Γ′ ` packC : (∆; Γ . τ) ∃α. τ1

(C-unpack1)
∆′; Γ′ ` C : (∆; Γ . τ) ∃α. τ1 ∆ ` τ2 ∆′, α; Γ′, x : τ1 ` e2 : τ2

∆′; Γ′ ` unpackC asx in e2 : (∆; Γ . τ) τ2

(C-unpack2)
∆′; Γ′ ` e1 : ∃α. τ1 ∆ ` τ2 ∆′, α; Γ′, x : τ1 ` C : (∆, α; Γ, x : τ1 . τ) τ2

∆′; Γ′ ` unpack e1 asx inC : (∆, α; Γ, x : τ1 . τ) τ2

(C-ctxt)
∆′; Γ′ ` C : (∆1; Γ1 . τ1) τ ′ ∆1; Γ1 ` C1 : (∆; Γ . τ) τ1

∆′; Γ′ ` C[C1[·]] : (∆; Γ . τ) τ ′

∆′; Γ′ ` C[e] : τ ′

(C-exp)
∆′; Γ′ ` C : (∆; Γ . τ) τ ′ ∆; Γ ` e : τ

∆′; Γ′ ` C[e] : τ ′

Figure 9: λ∀∃ Static Semantics - Contexts
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Definition C.1 (Contextual Approximation (�ctx ) and Equivalence ('ctx ))

Let e and e′ be expressions such that ∆; Γ ` e : τ and ∆; Γ ` e′ : τ .

∆; Γ ` e �ctx e′ : τ
def
= ∀C, τ1. •; • ` C : (∆; Γ . τ) τ1 ∧ C[e] ⇓ =⇒ C[e′] ⇓

∆; Γ ` e 'ctx e′ : τ
def
= ∆; Γ ` e �ctx e′ : τ ∧

∆; Γ ` e′ �ctx e : τ

Figure 10: λ∀∃ Contextual Approximation and Equivalence

Note: To prove that our logical relation (≤) is sound with respect to contextual equivalence (�ctx ) (see
Section C.10), we first define what it means for two contexts to be logically related as follows:

∆1; Γ1 ` C ≤ C′ : (∆; Γ . τ) τ1
def
= ∀e, e′. ∆; Γ ` e ≤ e′ : τ =⇒ ∆1; Γ1 ` C[e] ≤ C′[e′] : τ1

∆1; Γ1 ` C ∼ C′ : (∆; Γ . τ) τ1
def
= ∆1; Γ1 ` C ≤ C′ : (∆; Γ . τ) τ1 ∧

∆1; Γ1 ` C′ ≤ C : (∆; Γ . τ) τ1

Figure 11: λ∀∃ Step-Indexed Logical Relation - Contexts
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C.4 λ∀∃ Evaluation Contexts and Ciu Equivalence

• The syntax of λ∀∃ evaluation contexts E is given in Figure 2.

• Note that evaluation contexts E are simply a subset of general contexts C and that only closed terms
can be placed in an evaluation context. Hence, typing judgments for evaluation contexts have the form
∆1; Γ1 ` (•; • . τ) τ1.

Definition C.2 (Ciu Approximation (�ciu) and Equivalence ('ciu))

Let e and e′ be expressions such that ∆; Γ ` e : τ and ∆; Γ ` e′ : τ .
Let δ be a mapping from type variables α to closed syntactic types τ . We write δ |= ∆ whenever
dom(δ) = ∆.

∆; Γ ` e �ciu e′ : τ
def
= ∀δ, γ, E, τ1.

δ |= ∆ ∧
` γ : δ(Γ) ∧
•; • ` E : (•; • . δ(τ)) τ1 ∧
E[γ(e)] ⇓ =⇒ E[γ(e′)] ⇓

∆; Γ ` e 'ciu e′ : τ
def
= ∆; Γ ` e �ciu e′ : τ ∧

∆; Γ ` e′ �ciu e : τ

Figure 12: λ∀∃ Ciu Approximation and Equivalence
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C.5 λ∀∃ Proofs: Type Soundness and Substitution

Lemma C.3 (λ∀∃ Valid Type: V JτK δ ∈ Type)

Let δ ∈ D J∆K and ∆ ` τ .
Then V JτK δ ∈ Type.

Proof

By the definition of Type, it suffices to show:

∀(k, v) ∈ V JτK δ. ∀j ≤ k. (j, v) ∈ V JτK δ

The proof is by induction on the derivation ∆ ` τ . 2

Lemma C.4 (λ∀∃ Safety)

If •; • ` e : τ and e 7−→∗ e′, then either e′ is a value, or there exists an e′′ such that e′ 7−→ e′′.

Proof

Prove the soundness of each typing rule using the unary indexed model of λ∀∃ (Figure 5). 2

Lemma C.5 (λ∀∃ Value Substitution)

If ∆; Γ ` v : τ1 and ∆; Γ, x : τ1 ` e : τ2,
then ∆; Γ ` e[v/x] : τ2.

Proof

2

Lemma C.6 (λ∀∃ Type Substitution)

If ∆ ` τ1 and ∆, α; Γ ` e : τ2,
then ∆; Γ[τ1/α] ` e : τ2[τ1/α].

Proof

2
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C.6 λ∀∃ Proofs: Validity of Pers

The goal of this section, is to show that each λ∀∃ type τ is a valid type — that is, RV JτK ρ ∈ Relτ [ρ] .
Specifically, this involves showing that the relational interpretation of a type τ satisfies the well-typedness
requirement and is closed under decreasing step-index.

Lemma C.7 (λ∀∃ Per Values Well-Typed)

Let ρ ∈ RD J∆K and ∆ ` τ .
If (k, v, v′) ∈ RV JτK ρ,
then ` v′ : τ [ρ].

Proof

By induction on the derivation ∆ ` τ .

We only show the (VarTy) case.

In each of the remaining cases, the result is immediate from the definition of (k, v, v′) ∈ RV JτK ρ,
which requires that ` v′ : τ [ρ].

Case (VarTy)
α ∈ ∆
∆ ` α

:

Note that α[ρ] ≡ ρsyn(α).
Hence, we are required to show that ` v′ : ρsyn(α).
Note that from (k, v, v′) ∈ RV JαK ρ it follows that (k, v, v′) ∈ ρsem(α).
Note that from ρ ∈ RD J∆K and α ∈ ∆ it follows that there exists τ such that

• ρsem(α) ∈ Relτ , and

• ρsyn(α) ≡ τ .

By the definition of Relτ , since (k, v, v′) ∈ ρsem(α) ∈ Relτ , it follows that ` v′ : τ .
Hence, ` v′ : ρsyn(α).

2

Lemma C.8 (λ∀∃ Per Value-Context Substitutions Well-Typed)

Let ρ ∈ RD J∆K and ∆ ` Γ.
If (k, γ, γ′) ∈ RG JΓK ρ,
then ` γ′ : Γ[ρ].

Proof

By induction on Γ.

Case Γ = • :
From (k, γ, γ′) ∈ RG J•K ρ we conclude that γ = γ′ = ∅.
Hence, we are required to show that ` ∅ : •[ρ] ≡ ` ∅ : •, which follows trivially.

Case Γ = Γ1, x : τ :
From (k, γ, γ′) ∈ RG JΓ1, x : τK ρ we conclude that there exist γ1, γ′1, v, and v′ such that

• γ ≡ γ1[x 7→ v],
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• γ′ ≡ γ′1[x 7→ v′],

• (k, γ1, γ
′
1) ∈ RG JΓ1K ρ, and

• (k, v, v′) ∈ RV JτK ρ.

Hence, we are required to show that ` γ′1[x 7→ v′] : (Γ1, x : τ)[ρ],
which follows from

• ` γ′1 : (Γ1)[ρ],
which follows from the induction hypothesis applied to (k, γ1, γ

′
1) ∈ RG JΓ1K ρ, and

• ` v′ : τ [ρ],
which follows from Lemma C.7 applied to ρ ∈ RD J∆K, ∆ ` τ , and (k, v, v′) ∈ RV JτK ρ.

2
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Lemma C.9 (λ∀∃ Per Types Downward Closed)

Let ρ ∈ RD J∆K and ∆ ` τ .
If (k, v, v′) ∈ RV JτK ρ and j ≤ k,
then (j, v, v′) ∈ RV JτK ρ.

Proof

The proof is by induction on the derivation ∆ ` τ .

Case (VarTy)
α ∈ ∆
∆ ` α

:

From (k, v, v′) ∈ RV JαK ρ, it follows that (k, v, v′) ∈ ρsem(α).
We are required to show that (j, v, v′) ∈ RV JαK ρ

≡ (j, v, v′) ∈ ρsem(α).
Note that

• ρsem(α) ∈ Relρsyn(α),
which follows from ρ ∈ RD J∆K, α ∈ ∆, and the definition of RD J∆K.

Hence, by the definition of Relρsyn(α), since (k, v, v′) ∈ ρsem(α) ∈ Relρsyn(α) and j ≤ k, it follows
that (j, v, v′) ∈ ρsem(α).

Case (BoolTy)
∆ ` bool

:

From (k, v, v′) ∈ RV JboolK ρ it follows that

• ` v′ : bool, and

• either v = v′ = tt or v = v′ = ff.

We are required to show that (j, v, v′) ∈ RV JboolK ρ,
which follows from

• ` v′ : bool, and

• v = v′ = tt ∨ v = v′ = ff.

Case (FnTy)
∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2
:

From (k, v, v′) ∈ RV Jτ1 → τ2K ρ it follows that v ≡ λx. e and v′ ≡ λx. e′.
Note that

(A) ` λx. e′ : (τ1 → τ2)[ρ], and
(B) ∀i < k, v1, v

′
1. (i, v1, v

′
1) ∈ RV Jτ1K ρ =⇒

(i, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ρ.

We are required to show that (j, v, v′) ∈ RV Jτ1 → τ2K ρ
≡ (j, λx. e, λx. e′) ∈ RV Jτ1 → τ2K ρ.

(C) Consider arbitrary, i, v1, v′1 such that
• i < j, and
• (i, v1, v

′
1) ∈ RV Jτ1K ρ.

Instantiate (B) with i, v1, and v′1. Note that
• i < k, which follows from i < j and j ≤ k, and
• (i, v1, v

′
1) ∈ RV Jτ1K ρ.

Hence, (i, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ρ.

From (A) and (C) it follows that (j, λx. e, λx. e′) ∈ RV Jτ1 → τ2K ρ.
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Case (RecTy)
∆, α ` τ1

∆ ` µα. τ1
:

From (k, v, v′) ∈ RV Jµα. τ1K ρ it follows that v ≡ fold v1 and v′ ≡ fold v′1.
Note that

(A) ` fold v′1 : (µα. τ1)[ρ], and
(B) ∀i < k. let χ = bRV Jµα. τ1K ρci+1 in

(i, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ1)[ρ])].

We are required to show that (j, v, v′) ∈ RV Jµα. τ1K ρ
≡ (j, fold v1, fold v′1) ∈ RV Jµα. τ1K ρ.

(C) Consider arbitrary i such that
• i < j.

Let χ = bRV Jµα. τ1K ρci+1.
Instantiate (B) with i, noting that
• i < k, which follows from i < j and j ≤ k.

Hence, (i, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ1)[ρ])].

From (A), and (C) it follows that (j, fold v1, fold v′1) ∈ RV Jµα. τ1K ρ.

Case (AllTy)
∆, α ` τ1

∆ ` ∀α. τ1
:

From (k, v, v′) ∈ RV J∀α. τ1K ρ it follows that v ≡ Λ. e and v′ ≡ Λ. e′.
Note that

(A) ` Λ. e′ : (∀α. τ1)[ρ], and
(B) ∀τ2, χ. χ ∈ Relτ2 =⇒

∀i < k. (i, e, e′) ∈ RC Jτ1K ρ[α 7→ (χ, τ2)].

We are required to show that (j, v, v′) ∈ RV J∀α. τ1K ρ
≡ (j, Λ. e, Λ. e′) ∈ RV J∀α. τ1K ρ.

(C) Consider arbitrary, τ2, χ such that
• χ ∈ Relτ2 .

Consider arbitrary i such that
• i < j.

Instantiate (B) with τ2, and χ. Note that
• χ ∈ Relτ2 .

Hence, ∀i < k. (i, e, e′) ∈ RC Jτ1K ρ[α 7→ (χ, τ2)].
Instantiate this with i. Note that
• i < k, which follows from i < j and j ≤ k.

Hence, (i, e, e′) ∈ RC Jτ1K ρ[α 7→ (χ, τ2)].

From (A) and (C) it follows that (j, Λ. e, Λ. e′) ∈ RV J∀α. τ1K ρ.

Case (ExTy)
∆, α ` τ1

∆ ` ∃α. τ1
:

From (k, v, v′) ∈ RV J∃α. τ1K ρ it follows that v ≡ pack v1 and v′ ≡ pack v′1.
Note that

(A) ` pack v′1 : (∃α. τ1)[ρ], and
(B) ∃τ2, χ. χ ∈ Relτ2 ∧

∀i < k. (i, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].

We are required to show that (j, v, v′) ∈ RV J∃α. τ1K ρ
≡ (j, pack v1, pack v′1) ∈ RV J∃α. τ1K ρ.

90



(C) From (B) it follows that there exist τ2 and χ such that
• χ ∈ Relτ2 , and
• ∀i < k. (i, v1, v

′
1) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].

Consider arbitrary, i such that
• i < j.

Instantiate ∀i < k. (i, v1, v
′
1) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)] with i. Note that

• i < k, which follows from i < j and j ≤ k.
Hence, (i, v1, v

′
1) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].

From (A) and (C) it follows that (j, pack v1, pack v′1) ∈ RV J∃α. τ1K ρ.

2

Lemma C.10 (λ∀∃ Per Value Contexts Downward Closed)

Let ρ ∈ RD J∆K and ∆ ` Γ.
If (k, γ, γ′) ∈ RG JΓK ρ and j ≤ k,
then (j, γ, γ′) ∈ RG JΓK ρ.

Proof

Proof by induction on Γ.

Case Γ = • :
We are required to show that (j, γ, γ′) ∈ RG J•K ρ.
Note that γ = γ′ = ∅, which follows from (k, γ, γ′) ∈ RG J•K ρ.
Hence, we are required to show that (j, ∅, ∅) ∈ RG J•K ρ, which follows trivially.

Case Γ = Γ1, x : τ :
From (k, γ, γ′) ∈ RG JΓ1, x : τK ρ, we conclude that there exist γ1, γ′1, v, and v′ such that

• γ ≡ γ1[x 7→ v],

• γ′ ≡ γ′1[x 7→ v′],

• (k, γ1, γ
′
1) ∈ RG JΓ1K ρ, and

• (k, v, v′) ∈ RV JτK ρ.

Hence, we are required to show that (j, γ1[x 7→ v], γ′1[x 7→ v′]) ∈ RG JΓ1, x : τK ρ,
which follows from

• (j, γ1, γ
′
1) ∈ RG JΓ1K ρ,

which follows from the induction hypothesis applied to (k, γ1, γ
′
1) ∈ RG JΓ1K ρ and j ≤ k,

and

• (j, v, v′) ∈ RV JτK ρ,
which follows from Lemma C.9 applied to

• ρ ∈ RD J∆K,

• ∆ ` τ ,

• (k, v, v′) ∈ RV JτK ρ, and

• j ≤ k.

2
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Lemma C.11 (λ∀∃ Valid Per: RV JτK ρ ∈ Relτ [ρ])

Let ρ ∈ RD J∆K and ∆ ` τ .
Then RV JτK ρ ∈ Relτ [ρ] .

Proof

By the definition of Relτ [ρ] , it suffices to show:

∀(k, v, v′) ∈ RV JτK ρ. ` v′ : τ [ρ] ∧
∀j ≤ k. (j, v, v′) ∈ RV JτK ρ

Consider arbitrary (k, v, v′) ∈ RV JτK ρ.

• Applying Lemma C.7 to ρ ∈ RD J∆K, ∆ ` τ , and (k, v, v′) ∈ RV JτK ρ, it follows that ` v′ : τ [ρ].

• Consider arbitrary j ≤ k.

Applying Lemma C.9 to ρ ∈ RD J∆K, ∆ ` τ , (k, v, v′) ∈ RV JτK ρ, and j ≤ k, it follows that
(j, v, v′) ∈ RV JτK ρ.

2
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C.7 λ∀∃ Proofs: Per Type Substitution

Lemma C.12 (λ∀∃ Per Type Substitution)

Let ρ ∈ RD J∆K and ∆ ` τ1.
Let χ = RV Jτ1K ρ.
Then RV JτK ρ[α 7→ (χ, (τ1)[ρ])] = RV Jτ [τ1/α]K ρ.

Proof

2

Lemma C.13 (λ∀∃ Per Type Substitution: Value Contexts)

Let ρ ∈ RD J∆K and ∆ ` τ1.
Let χ = RV Jτ1K ρ.
Then RG JΓK ρ[α 7→ (χ, (τ1)[ρ])] = RG JΓ[τ1/α]K ρ.

Proof

2

Lemma C.14 (λ∀∃ Per Type Substitution: Recursive Types)

Let ρ ∈ RD J∆K and ∆ ` µα. τ .
Let χ = bRV Jµα. τK ρci+1.
Then bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 = bRV Jτ [µα. τ/α]K ρci+1.

Proof

We are required to show that for all k ≤ i, v, and v′,

(k, v, v′) ∈ bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 iff (k, v, v′) ∈ bRV Jτ [µα. τ/α]K ρci+1

The proof is by induction on i and nested induction on ∆, α ` τ . 2
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C.8 λ∀∃ Proofs: Fundamental Property of the Logical Relation

The Fundamental Property of a logical relation holds if the latter is a congruence — that is, if it satisfies
the compatibility and substitutivity properties.

Lemma C.15 (λ∀∃ Compatibility-True)

∆; Γ ` tt ≤ tt : bool.

Proof

The proof is in 2 parts.

I. We are required to show ∆; Γ ` tt : bool, which is immediate.

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(tt), γ′(tt)) ∈ RC JboolK ρ
≡ (k, tt, tt) ∈ RC JboolK ρ.

Consider arbitrary j, ef such that

• j < k,

• tt 7−→j ef , and

• irred(ef ).

Since tt is a value, we have irred(tt).
Hence, j = 0 and ef ≡ tt.
Let e′f = tt.
We are required to show that

• tt 7−→∗ tt,
which is immediate, and

• (k − 0, tt, tt) ∈ RV JboolK ρ,
which follows from

• ` tt : bool, and

• tt = tt = tt.

2
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Lemma C.16 (λ∀∃ Compatibility-False)

∆; Γ ` ff ≤ ff : bool.

Proof

The proof is in 2 parts.

I. We are required to show ∆; Γ ` ff : bool, which is immediate.

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(ff), γ′(ff)) ∈ RC JboolK ρ
≡ (k, ff, ff) ∈ RC JboolK ρ.

Consider arbitrary j, ef such that

• j < k,

• ff 7−→j ef , and

• irred(ef ).

Since ff is a value, we have irred(ff).
Hence, j = 0 and ef ≡ ff.
Let e′f = ff.
We are required to show that

• ff 7−→∗ ff,
which is immediate, and

• (k − 0, ff, ff) ∈ RV JboolK ρ,
which follows from

• ` ff : bool, and

• ff = ff = ff.

2
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Lemma C.17 (λ∀∃ Compatibility-If)

If ∆; Γ ` e0 ≤ e′0 : bool, ∆; Γ ` e1 ≤ e′1 : τ , and ∆; Γ ` e2 ≤ e′2 : τ ,
then ∆; Γ ` if e0, e1, e2 ≤ if e′0, e

′
1, e

′
2 : τ .

Proof

The proof is in 2 parts.

I. We are required to show

• ∆; Γ ` if e0, e1, e2 : bool, which follows from

• ∆; Γ ` e0 : bool, which follows from ∆;Γ ` e0 ≤ e′0 : bool,

• ∆; Γ ` e1 : τ , which follows from ∆;Γ ` e1 ≤ e′1 : τ , and

• ∆; Γ ` e2 : τ , which follows from ∆;Γ ` e2 ≤ e′2 : τ .

• ∆; Γ ` if e′0, e
′
1, e

′
2 : bool, which follows analogously.

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(if e0, e1, e2), γ′(if e′0, e
′
1, e

′
2)) ∈ RC JτK ρ

≡ (k, if γ(e0), γ(e1), γ(e2), if γ′(e′0), γ
′(e′1), γ

′(e′2)) ∈ RC JτK ρ.
Consider arbitrary j, ef such that

• j < k,

• if γ(e0), γ(e1), γ(e2) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j0 and ef0 such that

• γ(e0) 7−→j0 ef0 ,

• irred(ef0), and

• j0 ≤ j.

Instantiate the second conjunct of ∆; Γ ` e0 ≤ e′0 : bool with k, ρ, γ, and γ′.
Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, (k, γ(e0), γ′(e′0)) ∈ RC JboolK ρ.
Instantiate this with j0, ef0 . Note that

• j0 < k, which follows from j0 ≤ j and j < k,

• γ(e0) 7−→j0 ef0 , and

• irred(ef0).

Hence, there exists e′f0
such that

• γ′(e′0) 7−→∗ e′f0
, and
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• (k − j0, ef0 , e
′
f0

) ∈ RV JboolK ρ.

Hence, either ef0 ≡ e′f0
≡ tt or ef0 ≡ e′f0

≡ ff.

Case ef0 ≡ e′f0
≡ tt:

Note that
γ(if e0, e1, e2) ≡ if γ(e0), γ(e1), γ(e2)

7−→j0 if ef0 , γ(e1), γ(e2)
≡ if tt, γ(e1), γ(e2)
7−→1 γ(e1)
7−→j1 ef1

where irred(ef1) and ef1 ≡ ef and j = j0 + 1 + j1.
Instantiate the second conjunct of ∆; Γ ` e1 ≤ e′1 : τ with k − j0 − 1, ρ, γ, and γ′. Note that
• k − j0 − 1 ≥ 0, which follows from j0 < k,
• ρ ∈ RD J∆K, and
• (k − j0 − 1, γ, γ′) ∈ RG JΓK ρ,

which follows from Lemma C.10 applied to (k, γ, γ′) ∈ RG JΓK ρ and k − j0 − 1 ≤ k.
Hence, (k − j0 − 1, γ(e1), γ′(e′1)) ∈ RC JτK ρ.
Instantiate this with j1 and ef1 . Note that
• j1 < k − j0 − 1, which follows from j1 = j − j0 − 1 and j < k,
• γ(e1) 7−→j1 ef1 , and
• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′1) 7−→∗ e′f1
, and

• (k − j0 − 1− j1, ef1 , e
′
f1

) ∈ RV JτK ρ

≡ (k − j, ef1 , e
′
f1

) ∈ RV JτK ρ, since j = j0 + 1 + j1

.

Let e′f = e′f1
.

We are required to show
• γ′(if e′0, e

′
1, e

′
2) 7−→∗ e′f1

,
which follows from

γ′(if e′0, e
′
1, e

′
2) ≡ if γ′(e′0), γ

′(e′1), γ
′(e′2)

7−→∗ if e′f0 , γ′(e′1), γ
′(e′2)

≡ if tt, γ′(e′1), γ
′(e′2)

7−→1 γ′(e′1)
7−→∗ e′f1

and
• (k − j, ef , e′f1

) ∈ RV JτK ρ

≡ (k − j, ef1 , e
′
f1

) ∈ RV JτK ρ,
which follows from above.

Case ef0 ≡ e′f0
≡ ff:

Note that
γ(if e0, e1, e2) ≡ if γ(e0), γ(e1), γ(e2)

7−→j0 if ef0 , γ(e1), γ(e2)
≡ if ff, γ(e1), γ(e2)
7−→1 γ(e2)
7−→j2 ef2

where irred(ef2) and ef2 ≡ ef and j = j0 + 1 + j2.
Instantiate the second conjunct of ∆; Γ ` e2 ≤ e′2 : τ with k − j0 − 1, ρ, γ, and γ′. Note that
• k − j0 − 1 ≥ 0, which follows from j0 < k,
• ρ ∈ RD J∆K, and
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• (k − j0 − 1, γ, γ′) ∈ RG JΓK ρ,
which follows from Lemma C.10 applied to (k, γ, γ′) ∈ RG JΓK ρ and k − j0 − 1 ≤ k.

Hence, (k − j0 − 1, γ(e2), γ′(e′2)) ∈ RC JτK ρ.
Instantiate this with j2 and ef2 . Note that
• j2 < k − j0 − 1, which follows from j2 = j − j0 − 1 and j < k,
• γ(e2) 7−→j2 ef2 , and
• irred(ef2).

Hence, there exists e′f2
such that

• γ′(e′2) 7−→∗ e′f2
, and

• (k − j0 − 1− j2, ef2 , e
′
f2

) ∈ RV JτK ρ

≡ (k − j, ef2 , e
′
f2

) ∈ RV JτK ρ, since j = j0 + 1 + j2

.

Let e′f = e′f2
.

We are required to show
• γ′(if e′0, e

′
1, e

′
2) 7−→∗ e′f2

,
which follows from

γ′(if e′0, e
′
1, e

′
2) ≡ if γ′(e′0), γ

′(e′1), γ
′(e′2)

7−→∗ if e′f0 , γ′(e′1), γ
′(e′2)

≡ if ff, γ′(e′1), γ
′(e′2)

7−→1 γ′(e′2)
7−→∗ e′f2

and
• (k − j, ef , e′f2

) ∈ RV JτK ρ

≡ (k − j, ef2 , e
′
f2

) ∈ RV JτK ρ,
which follows from above.

2
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Lemma C.18 (λ∀∃ Compatibility-Var)

∆; Γ ` x ≤ x : Γ(x).

Proof

The proof is in 2 parts.

I. We are required to show ∆; Γ ` x : Γ(x), which is immediate.

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(x), γ′(x)) ∈ RC JΓ(x)K ρ.
Consider arbitrary j, ef such that

• j < k,

• γ(x) 7−→j ef , and

• irred(ef ).

Since γ(x) is a value, we have irred(γ(x)).
Hence, j = 0 and ef ≡ γ(x).
Let e′f = γ′(x).
We are required to show that

• γ′(x) 7−→∗ γ′(x),
which is immediate, and

• (k − 0, γ(x), γ′(x)) ∈ RV JΓ(x)K ρ,
which follows from (k, γ, γ′) ∈ RG JΓK ρ.

2
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Lemma C.19 (λ∀∃ Compatibility-Fn)

If ∆; Γ, x : τ ` e ≤ e′ : τ2,
then ∆; Γ ` λx. e ≤ λx. e′ : τ1 → τ2.

Proof

The proof is in 2 parts.

I. We are required to show ∆; Γ ` λx. e : τ1 → τ2 and ∆;Γ ` λx. e′ : τ1 → τ2,
which follow (respectively) from ∆;Γ, x : τ1 ` e : τ2 and ∆;Γ, x : τ1 ` e′ : τ2,
which follow from ∆; Γ, x : τ1 ` e ≤ e′ : τ2.

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(λx. e), γ′(λx. e′)) ∈ RC Jτ1 → τ2K ρ
≡ (k, λx. γ(e), λx. γ′(e′)) ∈ RC Jτ1 → τ2K ρ.

Consider arbitrary j, ef such that

• j < k,

• λx. γ(e) 7−→j ef , and

• irred(ef ).

Since λx. γ(e) is a value, we have irred(λx. γ(e)).
Hence, j = 0 and ef ≡ λx. γ(e).
Let e′f = λx. γ′(e′).
We are required to show that

• λx. γ′(e′) 7−→∗ λx. γ′(e′),
which is immediate, and

• (k − 0, λx. γ(e), λx. γ′(e′)) ∈ RV Jτ1 → τ2K ρ
≡ (k, λx. γ(e), λx. γ′(e′))
∈ {(k, λx. e, λx. e′) | ` λx. e′ : (τ1 → τ2)[ρ] ∧

∀j < k, v1, v
′
1.

(j, v1, v
′
1) ∈ RV Jτ1K ρ =⇒

(j, e[v1/x], e′[v′1/x]) ∈ RC Jτ2K ρ},
which follows from

• ` λx. γ′(e′) : (τ1 → τ2)[ρ],
which follows from

• Note that ∆; Γ, x : τ1 ` e′ : τ2, which follows from ∆;Γ, x : τ1 ` e ≤ e′ : τ .
Hence, we have ∆; Γ ` λx. e′ : τ1 → τ2.
Note that •; Γ[ρ] ` λx. e′ : (τ1 → τ2)[ρ], which follows from Lemma C.6 applied to
• ` ρsyn and ∆;Γ ` λx. e′ : τ1 → τ2.
Note that •; • ` γ′ : Γ[ρ], which follows from Lemma C.8 applied to (k, γ, γ′) ∈
RG JΓK ρ.
Note that •; • ` γ′(λx. e′) : (τ1 → τ2)[ρ], which follows from Lemma C.5 applied to
•; • ` γ′ : Γ[ρ] and •; Γ[ρ] ` λx. e′ : (τ1 → τ2)[ρ].
Hence, •; • ` λx. γ′(e′) : (τ1 → τ2)[ρ].
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• ∀j < k, v1, v1. . . .
Consider arbitrary j, v1, v′1 such that

• j < k, and

• (j, v1, v
′
1) ∈ RV Jτ1K ρ.

We are required to show that (j, γ(e)[v1/x], γ′(e′)[v′1/x]) ∈ RC Jτ2K ρ.
Instantiate the second conjunct of ∆; Γ, x : τ ` e ≤ e′ : τ2 with j, ρ, γ[x 7→ v1], and
γ′[x 7→ v′1]. Note that

• j ≥ 0,

• ρ ∈ RD J∆K, and

• (j, γ[x 7→ v1], γ′[x 7→ v′1]) ∈ RG JΓ, x : τ1K ρ, which follows from

• (j, γ, γ′) ∈ RG JΓK ρ,
which follows from Lemma C.10 applied to (k, γ, γ′) ∈ RG JΓK ρ and j ≤ k,
and

• (j, v1, v
′
1) ∈ RV Jτ1K ρ,

which follows from above.

Hence, (j, γ[x 7→ v1](e), γ′[x 7→ v′1](e
′)) ∈ RC Jτ2K ρ.

Thus, (j, γ(e)[x/v1], γ′(e′)[x/v′1]) ∈ RC Jτ2K ρ.

2
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Lemma C.20 (λ∀∃ Compatibility-App)

If ∆; Γ ` e1 ≤ e′1 : τ1 → τ2, and ∆; Γ ` e2 ≤ e′2 : τ1,
then ∆; Γ ` e1 e2 ≤ e′1 e′2 : τ2.

Proof

The proof is in 2 parts.

I. We are required to show

• ∆; Γ ` e1 e2 : τ2, which follows from

• ∆; Γ ` e1 : τ1 → τ2,
which follows from ∆;Γ ` e1 ≤ e′1 : τ1 → τ2, and

• ∆; Γ ` e2 : τ1,
which follows from ∆;Γ ` e2 ≤ e′2 : τ1.

• ∆; Γ ` e′1 e′2 : τ2, which follows analogously.

II. Consider arbitrary k, ρ, γ, and γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(e1 e2), γ′(e′1 e′2)) ∈ RC Jτ2K ρ
≡ (k, γ(e1) γ(e2), γ′(e′1) γ′(e′2)) ∈ RC Jτ2K ρ.

Consider arbitrary j, ef such that

• j < k,

• γ(e1) γ(e2) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e1) 7−→j1 ef1 ,

• irred(ef1), and

• j1 ≤ j.

Instantiate the second conjunct of ∆; Γ ` e1 ≤ e′1 : τ1 → τ2 with k, ρ, γ, and γ′. Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, (k, γ(e1), γ′(e′1)) ∈ RC Jτ1 → τ2K ρ.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j and j < k,

• γ(e1) 7−→j1 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′1) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV Jτ1 → τ2K ρ.
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Hence, ef1 ≡ λx. ef11 and e′f1
≡ λx. e′f11

.
Note that

γ(e1 e2) ≡ γ(e1) γ(e2)
7−→j1 ef1 γ(e2)
≡ (λx. ef11) γ(e2)
7−→j−j1 ef

Hence, by inspection of the operational semantics it follows that there exist j2 and ef2 such that

• γ(e2) 7−→j2 ef2 ,

• irred(ef2), and

• j2 ≤ j − j1.

Instantiate the second conjunct of ∆; Γ ` e2 ≤ e′2 : τ1 with k − j1, ρ, γ, and γ′. Note that

• k − j1 ≥ 0, which follows from j1 < k,

• ρ ∈ RD J∆K, and

• (k − j1, γ, γ′) ∈ RG JΓK ρ,
which follows from Lemma C.10 applied to (k, γ, γ′) ∈ RG JΓK ρ and k − j1 ≤ k.

Hence, (k − j1, γ(e2), γ′(e′2)) ∈ RC Jτ1K ρ.
Instantiate this with j2 and ef2 . Note that

• j2 < k − j1, which follows from j2 ≤ j − j1 and j < k,

• γ(e2) 7−→j2 ef2 , and

• irred(ef2).

Hence, there exists e′f2
such that

• γ′(e′2) 7−→∗ e′f2
, and

• (k − j1 − j2, ef2 , e
′
f2

) ∈ RV Jτ1K ρ.

Hence, ef2 ≡ vf2 and e′f2
≡ v′f2

.
Note that

γ(e1 e2) ≡ γ(e1) γ(e2)
7−→j1 ef1 γ(e2)
≡ (λx. ef11) γ(e2)
7−→j2 (λx. ef11) ef2

≡ (λx. ef11) vf2

7−→1 ef11 [vf2/x]
7−→j3 ef

and irred(ef ), where j = j1 + j2 + 1 + j3.
Instantiate the second conjunct of (k− j1, λx. ef11 , λx. e′f11

) ∈ RV Jτ1 → τ2K ρ with k− j1− j2− 1,
vf2 , and v′f2

. Note that

• k − j1 − j2 − 1 < k − j1, and

• (k − j1 − j2 − 1, vf2 , v
′
f2

) ∈ RV Jτ1K ρ,
which follows from Lemma C.9 applied to

• ρ ∈ RD J∆K,

• ∆ ` τ1,

• (k − j1 − j2, vf2 , v
′
f2

) ∈ RV Jτ1K ρ, and

• k − j1 − j2 − 1 ≤ k − j1 − j2.
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Hence, (k − j1 − j2 − 1, ef11 [vf2/x], e′f11
[v′f2

/x]) ∈ RC Jτ2K ρ.
Instantiate this with j3 and ef . Note that

• j3 < k − j1 − j2 − 1, which follows from j3 = j − j1 − j2 − 1 and j < k,

• ef11 [vf2/x] 7−→j3 ef , and

• irred(ef ).

Hence, there exists e′f such that

• e′f11
[v′f2

/x] 7−→∗ e′f , and

• (k − j1 − j2 − 1− j3, ef , e′f ) ∈ RV Jτ2K ρ

≡ (k − j, ef , e′f ) ∈ RV Jτ2K ρ, since j = j1 + j2 + 1 + j3.

Pick e′f = e′f .
We are required to show that

• γ′(e′1 e′2) 7−→∗ e′f ,
which follows from

γ′(e′1 e′2) ≡ γ′(e′1) γ′(e′2)
7−→∗ e′f1 γ′(e′2)
≡ (λx. e′f11) γ′(e′2)
7−→∗ (λx. e′f11) e′f2

≡ (λx. e′f11) v′f2

7−→1 e′f11 [v
′
f2/x]

7−→∗ e′f

and

• (k − j, ef , e′f ) ∈ RV Jτ2K ρ,
which follows from above.

2
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Lemma C.21 (λ∀∃ Compatibility-Fold)

If ∆; Γ ` e ≤ e′ : τ [µα. τ/α],
then ∆; Γ ` fold e ≤ fold e′ : µα. τ .

Proof

The proof is in 2 parts.

I. We are required to show ∆; Γ ` fold e : µα. τ and ∆;Γ ` fold e′ : µα. τ ,
which follow (respectively) from ∆;Γ ` e : τ [µα. τ/α] and ∆; Γ ` e′ : τ [µα. τ/α],
which follow from ∆; Γ ` e ≤ e′ : τ [µα. τ/α].

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(fold e), γ′(fold e′)) ∈ RC Jµα. τK ρ
≡ (k, fold γ(e), fold γ′(e′)) ∈ RC Jµα. τK ρ.

Consider arbitrary j, ef such that

• j < k,

• fold γ(e) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e) 7−→j1 ef1 ,

• irred(ef1), and

• j1 ≤ j.

Instantiate the second conjunct of ∆; Γ ` e ≤ e′ : τ [µα. τ/α] with k, ρ, γ, and γ′.
Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, (k, γ(e), γ′(e′)) ∈ RC Jτ [µα. τ/α]K ρ.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j < k,

• γ(e) 7−→j1 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV Jτ [µα. τ/α]K ρ.
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Hence, ef1 ≡ vf1 and e′f1
≡ v′f1

.
Note that

γ(fold e) ≡ fold γ(e)
7−→j1 fold ef1

≡ fold vf1

7−→j−j1 ef

Since fold vf1 is a value, we have irred(fold vf1).
Hence, j − j1 = 0 (and j = j1) and ef ≡ fold vf1 .
Let e′f = fold v′f1

. We are required to show that

• fold γ′(e′) 7−→∗ e′f
≡ fold γ′(e′) 7−→∗ fold v′f1

which follows from above, and
• (k − j, ef , e′f ) ∈ RV Jµα. τK ρ

≡ (k − j, fold vf1 , fold v′f1
)

∈ {(k, fold v, fold v′) |
` fold v′ : (µα. τ)[ρ] ∧
∀j < k.

let χ = bRV Jµα. τK ρcj+1 in
(j, v, v′) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]}

which follows from

• ` fold v′f1
: (µα. τ)[ρ]

Note that ` v′f1
: (τ [µα. τ/α])[ρ], which follows from (k−j, vf1 , v

′
f1

) ∈ RV Jτ [µα. τ/α]K ρ.

Note that ` v′f1
: (τ [µα. τ/α])[ρ]

≡ •; • ` v′f1
: (τ [µα. τ/α])[ρ]

≡ •; • ` v′f1
: (τ [ρ][(µα. τ)[ρ]/α]).

Hence, •; • ` fold v′f1
: (µα. τ)[ρ].

• ∀i < k − j. let χ = bRV Jµα. τK ρci+1 in (i, vf1 , v
′
f1

) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]).
Consider arbitrary i such that

• i < k − j.

Let χ = bRV Jµα. τK ρci+1.
We are required to show that (i, vf1 , v

′
f1

) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]
≡ (i, vf1 , v

′
f1

) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])].
Applying Lemma C.9 to

• ρ ∈ RD J∆K,
• ∆ ` τ [µα. τ/α],
• (k − j, vf1 , v

′
f1

) ∈ RV Jτ [µα. τ/α]K ρ, and
• i ≤ k − j,

we conclude that (i, vf1 , v
′
f1

) ∈ RV Jτ [µα. τ/α]K ρ.
Hence, (i, vf1 , v

′
f1

) ∈ bRV Jτ [µα. τ/α]K ρci+1, which follows from the definition of b·ck.
Applying Lemma C.14 to ρ ∈ RD J∆K, ∆ ` µα. τ , and χ = bRV Jµα. τK ρci+1 we
conclude that
bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1 = bRV Jτ [µα. τ/α]K ρci+1.
Hence, (i, vf1 , v

′
f1

) ∈ bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]ci+1.

Hence, (i, vf1 , v
′
f1

) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])], which follows from the definition of
b·ck.
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2

Lemma C.22 (λ∀∃ Compatibility-Unfold)

If ∆; Γ ` e ≤ e′ : µα. τ ,
then ∆; Γ ` unfold e ≤ unfold e′ : τ [µα. τ/α].

Proof

The proof is in 2 parts.

I. We are required to show ∆; Γ ` unfold e : τ [µα. τ/α] and ∆; Γ ` unfold e′ : τ [µα. τ/α],
which follow (respectively) from ∆;Γ ` e : µα. τ and ∆;Γ ` e′ : µα. τ ,
which follows from ∆;Γ ` e ≤ e′ : µα. τ .

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(unfold e), γ′(unfold e′)) ∈ RC Jτ [µα. τ/α]K ρ
≡ (k, unfold γ(e), unfold γ′(e′)) ∈ RC Jτ [µα. τ/α]K ρ.

Consider arbitrary j, ef such that

• j < k,

• unfold γ(e) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e) 7−→j1 ef1 ,

• irred(ef1), and

• j1 ≤ j.

Instantiate the second conjunct of ∆; Γ ` e ≤ e′ : µα. τ with k, ρ, γ, and γ′. Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK.

Hence, (k, γ(e), γ′(e′)) ∈ RC Jµα. τK ρ.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j < k,

• γ(e) 7−→j1 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV Jµα. τK ρ.
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Hence, ef1 ≡ fold vf11 and e′f1
≡ fold v′f11

.
Note that

γ(unfold e) ≡ unfold γ(e)
7−→j1 unfold ef1

≡ unfold (fold vf11)
7−→1 vf11 7−→j−j1−1 ef

Since vf11 is a value, we have irred(vf11).
Hence, j − j1 − 1 = 0 (and j = j1 + 1) and ef ≡ vf11 .
Furthermore, note that

γ′(unfold e′) ≡ unfold γ′(e′)
7−→∗ unfold e′f1

≡ unfold (fold v′f11)
7−→1 v′f11

Since v′f11
is a value, we have irred(v′f11

).
Let e′f = v′f11

.
We are required to show that

• unfold γ′(e′) 7−→∗ e′f
≡ unfold γ′(e′) 7−→∗ v′f11

which follows from above, and

• (k − j, ef , e′f ) ∈ RV Jτ [µα. τ/α]K ρ

≡ (k − j, vf11 , v
′
f11

)RV Jτ [µα. τ/α]K ρ,
which we conclude as follows:
From (k − j1, ef1 , e

′
f1

) ≡ (k − j1, fold vf11 , fold v′f11
) ∈ RV Jµα. τK ρ, we have

• ` fold v′f11
: (µα. τ)[ρ], and

• ∀i < k − j1. let χ = bRV Jµα. τK ρci+1 in
(i, vf11 , v

′
f11

) ∈ RV JτK ∅[α 7→ (χ, (µα. τ)[ρ])],
.

Instantiate ∀i < k − j1. let χ = bRV Jµα. τK ρci+1 in
(i, vf11 , v

′
f11

) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]
with k − j. Note that

• k − j < k − j1, which follows from j = j1 + 1.

Let χ = bRV Jµα. τK ρck−j+1.
Hence, (k − j, vf11 , v

′
f11

) ∈ RV JτK ρ[α 7→ (χ, (µα. τ)[ρ])].

Hence, (k − j, vf11 , v
′
f11

) ∈ bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]ck−j+1, which follows from the
definition of b·ck.
Applying Lemma C.14 to ρ ∈ RD J∆K, ∆ ` µα. τ , and χ = bRV Jµα. τK ρck−j+1, we conclude
that
bRV JτK ρ[α 7→ (χ, (µα. τ)[ρ])]ck−j+1 = bRV Jτ [µα. τ/α]K ρck−j+1.
Hence, (k − j, vf11 , v

′
f11

) ∈ bRV Jτ [µα. τ/α]K ρck−j+1.
Thus, (k − j, vf11 , v

′
f11

) ∈ RV Jτ [µα. τ/α]K ρ, which follows from the definition of b·ck.

2
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Lemma C.23 (λ∀∃ Compatibility-All)

If ∆, α; Γ ` e ≤ e′ : τ ,
then ∆; Γ ` Λ. e ≤ Λ. e′ : ∀α. τ .

Proof

The proof is in 2 parts.

I. We are required to show ∆; Γ ` Λ. e : ∀α. τ and ∆;Γ ` Λ. e′ : ∀α. τ ,
which follow (respectively) from ∆, α; Γ ` e : τ and ∆, α; Γ ` e′ : τ ,
which follow from ∆, α; Γ ` e ≤ e′ : τ .

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(Λ. e), γ′(Λ. e′)) ∈ RC J∀α. τK ρ
≡ (k, Λ. γ(e),Λ. γ′(e′)) ∈ RC J∀α. τK ρ.

Consider arbitrary j, ef such that

• j < k,

• Λ. γ(e) 7−→j ef , and

• irred(ef ).

Since Λ. γ(e) is a value, we have irred(Λ. γ(e)).
Hence, j = 0 and ef ≡ Λ. γ(e).
Let e′f = Λ. γ′(e′).
We are required to show that

• Λ. γ′(e′) 7−→∗ Λ. γ′(e′),
which is immediate, and

• (k − 0,Λ. γ(e),Λ. γ′(e′)) ∈ RV J∀α. τK ρ
≡ (k, Λ. γ(e),Λ. γ′(e′))
∈ {(k, Λ. e, Λ. e′) | ` Λ. e′ : (∀α. τ)[ρ] ∧

∀τ2, χ.
χ ∈ Relτ2 =⇒
∀j < k. (j, e, e′) ∈ RC JτK ρ[α 7→ (χ, τ2)]},

which follows from

• ` Λ. γ′(e′) : (∀α. τ)[ρ],
which follows from

• Note that ∆, α; Γ ` e′ : τ , which follows from ∆, α; Γ ` e ≤ e′ : τ .
Hence, we have ∆; Γ ` Λ. e′ : ∀α. τ .
Note that •; Γ[ρ] ` Λ. e′ : (∀α. τ)[ρ], which follows from Lemma C.6 applied to
• ` ρsyn and ∆;Γ ` Λ. e′ : ∀α. τ .
Note that ` γ′ : Γ[ρ], which follows from Lemma C.8 applied to (k, γ, γ′) ∈
RG JΓK ρ.
Note that •; • ` γ′(Λ. e′) : (∀α. τ)[ρ], which follows from Lemma C.5 applied to
` γ′ : Γ[ρ] and •; Γ[ρ] ` Λ. e′ : (∀α. τ)[ρ].
Hence, •; • ` Λ. γ′(e′) : (∀α. τ)[ρ].
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• ∀τ2, χ. . . .
Consider arbitrary τ2, and χ such that

• χ ∈ Relτ2 .

We are required to show that ∀j < k. (j, γ(e), γ′(e′)) ∈ RC JτK ρ[α 7→ (χ, τ2)].
Consider arbitrary j such that

• j < k.

We are required to show that (j, γ(e), γ′(e′)) ∈ RC JτK ρ[α 7→ (χ, τ2)].
Instantiate the second conjunct of the premise ∆, α; Γ ` e ≤ e′ : τ with j, ρ[α 7→ (χ, τ2)],
γ, and γ′. Note that

• j ≥ 0,

• ρ[α 7→ (χ, τ2)] ∈ RD J∆, αK,
which follows from ρ ∈ RD J∆K and χ ∈ Relτ2 , and

• (j, γ, γ′) ∈ RG JΓK ρ[α 7→ (χ, τ2)], which follows from

• (j, γ, γ′) ∈ RG JΓK ρ,
which follows from Lemma C.10 applied to (k, γ, γ′) ∈ RG JΓK ρ and j ≤ k,
and

• α /∈ FTV (Γ).

Hence, (j, γ(e), γ′(e′)) ∈ RC JτK ρ[α 7→ (χ, τ2)].

2
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Lemma C.24 (λ∀∃ Compatibility-Inst)

If ∆; Γ ` e ≤ e′ : ∀α. τ and ∆ ` τ1,
then ∆; Γ ` e [ ] ≤ e′ [ ] : τ [τ1/α].

Proof

The proof is in 2 parts.

I. We are required to show

• ∆; Γ ` e [ ] : τ [τ1/α], which follows from

• ∆; Γ ` e : ∀α. τ ,
which follows from ∆;Γ ` e ≤ e′ : ∀α. τ , and

• ∆ ` τ1.

• ∆; Γ ` e′ [ ] : τ [τ1/α], which follows analogously.

II. Consider arbitrary k, ρ, γ, and γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(e [ ]), γ′(e′ [ ])) ∈ RC Jτ [τ1/α]K ρ
≡ (k, γ(e) [ ], γ′(e′) [ ]) ∈ RC Jτ [τ1/α]K ρ.

Consider arbitrary j, ef such that

• j < k,

• γ(e) [ ] 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e) 7−→j1 ef1 ,

• irred(ef1), and

• j1 ≤ j.

Instantiate the second conjunct of ∆; Γ ` e ≤ e′ : ∀α. τ with k, ρ, γ, and γ′. Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, (k, γ(e), γ′(e′)) ∈ RC J∀α. τK ρ.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j and j < k,

• γ(e) 7−→j1 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV J∀α. τK ρ.
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Hence, ef1 ≡ Λ. ef11 and e′f1
≡ Λ. e′f11

.
Note that

γ(e [ ]) ≡ γ(e) [ ]
7−→j1 ef1 [ ]
≡ (Λ. ef11) [ ] 7−→1 ef11

7−→j2 ef

and irred(ef ), where j = j1 + 1 + j2.
Let χ = RV Jτ1K ρ.
Instantiate the second conjunct of (k− j1,Λ. ef11 ,Λ. e′f11

) ∈ RV J∀α. τK ρ with (τ1)[ρ], and χ. Note
that

• χ ∈ Rel (τ1)[ρ] ,
which follows from RV Jτ1K ρ ∈ Rel (τ1)[ρ] ,
which in turn follows from Lemma C.11 applied to ρ ∈ RD J∆K and ∆ ` τ1.

Hence, ∀i < k − j1. (i, ef11 , e
′
f11

) ∈ RC JτK ρ[α 7→ (χ, (τ1)[ρ])].
Instantiate this with k − j1 − 1, noting that k − j1 − 1 < k − j1.
Hence, (k − j1 − 1, ef11 , e

′
f11

) ∈ RC JτK ρ[α 7→ (χ, (τ1)[ρ])].
Instantiate this with j2 and ef . Note that

• j2 < k − j1 − 1, which follows from j2 = j − j1 − 1 and j < k,

• ef11 7−→j2 ef , and

• irred(ef ).

Hence, there exists e′f such that

• e′f11
7−→∗ e′f , and

• (k − j1 − 1− j2, ef , e′f ) ∈ RV JτK ρ[α 7→ (χ, (τ1)[ρ])]
≡ (k − j, ef , e′f ) ∈ RV JτK ρ[α 7→ (χ, (τ1)[ρ])], since j = j1 + 1 + j2.

Pick e′f = e′f .
We are required to show that

• γ′(e′ [ ]) 7−→∗ e′f ,
which follows from

γ′(e′ [ ]) ≡ γ′(e′) [ ]
7−→∗ e′f1 [ ]
≡ (Λ. e′f11) [ ]
7−→1 e′f11

7−→∗ e′f

and

• (k − j, ef , e′f ) ∈ RV Jτ [τ1/α]K ρ,
which follows from Lemma C.12 applied to

• ρ ∈ RD J∆K,

• ∆ ` τ1,

• χ = RV Jτ1K ρ, and

• (k − j, ef , e′f ) ∈ RV JτK ρ[α 7→ (χ, (τ1)[ρ])].

2
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Lemma C.25 (λ∀∃ Compatibility-Pack)

If ∆ ` τ1 and ∆; Γ ` e ≤ e′ : τ [τ1/α],
then ∆; Γ ` pack e ≤ pack e′ : ∃α. τ .

Proof

The proof is in 2 parts.

I. We are required to show

• ∆; Γ ` pack e : ∃α. τ , which follows from

• ∆ ` τ1, and

• ∆; Γ ` e : τ [τ1/α],
which follows from ∆;Γ ` e ≤ e′ : τ [τ1/α].

• ∆; Γ ` pack e′ : ∃α. τ , which follows analogously.

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(pack e), γ′(pack e′)) ∈ RC J∃α. τK ρ
≡ (k, pack γ(e), pack γ′(e′)) ∈ RC J∃α. τK ρ.

Consider arbitrary j, ef such that

• j < k,

• pack γ(e) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e) 7−→j1 ef1 ,

• irred(ef1), and

• j1 ≤ j.

Instantiate the second conjunct of ∆; Γ ` e ≤ e′ : τ [τ1/α] with k, ρ, γ, and γ′.
Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, (k, γ(e), γ′(e′)) ∈ RC Jτ [τ1/α]K ρ.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j < k,

• γ(e) 7−→j1 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• γ′(e′) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV Jτ [τ1/α]K ρ.
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Hence, ef1 ≡ vf1 and e′f1
≡ v′f1

.
Note that

γ(pack e) ≡ pack γ(e)
7−→j1 pack ef1

≡ pack vf1

7−→j−j1 ef

Since pack vf1 is a value, we have irred(pack vf1).
Hence, j − j1 = 0 (and j = j1) and ef ≡ pack vf1 .
Let e′f = pack v′f1

. We are required to show that

• pack γ′(e′) 7−→∗ e′f
≡ pack γ′(e′) 7−→∗ pack v′f1

which follows from above, and

• (k − j, ef , e′f ) ∈ RV J∃α. τK ρ

≡ (k − j, pack vf1 , pack v′f1
)

∈ {(k, pack v, pack v′) |
` pack v′ : (∃α. τ)[ρ] ∧
∃τ2, χ.

χ ∈ Relτ2 ∧
∀j < k. (j, v, v′) ∈ RV JτK ρ[α 7→ (χ, τ2)]}

which follows from

• ` pack v′f1
: (∃α. τ)[ρ]

Note that ` v′f1
: (τ [τ1/α])[ρ], which follows from (k − j, vf1 , v

′
f1

) ∈ RV Jτ [τ1/α]K ρ.

Note that • ` (τ1)[ρ], which follows from ∆ ` τ1 and ρ ∈ RD J∆K.
Note that ` v′f1

: (τ [τ1/α])[ρ]

≡ •; • ` v′f1
: (τ [τ1/α])[ρ]

≡ •; • ` v′f1
: (τ [ρ][(τ1)[ρ]/α]).

Hence, •; • ` fold v′f1
: (µα. τ)[ρ], which follows from • ` (τ1)[ρ] and •; • ` v′f1

:
τ [ρ][(τ1)[ρ]/α].

• ∃τ2, χ. χ ∈ Relτ2 ∧ ∀i < k − j. (i, vf1 , v
′
f1

) ∈ RV JτK ρ[α 7→ (χ, τ2)].

Pick τ2 = (τ1)[ρ] and χ = RV Jτ1K
[ρ].

Note that

• χ ∈ Rel (τ1)[ρ] ,
which follows from Lemma C.11 applied to ρ ∈ RD J∆K and ∆ ` τ1.

Consider arbitrary i such that

• i < k − j.

We are required to show that (i, vf1 , vf ′
1
) ∈ RV JτK ρ[α 7→ (χ, (τ1)[ρ])],

which follows from Lemma C.12 applied to

• ρ ∈ RD J∆K,

• ∆ ` τ1,

• χ = RV Jτ1K ρ, and

• (k − j, vf1 , v
′
f1

) ∈ RV Jτ [τ1/α]K ρ.

2
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Lemma C.26 (λ∀∃ Compatibility-Unpack)

If ∆; Γ ` e1 ≤ e′1 : ∃α. τ1, and ∆ ` τ2,
and ∆, α; Γ, x : τ1 ` e2 ≤ e′2 : τ2,
then ∆; Γ ` unpack e1 asx in e2 ≤ unpack e′1 asx in e′2 : τ2.

Proof

The proof is in 2 parts.

I. We are required to show

• ∆; Γ ` unpack e1 asx in e2 : τ2, which follows from

• ∆; Γ ` e1 : ∃α. τ1,
which follows from ∆;Γ ` e1 ≤ e′1 : ∃α. τ1,

• ∆ ` τ2, and

• ∆, α; Γ, x : τ1 ` e2 : τ2,
which follows from ∆, α; Γ, x : τ1 ` e2 ≤ e′2 : τ2.

• ∆; Γ ` unpack e′1 asx in e′2 : τ2, which follows analogously.

II. Consider arbitrary k, ρ, γ, and γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that
(k, γ(unpack e1 asx in e2), γ′(unpack e′1 asx in e′2)) ∈ RC Jτ2K ρ
≡ (k, unpack γ(e1) asx in γ(e2), unpack γ′(e′1) asx in γ′(e′2)) ∈ RC Jτ2K ρ.

Consider arbitrary j, ef such that

• j < k,

• unpack γ(e1) asx in γ(e2) 7−→j ef , and

• irred(ef ).

Hence, by inspection of the operational semantics, it follows that there exist j1 and ef1 such that

• γ(e1) 7−→j1 ef1 ,

• irred(ef1), and

• j1 ≤ j.

Instantiate the second conjunct of ∆; Γ ` e1 ≤ e′1 : ∃α. τ1 with k, ρ, γ, and γ′. Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, (k, γ(e1), γ′(e′1)) ∈ RC J∃α. τ1K ρ.
Instantiate this with j1, ef1 . Note that

• j1 < k, which follows from j1 ≤ j and j < k,

• γ(e1) 7−→j1 ef1 , and

• irred(ef1).

115



Hence, there exists e′f1
such that

• γ′(e′1) 7−→∗ e′f1
, and

• (k − j1, ef1 , e
′
f1

) ∈ RV J∃α. τ1K ρ.

Hence, ef1 ≡ pack vf11 and e′f1
≡ pack v′f11

.
Note that

γ(unpack e1 asx in e2) ≡ unpack γ(e1) asx in γ(e2)
7−→j1 unpack ef1 asx in γ(e2)
≡ unpack (pack vf11) asx in γ(e2)
7−→1 γ(e2)[vf11/x] 7−→j2 ef

where irred(ef ) and j = j1 + 1 + j2.
From (k − j1, pack vf11 , pack v′f11

) ∈ RV J∃α. τ1K ρ, it follows that there exist τ22 and χ such that

• χ ∈ Relτ22 , and

• ∀i < k − j1. (i, vf11 , v
′
f11

) ∈ RV Jτ1K ρ[α 7→ (χ, τ22)].

Instantiate the latter with k − j1 − 1. Note that k − j1 − 1 < k − j1.
Hence, (k − j1 − 1, vf11 , v

′
f11

) ∈ RV Jτ1K ρ[α 7→ (χ, τ22)].x
Instantiate the second conjunct of ∆, α; Γ, x : τ1 ` e2 ≤ e′2 : τ2 with k − j1 − 1, ρ[α 7→ (χ, τ22)],
γ[x 7→ vf11 ], and γ′[x 7→ v′f11

]. Note that

• k − j1 − 1 ≥ 0, which follows from j1 + 1 + j2 = j and j < k,

• ρ[α 7→ (χ, τ22)] ∈ RD J∆, αK,
which follows from

• ρ ∈ RD J∆K, and

• χ ∈ Relτ22 ,
which follows from above.

• (k − j1 − 1, γ[x 7→ vf11 ], γ
′[x 7→ v′f11

]) ∈ RG JΓ, x : τ1K ρ[α 7→ (χ, τ22)],
which follows from

• (k − j1 − 1, γ, γ′) ∈ RG JΓK ρ[α 7→ (χ, τ22)],
which follows from (k − j1 − 1, γ, γ′) ∈ RG JΓK ρ (since α /∈ FTV (Γ)),
which follows from Lemma C.10 applied to (k, γ, γ′) ∈ RG JΓK ρ and k− j1−1 ≤ k, and

• (k − j1 − 1, vf11 , v
′
f11

) ∈ RV Jτ1K ρ[α 7→ (χ, τ22)],
which follows from above.

Hence, (k − j1 − 1, γ[x 7→ vf11 ](e2), γ′[x 7→ v′f11
](e′2)) ∈ RC Jτ2K ρ[α 7→ (χ, τ22)]

≡ (k − j1 − 1, γ(e2)[vf11/x], γ′(e′2)[v
′
f11

/x]) ∈ RC Jτ2K ρ[α 7→ (χ, τ22)].
Instantiate this with j2 and ef . Note that

• j2 < k − j1 − 1, which follows from j2 = j − j1 − 1 and j < k,

• γ(e2)[vf11/x] 7−→j2 ef , and

• irred(ef ).

Hence, there exists e′f such that

• γ′(e′2)[v
′
f11

/x] 7−→∗ e′f , and

• (k − j1 − 1− j2, ef , e′f ) ∈ RV Jτ2K ρ[α 7→ (χ, τ22)]
≡ (k − j, ef , e′f ) ∈ RV Jτ2K ρ[α 7→ (χ, τ22)], since j = j1 + 1 + j2.

Pick e′f = e′f .
We are required to show that
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• γ′(unpack e′1 asx in e′2) 7−→∗ e′f ,
which follows from

γ′(unpack e′1 asx in e′2) ≡ unpack γ′(e′1) asx in γ′(e′2)
7−→∗ unpack e′f1 asx in γ′(e′2)
≡ unpack (pack v′f11) asx in γ′(e′2)
7−→1 γ′(e′2)[v

′
f11/x]

7−→∗ e′f

and

• (k − j, ef , e′f ) ∈ RV Jτ2K ρ,
which follows from (k − j, ef , e′f ) ∈ RV Jτ2K ρ[α 7→ (χ, τ22)] since α /∈ FTV (τ2).

2
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Lemma C.27 (λ∀∃ Substitutivity: Values)

If ∆; Γ ` v ≤ v′ : τ1 and ∆; Γ, x : τ1 ` e ≤ e′ : τ2,
then ∆; Γ ` e[v/x] ≤ e′[v′/x] : τ2.

Proof

The proof is in 2 parts.

I. We are required to show

• ∆; Γ ` e[v/x] : τ2, which follows from Lemma C.5 applied to

• ∆; Γ `′: τ1,
which follows from ∆;Γ ` v ≤ v′ : τ1, and

• ∆; Γ, x : τ1 ` e : τ2,
which follows from ∆;Γ, x : τ1 ` e ≤ e′ : τ2.

• ∆; Γ ` e′[v′/x] : τ2, which follows analogously.

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(e[v/x]), γ′(e′[v′/x])) ∈ RC Jτ2K ρ.
Instantiate the second conjunct of ∆; Γ ` v ≤ v′ : τ1 with k, ρ, γ, and γ′. Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, (k, γ(v), γ′(v′)) ∈ RC Jτ1K ρ.
Instantiate this with 0 and γ(v).
Note that γ(v) is a value. Hence,

• γ(v) 7−→0 γ(v), and

• irred(γ(v)).

Hence, there exists e′f such that

• γ′(v′) 7−→∗ e′f , and

• (k − 0, γ(v), e′f ) ∈ RV Jτ1K ρ.

Since γ′(v′) is a value, it follows that γ′(v′) 7−→0 γ′(v′). Hence e′f ≡ γ′(v′).

Thus, (k − 0, γ(v), e′f ) ∈ RV Jτ1K ρ

≡ (k, γ(v), γ′(v′)) ∈ RV Jτ1K ρ.
Instantiate the second conjunct of ∆; Γ, x : τ1 ` e ≤ e′ : τ2 with k, γ[x 7→ γ(v)], and γ′[x 7→ γ′(v′)].
Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ[x 7→ γ(v)], γ′[x 7→ γ′(v′)]) ∈ RG JΓ, x : τ1K ρ,
which follows from
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• (k, γ, γ′) ∈ RG JΓK ρ, and

• (k, γ(v), γ′(v′)) ∈ RV Jτ1K ρ, which follows from above.

Hence, (k, γ[x 7→ γ(v)](e), γ′[x 7→ γ′(v′)](e′) ∈ RC Jτ2K ρ
≡ (k, γ(e[γ(v)/x]), γ′(e′[γ′(v′)/x]) ∈ RC Jτ2K ρ
≡ (k, γ(e[v/x]), γ′(e′[v′/x]) ∈ RC Jτ2K ρ.

2
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Lemma C.28 (λ∀∃ Substitutivity: Types)

If ∆ ` τ1 and ∆, α; Γ ` e ≤ e′ : τ2,
then ∆; Γ[τ1/α] ` e ≤ e′ : τ2[τ1/α].

Proof

The proof is in 2 parts.

I. We are required to show

• ∆; Γ[τ1/α] ` e : τ2[τ1/α], which follows from Lemma C.6 applied to

• ∆ ` τ1,
which we have as a premise, and

• ∆, α; Γ ` e : τ2,
which follows from ∆, α; Γ ` e ≤ e : τ2.

• ∆; Γ[τ1/α] ` e′ : τ2[τ1/α], which follows analogously.

II. Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓ[τ1/α]K ρ.

We are required to show that (k, γ(e), γ′(e′)) ∈ RC Jτ2[τ1/α]K ρ.
Consider arbitrary j and ef such that

• j < k,

• γ(e) 7−→j ef , and

• irred(ef ).

We are required to show that ∃e′f . γ′(e′) 7−→∗ e′f ∧ (k − j, ef , e′f ) ∈ RV Jτ2[τ1/α]K ρ.
Let χ = RV Jτ1K ρ.
Instantiate the second conjunct of ∆, α; Γ ` e ≤ e′ : τ2 with k, ρ[α 7→ (χ, (τ1)[ρ]), γ, and γ′.
Note that

• k ≥ 0,

• ρ[α 7→ (χ, (τ1)[ρ]) ∈ RD J∆, αK,
which follows from

• ρ ∈ RD J∆K, and

• χ = RV Jτ1K ρ ∈ Rel (τ1)[ρ] ,
which follows from Lemma C.11 applied to ρ ∈ RD J∆K and ∆ ` τ1.

• (k, γ, γ′) ∈ RG JΓK ρ[α 7→ (χ, (τ1)[ρ])],
which follows from

• (k, γ, γ′) ∈ RG JΓ[τ1/α]K ρ,
which follows from above, and

• RG JΓK ρ[α 7→ (χ, (τ1)[ρ])] = RG JΓ[τ1/α]K ρ,
which follows from Lemma C.13 applied to ρ ∈ RD J∆K and ∆ ` τ1, since χ = RV Jτ1K ρ.

Hence, (k, γ(e), γ′(e′) ∈ RC Jτ2K ρ[α 7→ (χ, (τ1)[ρ])].
Instantiate this with j and ef . Note that
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• j < k,

• γ(e) 7−→j ef , and

• irred(e′f ).

Hence, there exists e′f such that

• γ′(e′) 7−→∗ e′f , and

• (k − j, ef , e′f ) ∈ RV Jτ2K ρ[α 7→ (χ, (τ1)[ρ])].

It remains for us to show that (k − j, ef , e′f ) ∈ RV Jτ2[τ1/α]K ρ.

Note that RV Jτ2K ρ[α 7→ (χ, (τ1)[ρ])] = RV Jτ2[τ1/α]K ρ, which follows from Lemma C.12 applied
to ρ ∈ RD J∆K and ∆ ` τ1 and χ = RV Jτ1K ρ.
Hence, (k − j, ef , e′f ) ∈ RV Jτ2[τ1/α]K ρ.

2
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C.9 λ∀∃ Proofs: Reflexivity

Lemma C.29 (λ∀∃ Reflexivity)

If ∆; Γ ` e : τ , then ∆; Γ ` e ≤ e : τ .

Proof

By induction on the derivation ∆; Γ ` e : τ .

Each case follows from the corresponding compatibility lemma (i.e., Lemmas C.15 through C.26). 2
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C.10 λ∀∃ Proofs: Soundness w.r.t. Contextual Equivalence

In this section, we show that ≤ ⊆ �ctx .

Lemma C.30 (λ∀∃ Context Compatibility: Id)

If ∆0 ⊇ ∆ and Γ0 ⊇ Γ,
then ∆0; Γ0 ` [·] ≤ [·] : (∆; Γ . τ) τ .

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` [e] ≤ [e′] : τ ≡ ∆0; Γ0 ` e ≤ e′ : τ .
Consider arbitrary k, ρ0, γ0, and γ′0 such that

• k ≥ 0,

• ρ0 ∈ RD J∆0K, and

• (k, γ0, γ
′
0) ∈ RG JΓ0K ρ0.

We are required to show that (k, γ0(e), γ′0(e
′)) ∈ RC JτK ρ0.

Let ρ = ρ0|dom(∆). Note that

• ρ ∈ RD J∆K,
which follows from ρ0 ∈ RD J∆0K and ∆0 ⊇ ∆.

Let γ = γ0|dom(Γ) and γ′ = γ′0|dom(Γ). Note that

• (k, γ, γ′) ∈ RG JΓK ρ0,
which follows from (k, γ0, γ

′
0) ∈ RG JΓ0K ρ0 and Γ0 ⊇ Γ.

Hence, note that

• (k, γ, γ′) ∈ RG JΓK ρ,
which follows from (k, γ, γ′) ∈ RG JΓK ρ0 since FTV (Γ) ⊆ dom(∆) and ρ ∈ RD J∆K.

Note that

• (k, γ0(e), γ′0(e
′)) ∈ RC JτK ρ0

≡ (k, γ(e), γ′(e′)) ∈ RC JτK ρ0,
which follows from FV (e) ⊆ dom(Γ) and FV (e′) ⊆ dom(Γ)

≡ (k, γ(e), γ′(e′)) ∈ RC JτK ρ,
which follows from FTV (τ) ⊆ dom(∆) and ρ ∈ RD J∆K.

Hence, it suffices to show that (k, γ(e), γ′(e′)) ∈ RC JτK ρ.
Instantiate the second conjunct of ∆; Γ ` e ≤ e′ : τ with k, ρ, γ, and γ′. Note that

• k ≥ 0,

• ρ ∈ RD J∆K,
which follows from above, and

• (k, γ, γ′) ∈ RG JΓK,
which follows from above.

Hence, (k, γ(e), γ′(e′)) ∈ RC JτK ρ. 2
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Lemma C.31 (λ∀∃ Context Compatibility: If1)

If ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) bool, ∆0; Γ0 ` e2 ≤ e′2 : τ0, and ∆0; Γ0 ` e3 ≤ e′3 : τ0,
then ∆0; Γ0 ` ifC, e2, e3 ≤ ifC ′, e′2, e

′
3 : (∆; Γ . τ) τ0.

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that
∆0; Γ0 ` ifC[e], e2, e3 ≤ ifC ′[e′], e′2, e

′
3 : τ0.

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) bool with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : bool.

Applying Lemma C.17 to

• ∆0; Γ0 ` C[e] ≤ C ′[e′] : bool,

• ∆0; Γ0 ` e2 ≤ e′2 : τ0, and

• ∆0; Γ0 ` e3 ≤ e′3 : τ0,

we conclude that ∆0; Γ0 ` ifC[e], e2, e3 ≤ ifC ′[e′], e′2, e
′
3 : τ0. 2

Lemma C.32 (λ∀∃ Context Compatibility: If2)

If ∆0; Γ0 ` e1 ≤ e′1 : bool, ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ0, and ∆0; Γ0 ` e3 ≤ e′3 : τ0,
then ∆0; Γ0 ` if e1, C, e3 ≤ if e′1, C

′, e′3 : (∆; Γ . τ) τ0.

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that
∆0; Γ0 ` if e1, C[e], e3 ≤ if e′1, C

′[e′], e′3 : τ0.

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ0 with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ0.

Applying Lemma C.17 to

• ∆0; Γ0 ` e1 ≤ e′1 : bool,

• ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ0, and

• ∆0; Γ0 ` e3 ≤ e′3 : τ0,

we conclude that ∆0; Γ0 ` if e1, C[e], e3 ≤ if e′1, C
′[e′], e′3 : τ0. 2
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Lemma C.33 (λ∀∃ Context Compatibility: If3)

If ∆0; Γ0 ` e1 ≤ e′1 : bool, ∆0; Γ0 ` e2 ≤ e′2 : τ0, and ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ0,
then ∆0; Γ0 ` if e1, e2, C ≤ if e′1, e

′
2, C

′ : (∆; Γ . τ) τ0.

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that
∆0; Γ0 ` if e1, e2, C[e] ≤ if e′1, e

′
2, C

′[e′] : τ0.

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ0 with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ0.

Applying Lemma C.17 to

• ∆0; Γ0 ` e1 ≤ e′1 : bool,

• ∆0; Γ0 ` e2 ≤ e′2 : τ0, and

• ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ0,

we conclude that ∆0; Γ0 ` if e1, e2, C[e] ≤ if e′1, e
′
2, C

′[e′] : τ0. 2

Lemma C.34 (λ∀∃ Context Compatibility: Fn)

If ∆0; Γ0, x : τ1 ` C ≤ C ′ : (∆; Γ, x : τ1 . τ) τ2,
then ∆0; Γ0 ` λx.C ≤ λx.C ′ : (∆; Γ, x : τ1 . τ) (τ1 → τ2).

Proof

Consider arbitrary e and e′ such that

• ∆; Γ, x : τ1 ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` λx.C[e] ≤ λx.C ′[e′] : τ1 → τ2.

Instantiate ∆0; Γ0, x : τ1 ` C ≤ C ′ : (∆; Γ, x : τ1 . τ) τ2 with e and e′, noting that ∆; Γ, x : τ1 ` e ≤
e′ : τ .

Hence, ∆0; Γ0, x : τ1 ` C[e] ≤ C ′[e′] : τ2.

Applying Lemma C.19 to ∆0; Γ0, x : τ1 ` C[e] ≤ C ′[e′] : τ2, we conclude that ∆0; Γ0 ` λx.C[e] ≤
λx.C ′[e′] : τ1 → τ2. 2

Lemma C.35 (λ∀∃ Context Compatibility: App1)

If ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) (τ1 → τ2), and ∆0; Γ0 ` e2 ≤ e′2 : τ1,
then ∆0; Γ0 ` C e2 ≤ C ′ e′2 : (∆; Γ . τ) τ2.

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .
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We are required to show that ∆0; Γ0 ` (C[e]) e2 ≤ (C ′[e′]) e′2 : τ2.

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) (τ1 → τ2) with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ1 → τ2.

Applying Lemma C.20 to

• ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ1 → τ2, and

• ∆0; Γ0 ` e2 ≤ e′2 : τ1,

we conclude that ∆0; Γ0 ` (C[e]) e2 ≤ (C ′[e′]) e′2 : τ2. 2

Lemma C.36 (λ∀∃ Context Compatibility: App2)

If ∆0; Γ0 ` e1 ≤ e′1 : τ1 → τ2, and ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ1,
then ∆0; Γ0 ` e1 C ≤ e′1 C ′ : (∆; Γ . τ) τ2.

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` e1 (C[e]) ≤ e′1 (C ′[e′]) : τ2.

Instantiate ∆0; Γ0 ` C ≤ C ′ : (Γ . τ) τ1 with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ1.

Applying Lemma C.20 to

• ∆0; Γ0 ` e1 ≤ e′1 : τ1 → τ2, and

• ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ1,

we conclude that ∆0; Γ0 ` e1 (C[e]) ≤ e′1 (C ′[e′]) : τ2. 2

Lemma C.37 (λ∀∃ Context Compatibility: Fold)

If ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ1[µα. τ1/α],
then ∆0; Γ0 ` foldC ≤ foldC ′ : (∆; Γ . τ) (µα. τ1).

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` foldC[e] ≤ foldC ′[e′] : µα. tau1.

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ1[µα. τ1/α] with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ1[µα. τ1/α].

Applying Lemma C.21 to ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ1[µα. τ1/α], we conclude that ∆0; Γ0 ` foldC[e] ≤
foldC ′[e′] : µα. τ1. 2
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Lemma C.38 (λ∀∃ Context Compatibility: Unfold)

If ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) (µα. τ1),
then ∆0; Γ0 ` unfoldC ≤ unfoldC ′ : (∆; Γ . τ) τ1[µα. τ1/α].

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` unfoldC[e] ≤ unfoldC ′[e′] : τ1[µα. τ1/α].

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) µα. τ1 with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : µα. τ1.

Applying Lemma C.22 to ∆0; Γ0 ` C[e] ≤ C ′[e′] : µα. τ1, we conclude that ∆0; Γ0 ` unfoldC[e] ≤
unfoldC ′[e′] : τ1[µα. τ1/α]. 2

Lemma C.39 (λ∀∃ Context Compatibility: All)

If ∆0, α; Γ0 ` C ≤ C ′ : (∆, α; Γ . τ) τ1,
then ∆0; Γ0 ` Λ. C ≤ Λ. C ′ : (∆, α; Γ . τ) ∀α. τ1.

Proof

Consider arbitrary e and e′ such that

• ∆, α; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` Λ. C[e] ≤ Λ. C ′[e′] : ∀α. τ1.

Instantiate ∆0, α; Γ0 ` C ≤ C ′ : (∆, α; Γ . τ) τ1 with e and e′, noting that ∆, α; Γ ` e ≤ e′ : τ .

Hence, ∆0, α; Γ0 ` C[e] ≤ C ′[e′] : τ1.

Applying Lemma C.23 to ∆0, α; Γ0 ` C[e] ≤ C ′[e′] : τ1, we conclude that ∆0; Γ0 ` Λ. C[e] ≤ Λ. C ′[e′] :
∀α. τ1. 2

Lemma C.40 (λ∀∃ Context Compatibility: Inst)

If ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) ∀α. τ1 and ∆0 ` τ2,
then ∆0; Γ0 ` C [ ] ≤ C ′ [ ] : (∆; Γ . τ) τ1[τ2/α].

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` C[e] [ ] ≤ C ′[e′] [ ] : τ1[τ2/α].

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) ∀α. τ1 with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : ∀α. τ1.

Applying Lemma C.23 to ∆0; Γ0 ` C[e] ≤ C ′[e′] : ∀α. τ1 and ∆0 ` τ2, we conclude that ∆0; Γ0 `
C[e] [ ] ≤ C ′[e′] [ ] : τ1[τ2/α]. 2
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Lemma C.41 (λ∀∃ Context Compatibility: Pack)

If ∆0 ` τ2 and ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ1[τ2/α],
then ∆0; Γ0 ` packC ≤ packC ′ : (∆; Γ . τ) ∃α. τ1.

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` packC[e] ≤ packC ′[e′] : ∃α. τ1.

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) τ1[τ2/α] with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ1[τ2/α].

Applying Lemma C.25 to ∆0 ` τ2 and ∆0; Γ0 ` C[e] ≤ C ′[e′] : τ1[τ2/α], we conclude that ∆0; Γ0 `
packC[e] ≤ packC ′[e′] : ∃α. τ1. 2

Lemma C.42 (λ∀∃ Context Compatibility: Unpack1)

If ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) ∃α. τ1, and ∆0 ` τ2, and ∆0, α; Γ0, x : τ1 ` e2 ≤ e′2 : τ2,
then ∆0; Γ0 ` unpackC asx in e2 ≤ unpackC ′ asx in e′2 : (∆; Γ . τ) τ2.

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` unpack (C[e]) asx in e2 ≤ unpack (C ′[e′]) asx in e′2 : τ2.

Instantiate ∆0; Γ0 ` C ≤ C ′ : (∆; Γ . τ) ∃α. τ1 with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆0; Γ0 ` C[e] ≤ C ′[e′] : ∃α. τ1.

Applying Lemma C.26 to

• ∆0; Γ0 ` C[e] ≤ C ′[e′] : ∃α. τ1,

• ∆0 ` τ2, and

• ∆0, α; Γ0, x : τ1 ` e2 ≤ e′2 : τ2,

we conclude that ∆0; Γ0 ` unpack (C[e]) asx in e2 ≤ unpack (C ′[e′]) asx in e′2 : τ2. 2
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Lemma C.43 (λ∀∃ Context Compatibility: Unpack2)

If ∆0; Γ0 ` e1 ≤ e′1 : ∃α. τ1, and ∆0 ` τ2, and ∆0, α; Γ0, x : τ1 ` C ≤ C ′ : (∆, α; Γ, x : τ1 . τ) τ2,
then ∆0; Γ0 ` unpack e1 asx inC ≤ unpack e′1 asx inC ′ : (∆, α; Γ, x : τ1 . τ) τ2.

Proof

Consider arbitrary e and e′ such that

• ∆, α; Γ, x : τ1 ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` unpack e1 asx in (C[e]) ≤ unpack e′1 asx in (C ′[e′]) : τ2.

Instantiate ∆0, α; Γ0, x : τ1 ` C ≤ C ′ : (∆, α; Γ, x : τ1 . τ)  τ2 with e and e′, noting that ∆, α; Γ, x :
τ1 ` e ≤ e′ : τ .

Hence, ∆0, α; Γ0, x : τ1 ` C[e] ≤ C ′[e′] : τ2.

Applying Lemma C.26 to

• ∆0; Γ0 ` e1 ≤ e′1 : ∃α. τ1,

• ∆0 ` τ2, and

• ∆0, α; Γ0, x : τ1 ` C[e] ≤ C ′[e′] : τ2,

we conclude that ∆0; Γ0 ` unpack e1 asx in (C[e]) ≤ unpack e′1 asx in (C ′[e′]) : τ2. 2

Lemma C.44 (λ∀∃ Context Compatibility: Ctxt)

If ∆0; Γ0 ` C0 ≤ C ′
0 : (∆1; Γ1 . τ1) τ0, and ∆1; Γ1 ` C1 ≤ C ′

1 : (∆; Γ . τ) τ1,
then ∆0; Γ0 ` C0[C1[·]] ≤ C ′

0[C
′
1[·]] : (∆; Γ . τ) τ0.

Proof

Consider arbitrary e and e′ such that

• ∆; Γ ` e ≤ e′ : τ .

We are required to show that ∆0; Γ0 ` C0[C1[e]] ≤ C ′
0[C

′
1[e

′]] : τ0.

Instantiate ∆1; Γ1 ` C1 ≤ C ′
1 : (∆; Γ . τ) τ1 with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, ∆1; Γ1 ` C1[e] ≤ C ′
1[e

′] : τ1.

Instantiate ∆0; Γ0 ` C0 ≤ C ′
0 : (∆1; Γ1 . τ1)  τ0 with C1[e] and C ′

1[e
′], noting that ∆1; Γ1 ` C1[e] ≤

C ′
1[e

′] : τ1.

Hence, ∆0; Γ0 ` C0[C1[e]] ≤ C ′
0[C

′
1[e

′]] : τ0. 2

Lemma C.45 (λ∀∃ Context Reflexivity)

If ∆1; Γ1 ` C : (∆; Γ . τ) τ1, then ∆1; Γ1 ` C ≤ C : (∆; Γ . τ) τ1.

Proof

By induction on the derivation ∆1; Γ1 ` C : (Γ . τ) τ1.

Each case follows from the corresponding compatibility lemma (i.e., Lemmas C.30 through C.43). 2

129



Lemma C.46 (λ∀∃ : ≤ ⊆ �ctx )

If ∆; Γ ` e ≤ e′ : τ , then ∆; Γ ` e �ctx e′ : τ .

Proof

Consider arbitrary C and τ1 such that

• •; • ` C : (∆; Γ . τ) τ1, and

• C[e] ⇓.

Hence, there exists some value vf and some k such that

• C[e] 7−→k vf .

We are required to show that C[e′] ⇓.

Note that •; • ` C ≤ C : (∆; Γ . τ) τ1, which follows from Lemma C.45 applied to
• ` C : (∆; Γ . τ) τ1.

Instantiate •; • ` C ≤ C : (∆; Γ . τ) τ1 with e and e′, noting that ∆; Γ ` e ≤ e′ : τ .

Hence, •; • ` C[e] ≤ C[e′] : τ1.

Instantiate this with k + 1, ∅, ∅, and ∅. Note that

• k + 1 ≥ 0,

• ∅ ∈ RD J•K,

• (k + 1, ∅, ∅) ∈ RG J•K ∅.

Hence, (k + 1, C[e], C[e′]) ∈ RC Jτ1K ∅.
Instantiate this with k and vf . Note that

• k < k + 1,

• C[e] 7−→k vf , and

• irred(vf ), which follows from the fact that vf is value.

Hence, there exists v′f such that

• C[e′] 7−→∗ v′f , and

• (k + 1− k, vf , v′f ) ∈ RV Jτ1K ∅.

Hence, C[e′] ⇓ v′f . 2
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D Examples

In this section, we present several examples to illustrate uses of our logical relations method for proving
contextual equivalence. The examples are taken directly from Sumii and Pierce [19] so that the reader
may compare the use of their bisimulation against the use of our step-indexed logical relation for showing
contextual equivalence. These examples involve existential packages, contravariant recursive types, and
higher-order functions (Sections D.1–D.5).

In each of the examples that follow, we wish to show that the closed terms e and e′ of type τ are
contextually equivalent — that is, •; • ` e 'ctx e′ : τ . It suffices to show •; • ` e ∼ e′ : τ .

Recursive Functions
Encoding Fix : Some of the examples that follow (see Sections D.4 and D.5) make use of recursive functions
fix f(x). e which can be encoded in λ∀∃ as follows:

Y ≡ Λ. λf. (λx. f ((unfoldx) x)) fold (λx. f ((unfoldx) x))
fix f(x). e ≡ (Y [ ]) λf. λx. e

where we can derive the following rules:

(Y)
∆; Γ ` Y : ∀α. (α → α) → α

(FixTy)
∆; Γ, f : τ1 → τ2, x : τ1 ` e : τ2

∆; Γ ` fix f(x). e : τ1 → τ2

With the above formulation, the term fix f(x). e is not itself a value, but it reduces to a lambda abstrac-
tion. Though we could use the above encoding in the examples that follow, the downside is that we would
end up having to desugar fix f(x). e when establishing the equivalence of recursive functions.

Fix as a Language Primitive: To simplify proving equivalence of recursive functions, we will instead tweak
the λ∀∃ calculus slightly, replacing terms λx. e with fix f(x). e and treating the latter as values in λ∀∃. We
will continue to write λx. e whenever f does not appear free in e. We modify the (app) rule in the operational
semantics as follows.

(fix f(x). e) v 7−→ e[fix f(x). e/f ][v/x]

We replace the function typing rule (FnTy) with the (FixTy) rule given above. The relational interpretation
of function types is modified as follows.

RV Jτ1 → τ2K ρ = {(k, fix f(x). e, fix f(x). e′) | ` fix f(x). e′ : (τ1 → τ2)
[ρ] ∧

∀j < k, v, v′.
(j, v, v′) ∈ RV Jτ1K ρ ∧
(j, fix f(x). e, fix f(x). e′) ∈ RV Jτ1 → τ2K ρ =⇒
(j, e[v/x], e′[v′/x]) ∈ RC Jτ2K ρ}

We note that all the lemmas pertaining to function types proved in Section C are still provable after appro-
priate modifications to comply with the (FixTy) rule and the new relational interpretion of function types.
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D.1 Simple Existential Packages

Consider the following existential packages e and e′ of type τ (see Sumii and Pierce [19], Section 4.1):

e = pack 〈1, λx. x
int= 0〉

e′ = pack 〈tt, λx.¬x〉
τ = ∃α. α× (α → bool)

We are required to show that •; • ` e ∼ e′ : τ . The proof is in two parts.

I. Show •; • ` e ≤ e′ : τ .

Consider arbitrary k, ρ, γ, γ′ such that

• k ≥ 0,

• ρ ∈ RD J•K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, ρ = ∅ and γ = γ′ = ∅.
We are required to show that (k, e, e′) ∈ RC JτK ∅. (Note that if k = 0 we are done.)

Consider arbitrary j and ef such that

• j < k,

• e 7−→j ef , and

• irred(ef ).

Since e is a value, we conclude that j = 0 and e = ef . Also, note that e′ is a value.

Pick e′f = e′.

Note that e′ 7−→∗ e′ and val(e ′).

It remains for us to show that (k − 0, e, e′) ∈ RV JτK ≡ (k, pack 〈1, λx. x
int= 0〉, pack 〈tt, λx.¬x〉) ∈

RV J∃α. α× (α → bool)K ∅.
Note that we already have ` e′ : τ .

Take τ2 = bool and χ = {(k′, 1, tt) | k′ ≥ 0}.
Note that χ ∈ Relbool, which follows from the definition of χ.

Consider arbitrary j such that j < k.

We are required to show that (j, 〈1, λx. x
int= 0〉, 〈tt, λx.¬x〉) ∈ RV Jα× (α → bool)K ∅[α 7→ (χ, bool)],

which follows from

• ` 〈tt, λx.¬x〉 : (α× (α → bool))[bool/α]
≡ ` 〈tt, λx.¬x〉 : bool× (bool → bool), which is follows easily from the static semantics.

• (j, 1, tt) ∈ RV JαK ∅[α 7→ (χ, bool)]
≡ (j, 1, tt) ∈ χ (by the definition of RV JαK ρ)
which in turn follows from our definition of χ.

• (j, (λx. x
int= 0), (λx.¬x)) ∈ RV Jα → boolK ∅[α 7→ (χ, bool)], which we conclude as follows:

First, note that ` λx.¬x : (α → bool)[bool/α] ≡ ` λx.¬x : bool → bool, which is immediate.

Next, consider arbitrary i, v1, and v′1 such that
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• i < j, and

• (i, v1, v
′
1) ∈ RV JαK ∅[α 7→ (χ, bool)].

Note that RV JαK ∅[α 7→ (χ, bool)] ≡ χ by definition of RV JαK ρ.

Hence, (i, v1, v
′
1) ∈ χ.

Then, it must be that v1 = 1 and v′1 = tt, which follows from the definition of χ.

We are required to show that

(i, (x int= 0)[v1/x], (¬x)[v′1/x]) ∈ RC JboolK ∅[α 7→ (χ, bool)]
≡ (i, v1

int= 0,¬v′1) ∈ RC JboolK ∅[α 7→ (χ, bool)]
≡ (i, 1 int= 0,¬tt) ∈ RC JboolK ∅[α 7→ (χ, bool)]

Note that (1 int= 0) 7−→1 ff and (¬tt) 7−→∗ ff.

Hence, it remains for us to show that (i − 1, ff, ff) ∈ RV JboolK ∅[α 7→ (χ, bool)], which is
immediate.

II. Show •; • ` e′ ≤ e : τ .

Consider an arbitrary k such that k ≥ 0.

Unwinding definitions as in (I) above, since e′ and e are closed values of closed type, it suffices to show
(k, e′, e) ∈ RV JτK ∅ ≡ (k, pack 〈tt, λx.¬x〉, pack 〈1, λx. x

int= 0〉) ∈ RV J∃α. α× (α → bool)K ∅.
Note that we already have ` e : τ .

Take τ2 = int and χ = {(k′, tt, 1) | k′ ≥ 0}.
Note that χ ∈ Rel int, which follows from the definition of χ.

Consider arbitrary j such that j < k.

We are required to show that (j, 〈tt, λx.¬x〉, 〈1, λx. x
int= 0〉) ∈ RV Jα× (α → bool)K ∅[α 7→ (χ, int)],

which follows from

• ` 〈1, λx. x
int= 0〉 : (α× (α → bool))[int/α]

≡ ` 〈1, λx. x
int= 0〉 : int× (int → bool), which follows easily from the static semantics.

• (j, tt, 1) ∈ RV JαK ∅[α 7→ (χ, int)]
≡ (j, tt, 1) ∈ χ (by the definition of RV JαK ρ)
which in turn follows from our definition of χ.

• (j, (λx.¬x), (λx. x
int= 0)) ∈ RV Jα → boolK ∅[α 7→ (χ, int)], which we conclude as follows:

First, note that ` λx. x
int= 0 : (α → bool)[int/α] ≡ ` λx. x

int= 0 : int → bool, which is immediate.

Next, consider arbitrary i, v1, and v′1 such that

• i < j, and

• (i, v1, v
′
1) ∈ RV JαK ∅[α 7→ (χ, int)].

Note that RV JαK ∅[α 7→ (χ, int)] ≡ χ by definition of RV JαK ρ.

Hence, (i, v1, v
′
1) ∈ χ.

Then, it must be that v1 = tt and v′1 = 1, which follows from the definition of χ.
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We are required to show that

(i, (¬x)[v1/x], (x int= 0)[v′1/x]) ∈ RC JboolK ∅[α 7→ (χ, int)]
≡ (i,¬v1, v

′
1

int= 0) ∈ RC JboolK ∅[α 7→ (χ, int)]
≡ (i,¬tt, 1 int= 0) ∈ RC JboolK ∅[α 7→ (χ, int)]

Note that (¬tt) 7−→1 ff and (1 int= 0) 7−→∗ ff.

Hence, it remains for us to show that (i − 1, ff, ff) ∈ RV JboolK ∅[α 7→ (χ, int)], which is imme-
diate.

Discussion The above proof is largely mechanical. The only interesting part of showing that two packages
have types ∃α. τ ′ is the choice of χ and τ2. This is because we later have to show that χ ∈ Relτ2 . But even
the choice of χ is mostly mechanical:

• We decide on the pairs of values (v, v′) (such that ` v′ : τ2) that must be related at type α — for
this particular example, the sets of pairs are {(1, tt)} (with τ2 = bool), or {(tt, 1)} (with τ2 = int),
depending on the direction of the proof.

• We define χ, which specifies that each of the above pairs of values is related at every step-index k′ ≥ 0.
This is necessary in order to ensure that χ will be closed with respect to a decreasing step-index —
i.e., if (k, v, v′) ∈ χ and j ≤ k, then (j, v, v′) ∈ χ.

For the set χ defined in this way, it is trivial to show χ ∈ Relτ2 .

Comparison with Sumii-Pierce In comparison, if we use Sumii and Pierce’s [19] bisimulation
method, we first have to come up with some bisimulation X and then show that X is in fact a
valid bisimulation. For the above example, Sumii and Pierce show that we can pick either X =
{(∅,R0), (∆,R1), (∆,R2), (∆,R3), (∆,R4), (∆,R5)} or X = {(∆,R5)} where:

∆ = (α, int, bool)
R0 = {(e, e′, τ)}
R1 = R0 ∪ {(〈1, λx. x

int= 0〉, 〈tt, λx.¬x〉, α× (α → bool))}
R2 = R1 ∪ {(1, tt, α)}
R3 = R1 ∪ {(λx. x

int= 0, λx.¬x, α → bool)}
R4 = R2 ∪R3

R5 = R4 ∪ {(ff, ff, bool)}

As one would expect, one difference between the bisimulation and logical relations approach is as follows:
with the bisimulation, one must specify at the outset which values are related at each type τs that is a
subexpression of τ = ∃α. α× (α → bool), whereas with a logical relation, in the course of the proof, one only
has to specify which values are related at the type α.

For this example, once we have chosen X, proving that X is a valid bisimulation seems to require the
same level of (largely mechanical) effort as was required for the logical relations proof.
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D.2 Functions Generating Packages

Consider the following functions e and e′ of type τ , which generate existential packages (see Sumii and
Pierce [19], Section 4.3):

e = λy. e1

e′ = λy. e′1
τ = int → τ1

e1 = pack 〈y, λx. x〉
e′1 = pack 〈y + 1, λx. x− 1〉
τ1 = ∃α. α× (α → int)

We are required to show that •; • ` e ∼ e′ : τ . The proof is in two parts.

I. Show •; • ` e ≤ e′ : τ .

Consider an arbitrary k ≥ 0.

Unwinding definitions, we see that since e and e′ are closed values of closed type, it suffices to show
that (k, e, e′) ∈ RV JτK ∅ ≡ (k, λy. e1, λy. e′1) ∈ RV Jint → τ1K ∅.
Note that we already have ` λy. e′1 : int → τ1.

Consider arbitrary j, v, and v′ such that

• j < k, and

• (j, v, v′) ∈ RV JintK ∅.

Note that ` v′ : int, which follows from Lemma C.7 applied to (j, v, v′) ∈ RV JintK ∅.
Also, note that v = v′, which follows from the definition of RV JintK.

We are required to show that (j, e1[v/x], e′1[v
′/x]) ∈ RC Jτ1K ∅

≡ (j, pack 〈v, λx. x〉, pack 〈v′ + 1, λx. x− 1〉) ∈ RC J∃α. α× (α → int)K ∅.
Consider arbitrary j1 and ef1 such that

• j1 < j,

• pack 〈v, λx. x〉 7−→j1 ef1 , and

• irred(ef1).

Since pack 〈v, λx. x〉 is a value, we have j1 = 0 and ef1 = pack 〈v, λx. x〉.
Let e′f1

= pack 〈v′+1, λx. x− 1〉.
Note that pack 〈v′ + 1, λx. x− 1〉 7−→∗ pack 〈v′+1, λx. x− 1〉.
Thus, it remains for us to show that (j − j1, ef1 , e

′
f1

) ∈ RV Jτ1K ∅
≡ (j, pack 〈v, λx. x〉, pack 〈v′ + 1, λx. x− 1〉) ∈ RV J∃α. α× (α → int)K ∅.
Note that ` pack 〈v′+1, λx. x− 1〉 : ∃α. α× (α → int), which follows from the (Pack) rule applied to

• • ` int, and

• •; • ` 〈v′+1, λx. x− 1〉 : (α× (α → int))[int/α]
≡ •; • ` 〈v′+1, λx. x− 1〉 : int× (int → int), which follows from the static semantics and ` v′ : int.

Take τ2 = int and χ = {(k′, n, n + 1) | k′ ≥ 0 ∧ ` n : int}.
Note that χ ∈ Rel int, which follows easily from the definition of χ.

Consider an arbitrary i such that i < j.

We are required to show that (j, 〈v, λx. x〉, 〈v′ + 1, λx. x− 1〉) ∈ RV Jα× (α → int)K ∅[α 7→ (χ, int)],
which follows from
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• ` 〈v′ + 1, λx. x− 1〉 : (α× (α → int))[int/α]
≡ ` 〈v′ + 1, λx. x− 1〉 : int× (int → int),

which follows from the static semantics and ` v′ : int.

• (j, v, v′ + 1) ∈ RV JαK ∅[α 7→ (χ, int)]
≡ (j, v, v′ + 1) ∈ χ (by definition of RV JαK ρ)
≡ (j, v, v + 1) ∈ χ (since v = v′ above)

which follows from the definition of χ.

• (j, λx. x, λx. x− 1) ∈ RV Jα → intK ∅[α 7→ (χ, int)], which we conclude as follows:
First, note that ` λx. x− 1 : (α → int)[int/α] ≡ ` λx. x− 1 : int → int, which is immediate.

Next, consider arbitrary i, v11, and v′11 such that

• i < j, and

• (i, v11, v
′
11) ∈ RV JαK ∅[α 7→ (χ, int)].

Note that RV JαK ∅[α 7→ (χ, int)] ≡ χ by definition of RV JαK ρ.

Hence, (i, v11, v
′
11) ∈ χ.

Then, it must be that v11 = n and v′11 = n + 1, where ` n : int.

We are required to show that

(i, x[v11/x], (x− 1)[v′11/x]) ∈ RC JintK ∅[α 7→ (χ, int)]
≡ (i, v11, v

′
11 − 1) ∈ RC JintK ∅[α 7→ (χ, int)]

≡ (i, n, (n + 1)− 1) ∈ RC JintK ∅[α 7→ (χ, int)]

Note that n 7−→0 n and ((n + 1)− 1) 7−→∗ n.

Hence, it remains for us to show that (i− 0, n, n) ∈ RV JintK ∅[α 7→ (χ, int)], which is immediate.

II. Show •; • ` e′ ≤ e : τ .

The proof is analogous to that of (I).

Comparison with Sumii-Pierce For this example, Sumii and Pierce must consider an infinite bisimu-
lation. They choose the following bisimulation, which they point out is not the minimal one:

X = {(∆,R) |
∆ = {(βi, int, int) | −n ≤ i ≤ n},
R ⊆ ∪−n≤i≤nRi,
n = 0, 1, 2, . . .}

Ri = {(e, e′, int → τ1),
(e1[i/y], e′1[i/y], τ1),
(〈i, λx. x〉, 〈i + 1, λx. x− 1〉, βi × (βi → int)),
(i, i + 1, βi),
(λx. x, λx. x− 1, βi → int),
(i, i, int)}

We note that with the logical relations approach, there is no need to consider an infinite set of types βi or
an infinite set of relations analogous to Ri.
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D.3 Higher-Order Functions I

Consider the following higher-order functions e and e′ of type τ (see Sumii and Pierce [19], Section 4.5).
Note that this example is essentially the “dual” of the example in Section D.1.

e = λf. f [ ] 〈1, λx. x
int= 0〉

e′ = λf. f [ ] 〈tt, λx.¬x〉
σ = ∀α. (α× (α → bool)) → 1
τ = σ → 1

We are required to show that •; • ` e ∼ e′ : τ . The proof is in two parts.

I. Show •; • ` e ≤ e′ : τ .

Consider an arbitrary k ≥ 0.

Unwinding definitions, we see that since e and e′ are closed values of closed type, it suffices to show
that (k, e, e′) ∈ RV JτK ∅ ≡ (k, λf. f [ ] 〈1, λx. x

int= 0〉, λf. f [ ] 〈tt, λx.¬x〉) ∈ RV Jσ → 1K ∅.
Note that we already have ` e′ : σ → 1.

Consider arbitrary j, v, and v′ such that

• j < k, and

• (j, v, v′) ∈ RV JσK ∅
≡ (j, v, v′) ∈ RV J∀α. (α× (α → bool)) → 1K ∅.

Note that ` v′ : σ, which follows from Lemma C.7 applied to (j, v, v′) ∈ RV JσK ∅.
Also, note that v = Λ. e1 and v′ = Λ. e′1, which follows from (j, v, v′) ∈ RV J∀α. . . .K ∅.
We are required to show that
(j, (f [ ] 〈1, λx. x

int= 0〉)[v/f ], (f [ ] 〈tt, λx.¬x〉)[v′/f ]) ∈ RC J1K ∅
≡ (j, (v [ ]) 〈1, λx. x

int= 0〉, (v′ [ ]) 〈tt, λx.¬x〉) ∈ RC J1K ∅
≡ (j, (Λ. e1 [ ]) 〈1, λx. x

int= 0〉, (Λ. e′1 [ ]) 〈tt, λx.¬x〉) ∈ RC J1K ∅.
Consider arbitrary j1 and ef1 such that

• j1 < j,

• ((Λ. e1 [ ]) 〈1, λx. x
int= 0〉) 7−→j1 ef1 , and

• irred(ef1).

By the operational semantics, it follows that

((Λ. e1 [ ]) 〈1, λx. x
int= 0〉) 7−→1 (e1 〈1, λx. x

int= 0〉)
7−→j1−1 ef1

Hence, by the operational semantics, it follows that there must exist j11 and ef11 such that

• e1 7−→j11 ef11 ,

• irred(ef11), and

• j11 ≤ j1 − 1.
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Take τ2 = bool and χ = {(k′, 1, tt) | k′ ≥ 0}.
Instantiate the second conjunct of (j, Λ. e1,Λ. e′1) ∈ RV J∀α. (α× (α → bool)) → 1K ∅ with χ and τ2.

Note that χ ∈ Relbool, which follows from the definition of χ.

Hence, we have ∀i < j. (i, e1, e
′
1) ∈ RC J(α× (α → bool)) → 1K ∅[α 7→ (χ, bool)].

Instantiate this with j1 noting that j1 < j.

Hence, we have (j1, e1, e
′
1) ∈ RC J(α× (α → bool)) → 1K ∅[α 7→ (χ, bool)].

Instantiate this with j11 and ef11 . Note that

• j11 < j1, which follows from j11 ≤ j1 − 1,

• e1 7−→j11 ef11 , and

• irred(ef11).

Hence, there exists e′f11
such that

• e′1 7−→∗ e′f11
and

• (j1 − j11, ef11 , e
′
f11

) ∈ RV J(α× (α → bool)) → 1K ∅[α 7→ (χ, bool)].

Hence, ef11 = λz. e2 and e′f11
= λz. e′2.

Then, by the operational semantics it follows that

((Λ. e1 [ ]) 〈1, λx. x
int= 0〉) 7−→1 (e1 〈1, λx. x

int= 0〉)
7−→j11 (ef11 〈1, λx. x

int= 0〉)
≡ (λz. e2 〈1, λx. x

int= 0〉)
7−→1 (e2[〈1, λx. x

int= 0〉/z])
7−→j12 ef1

Note that j1 = 1 + j11 + 1 + j12.

Let vz = 〈1, λx. x
int= 0〉.

Let v′z = 〈tt, λx.¬x〉.
Instantiate (j1 − j11, λz. e2, λz. e′2) ∈ RV J(α× (α → bool)) → 1K ∅[α 7→ (χ, bool)] with j12 + 1, vz, and
v′z. Note that

• j12 + 1 < j1 − j11, which follows from j12 = j1 − 1− j11 − 1, and

• (j12 + 1, vz, v
′
z) ∈ RV Jα× (α → bool)K ∅[α 7→ (χ, bool)]

≡ (j12 + 1, 〈1, λx. x
int= 0〉, 〈tt, λx.¬x〉) ∈ RV Jα× (α → bool)K ∅[α 7→ (χ, bool)],

which follows from

• ` 〈tt, λx.¬x〉 : (α× (α → bool))[bool/α]
≡ ` 〈tt, λx.¬x〉 : bool× (bool → bool), which follows from the static semantics.

• (j12 + 1, 1, tt) ∈ RV JαK ∅[α 7→ (χ, bool)]
≡ (j12 + 1, 1, tt) ∈ χ (by the definition of RV JαK ρ)
which follows from our choice of χ.
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• (j12 +1, λx. x
int= 0, λx.¬x) ∈ RV Jα → boolK ∅[α 7→ (χ, bool)], which we conclude as follows:

First, note that ` λx.¬x : (α → bool)[bool/α] ≡ ` λx.¬x : bool → bool, which follows
easily from the static semantics.

Next, consider arbitrary i, v1, and v′1 such that

• i < j12 + 1, and

• (i, v1, v
′
1) ∈ RV JαK ∅[α 7→ (χ, bool)].

Note that RV JαK ∅[α 7→ (χ, bool)] ≡ χ by definition of RV JαK ρ.

Hence, (i, v1, v
′
1) ∈ χ.

Then, it must be that v1 = 1 and v′1 = tt, which follows from the definition of χ.

We are required to show that

(i, (x int= 0)[v1/x], (¬x)[v′1/x]) ∈ RC JboolK ∅[α 7→ (χ, bool)]
≡ (i, v1

int= 0,¬v′1) ∈ RC JboolK ∅[α 7→ (χ, bool)]
≡ (i, 1 int= 0,¬tt) ∈ RC JboolK ∅[α 7→ (χ, bool)]

Note that (1 int= 0) 7−→1 ff and (¬tt) 7−→∗ ff.

Hence, it remains for us to show that (i− 1, ff, ff) ∈ RV JboolK ∅[α 7→ (χ, bool)], which is
immediate.

Hence, (j12 + 1, e2[vz/z], e′2[v
′
z/z]) ∈ RC J1K ∅[α 7→ (χ, bool)].

Instantiate this with j12 and ef1 . Note that

• j12 < j12 + 1,

• e2[vz/z] 7−→j12 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• e′2[v
′
z/z] 7−→∗ e′f1

, and

• (j12 + 1− j12, ef1 , e
′
f1

) ∈ RV J1K ∅[α 7→ (χ, bool)]
≡ (1, ef1 , e

′
f1

) ∈ RV J1K ∅[α 7→ (χ, bool)].

Hence, ef1 = 〈 〉 and e′f1
= 〈 〉.

Hence, by the operational semantics we have

((Λ. e′1 [ ]) 〈tt, λx.¬x〉) 7−→1 (e′1 〈tt, λx.¬x〉)
7−→∗ (e′f11

〈tt, λx.¬x〉)
≡ (λz. e′2 〈tt, λx.¬x〉)
7−→1 (e′2[〈tt, λx.¬x〉/z])
7−→∗ e′f1

Take e′f1
= e′f1

≡ 〈 〉. We are required to show

• (Λ. e′1 [ ]) 〈tt, λx.¬x〉 7−→∗ e′f1
,

which follows from above, and
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• (j − j1, ef1 , e
′
f1

) ∈ RV J1K ∅,
which follows from ef1 = e′f1

= 〈 〉.

II. Show •; • ` e′ ≤ e : τ .

The proof is analogous to that of (I).
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D.4 Recursive Types

We now consider an example involving contravariant recursive types, that is, recursive types with a negative
occurrence. Consider the following existential packages e and e′ of type τ (see Sumii and Pierce [19], Section
4.4):

e = pack (fold 〈0, e1〉)
e′ = pack (fold 〈0, e′1〉)

e1 = fix f(s). 〈fold (〈s + 1, f〉), λc. (s int= fst (unfold c))〉
e′1 = fix f(s). 〈fold (〈s− 1, f〉), λc. (s int= fst (unfold c))〉

τ = ∃α. σ
σ = µβ. α× (α → ϕ)
ϕ = β × (β → bool)

We are required to show that •; • ` e ∼ e′ : τ . The proof is in two parts.

I. Show •; • ` e ≤ e′ : τ .

Consider an arbitrary k ≥ 0.

Unwinding definitions, we see that since e and e′ are closed values of closed type, it suffices to show
that (k, e, e′) ∈ RV JτK ∅ ≡ (k, pack (fold 〈0, e1〉), pack (fold 〈0, e′1〉)) ∈ RV J∃α. σK ∅.
Note that we already have ` pack (fold 〈0, e′1〉) : ∃α. σ.

Take τ2 = int and χ = {(k′, n,−n) | k′ ≥ 0 ∧ ` n : int ∧ n ≥ 0}.
Note that χ ∈ Rel int, which follows easily from the definition of χ.

Consider an arbitrary i such that i < j.

We are required to show that (i, fold 〈0, e1〉, fold 〈0, e′1〉) ∈ RV JσK ∅[α 7→ (χ, int)].

Note that we already have ` fold 〈0, e′1〉 : σ[int/α].

Consider arbitrary i1 such that i1 < i.

Let χβ = bRV JσK ∅[α 7→ (χ, int)]ci1+1.

We are required to show (i1, 〈0, e1〉, 〈0, e′1〉) ∈ RV Jα× (α → ϕ)K ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])],
which follows from

• (i1, 0, 0) ∈ RV JαK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])]
≡ (i1, 0, 0) ∈ χ (by definition of RV JαK ρ)

which follows from (i1, 0,−0) ∈ χ.

• (i1, e1, e
′
1) ∈ RV Jα → ϕK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])]

≡ (i1, fix f(s). 〈fold (〈s + 1, f〉), λc. (s int= fst (unfold c))〉,
fix f(s). 〈fold (〈s− 1, f〉), λc. (s int= fst (unfold c))〉)

∈ RV Jα → ϕK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])], which we conclude as follows:
First, note that

` fix f(s). 〈fold (〈s− 1, f〉), λc. (s int= fst (unfold c))〉 : (α → ϕ)[int/α][σ[int/α]/β]
≡ ` fix f(s). 〈fold (〈s− 1, f〉), λc. (s int= fst (unfold c))〉 : int → (σ[int/α]× (σ[int/α] → bool))

Next, consider arbitrary i2, v, v′ such that

• i2 < i1,
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• (i2, v, v′) ∈ RV JαK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])]
≡ (i2, v, v′) ∈ χ, and

• (i2, e1, e
′
1) ∈ RV Jα → ϕK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])]

≡ (i2, fix f(s). 〈fold (〈s + 1, f〉), λc. (s int= fst (unfold c))〉,
fix f(s). 〈fold (〈s− 1, f〉), λc. (s int= fst (unfold c))〉)

∈ RV Jα → ϕK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])].

Note that from (i2, v, v′) ∈ χ, it must be that v = −v′, which we conclude from the definition of
χ.

We are required to show (i2, 〈fold (〈v + 1, e1〉), λc. (v int= fst (unfold c))〉,
〈fold (〈v′ − 1, e′1〉), λc. (v′ int= fst (unfold c))〉)

∈ RC Jβ × β → boolK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])].

Noting that both v + 1 and v′ − 1 reduce to values in one step, it suffices to show
(i2 − 1, 〈fold (〈v + 1, e1〉), λc. (v int= fst (unfold c))〉, 〈fold (〈v′ − 1, e′1〉), λc. (v′ int= fst (unfold c))〉)
∈ RV Jβ × (β → bool)K ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])], which follows from:

• (i2 − 1, fold (〈v + 1, e1〉), fold (〈v′ − 1, e′1〉)) ∈ RV JβK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])]
≡ (i2 − 1, fold (〈v + 1, e1〉), fold (〈v′ − 1, e′1〉)) ∈ χβ

≡ (i2 − 1, fold (〈v + 1, e1〉), fold (〈v′ − 1, e′1〉)) ∈ bRV JσK ∅[α 7→ (χ, int)]ci1+1

≡ (i2 − 1, fold (〈v + 1, e1〉), fold (〈v′ − 1, e′1〉)) ∈ RV Jµβ. α× (α → ϕ)K ∅[α 7→ (χ, int)]
which we conclude as follows:

Consider arbitrary i3 such that i3 < i2 − 1.

Let χβ1 = bRV JσK ∅[α 7→ (χ, int)]ci3+1. Note that χβ1 = bχβci3+1 since i3 ≤ i1.

We are required to show that

(i3, 〈v + 1, e1〉, 〈v′ − 1, e′1〉) ∈ RV Jα× (α → ϕ)K ∅[α 7→ (χ, int), β 7→ (χβ1 , σ[int/α])]

which follows from:

• (i3, v + 1, v′ − 1) ∈ RV JαK ∅[α 7→ (χ, int), β 7→ (χβ1 , σ[int/α])]
≡ (i3, v + 1, v′ − 1) ∈ χ (by definition of RV JαK ρ)

which follows from v = −v′ (from above) and (i3, v + 1,−v − 1) ∈ χ.

• (i3, e1, e
′
1) ∈ RV Jα → ϕK ∅[α 7→ (χ, int), β 7→ (χβ1 , σ[int/α])]

which follows by Lemma C.9 applied to i3 ≤ i2 and
(i2, e1, e

′
1) ∈ RV Jα → ϕK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])],

both of which follow from above.

• (i2 − 1, λc. (v int= fst (unfold c)), λc. (v′ int= fst (unfold c)))
∈ RV Jβ → boolK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])], which we conclude as follows:

Consider arbitrary i3, v1, and v′1 such that

• i3 < i2 − 1 and

• (i3, v1, v
′
1) ∈ RV JβK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])]

≡ (i3, v1, v
′
1) ∈ χβ .

From the latter and χβ = bRV JσK ∅[α 7→ (χ, int)]ci1+1, it follows that v1 = fold v11 and
v′1 = fold v′11. Hence, (i3, fold v11, fold v′11) ∈ RV JσK ∅[α 7→ (χ, int)].
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We are required to show that
(i3, (v

int= fst (unfold v1)), (v′
int= fst (unfold v′1)))

≡ (i3, (v
int= fst (unfold (fold v11))), (v′

int= fst (unfold (fold v′11))))
∈ RC JboolK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])]

By the operational semantics (v int= fst (unfold (fold v11))) 7−→1 (v int= fst (v11)) and
(v′ int= fst (unfold (fold v′11))) 7−→1 (v′ int= fst (v′11)).

Instantiating (i3, fold v11, fold v′11) ∈ RV Jµβ. α× (α → ϕ)K ∅[α 7→ (χ, int)] with i3−1 < i3
it follows that (i3 − 1, v11, v

′
11) ∈ RV Jα× (α → ϕ)K ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])].

Hence, it must be that fst (v11) = v2 and fst (v′11) = v′2 such that v2 = −v′2 which follows
from (i3 − 1, v2, v

′
2) ∈ RV JαK ∅[α 7→ (χ, int), β 7→ (χβ , σ[int/α])] which is equivalent to

(i3 − 1, v2, v
′
2) ∈ χ.

Thus, since v = −v′ and v2 = −v′2, it easily follows that (v int= v2) and (v′ int= v′2) either both
evaluate to tt or both evaluate to ff.

II. Show •; • ` e′ ≤ e : τ .

The proof is analogous to that of (I).
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D.5 Higher-Order Functions II

We now consider a more complicated example involving higher-order functions. The packages e and e′ of
type τ shown below are implementations of integer multisets with higher-order functions that compute the
weighed sum of all the elements. To prove contextual equivalence of e and e′ below, Sumii and Pierce
(see [19], Section 7) had to adopt a weaker and much more complicated condition for showing the validity of
the bisimulation than the intuitive one they proposed initially. In fact, they note that their weaker condition
is reminiscent of step-indexed models.

e = pack 〈nil , add ,weigh〉
e′ = pack 〈lf , add ′,weigh ′〉
σ = α× (int → α → α)× ((int → real) → α → real)
τ = ∃α. σ

add = λi. fix f(s). cons(i, s)
add ′ = λi. fix f(s). case s of lf ⇒ node(i, lf , lf )

||node(j, s1, s2) ⇒ if i < j,node(j, f s1, s2),node(j, s1, f s2)

weigh = λg. fix f(s). case s of nil ⇒ 0
|| cons(j, s0) ⇒ g j + f s0

weigh ′ = λg. fix f(s). case s of lf ⇒ 0
||node(j, s1, s2) ⇒ g j + f s1 + f s2

We are required to show that •; • ` e ∼ e′ : τ . The proof is in two parts.

I. Show •; • ` e ≤ e′ : τ .

Consider an arbitrary k ≥ 0.

Unwinding definitions, we see that since e and e′ are closed values of closed types, it suffices to show
that (k, e, e′) ∈ RV JτK ∅ ≡ (k, pack 〈nil , add ,weigh〉, pack 〈lf , add ′,weigh ′〉) ∈ RV J∃α. σK ∅.
Note that we already have ` pack 〈lf , add ′,weigh ′〉 : ∃α. σ.

Let χ0 = {(k′,nil , lf ) | k′ ≥ 0 ∧ ` lf : intTree}, and
χi+1 = {(k′, s, s′) | ∃(k′, si, s

′
i) ∈ χi. ∃n. ` n : int ∧ add(n, si) 7−→∗ s ∧ add ′(n, s′i) 7−→∗ s′}.

Take τ2 = intTree and χ =
⋃

i≥0 χi.

Note that χ ∈ Rel intTree, which follows from the definition of χi and χ =
⋃

i≥0 χi.

Consider an arbitrary k0 such that k0 < k.

We are required to show that (k0, 〈nil , add ,weigh〉, 〈lf , add ′,weigh ′〉) ∈ RV JσK ∅[α 7→ (χ, intTree)],
which follows from:

• (k0,nil , lf ) ∈ RV JαK ∅[α 7→ (χ, intTree)]
≡ (k0,nil , leaf ) ∈ χ (by definition of RV JαK ρ)

which follows from (k0,nil , lf ) ∈ χ0 and χ0 ⊆ χ.

• (k0, add , add ′) ∈ RV Jint → α → αK ∅[α 7→ (χ, intTree)], which we conclude as follows:

Consider arbitrary k1, v, and v′ such that

• k1 < k0 and

• (k1, v, v′) ∈ RV JintK ∅[α 7→ (χ, intTree)].
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Note that from the latter it follows that v = v′.

Let add1 = fix f(s). cons(v, s), and
add ′1 = fix f(s). case s of lf ⇒ node(v′, lf , lf )

||node(j, s1, s2) ⇒ if v′ < j,node(j, f s1, s2),node(j, s1, f s2).

We are required to show that (k1, add1, add ′1) ∈ RC Jα → αK ∅[α 7→ (χ, intTree)].

Note that since add1 and add ′1 are closed values, it suffices to show that (k1, add1, add ′1) ∈
RV Jα → αK ∅[α 7→ (χ, intTree)].

Consider arbitrary k2, s, and s′ such that

• k2 < k1,

• (k2, s, s
′) ∈ RV JαK ∅[α 7→ (χ, intTree)]

≡ (k2, s, s
′) ∈ χ, and

• (k2, add1, add ′1) ∈ RV Jα → αK ∅[α 7→ (χ, intTree)].

We are required to show that
(k2, cons(v, s),

case s′ of lf ⇒ node(v′, lf , lf )
||node(j, s1, s2) ⇒ if v′ < j,node(j, add ′1 s1, s2),node(j, s1, add ′1 s2))

∈ RC JαK ∅[α 7→ (χ, intTree)],
which is equivalent to showing
(k2 + 2, add(v, s), add ′(v′, s′)) ∈ RC JαK ∅[α 7→ (χ, intTree)].

Note that from (k2, s, s
′) ∈ χ, it follows that there exists some i such that (k2, s, s

′) ∈ χi ⊂ χ.

• If i = 0, then from (k2, s, s
′) ∈ χi it follows that s = nil and s′ = lf .

By the operational semantics, add(v, s) 7−→2 sf ≡ cons(v, s) and add ′(v′, s′) 7−→∗ s′f ≡
node(v′, lf , lf ).

Note that since v = v′, it follows that (k2, sf , s′f ) ∈ χ1.

Thus, it remains to show that (k2, sf , s′f ) ∈ RV JαK ∅[α 7→ (χ, intTree)] ≡ χ, which is
immediate from the fact that (k2, sf , s′f ) ∈ χ1 ⊂ χ.

• Else if i > 0, then from (k2, s, s
′) ∈ χi it follows that s = cons(n, s0) and s′ =

node(m, s1, s2).

By the operational semantics, add(v, s) 7−→2 sf and add ′(v′, s′) 7−→∗ s′f .

Note that since v = v′, it follows that (k2, sf , s′f ) ∈ χi+1.

Thus, it remains to show that (k2, sf , s′f ) ∈ RV JαK ∅[α 7→ (χ, intTree)] ≡ χ, which is
immediate fom the fact that (k2, sf , s′f ) ∈ χi+1 ⊂ χ.

• (k0,weigh,weigh ′) ∈ RV J((int → real) → α → real)K ∅[α 7→ (χ, intTree)], which we conclude as
follows:

Consider arbitrary k1, g, and g′ such that

• k1 < k0 and

• (k1, g, g′) ∈ RV Jint → realK ∅[α 7→ (χ, intTree)].
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Let weigh1 = fix f(s). case s of nil ⇒ 0
|| cons(j, s0) ⇒ g j + f s0, and

weigh ′1 = fix f(s). case s of lf ⇒ 0
||node(j, s1, s2) ⇒ g′ j + f s1 + f s2.

We are required to show that (k1,weigh1,weigh ′1) ∈ RC Jα → realK ∅[α 7→ (χ, intTree)].

Note that since weigh1 and weigh ′1 are closed values, it suffices to show (k1,weigh1,weigh ′1) ∈
RV Jα → realK ∅[α 7→ (χ, intTree)].

Consider arbitrary k2, s, and s′ such that

• k2 < k1,

• (k2, s, s
′) ∈ RV JαK ∅[α 7→ (χ, intTree)]

≡ (k2, s, s
′) ∈ χ, and

• (k2,weigh1,weigh ′1) ∈ RV Jα → realK ∅[α 7→ (χ, intTree)].

We are required to show that
(k2, case s of nil ⇒ 0

|| cons(j, s0) ⇒ g j + weigh1 s0,
case s′ of lf ⇒ 0

||node(j, s1, s2) ⇒ g′ j + weigh ′1 s1 + weigh ′1 s2)
∈ RC JrealK ∅[α 7→ (χ, intTree)].

Let e ≡ case s of nil ⇒ 0 || cons(j, s0) ⇒ g j + weigh1 s0.

Let e′ ≡ case s′ of lf ⇒ 0 ||node(j, s1, s2) ⇒ g′ j + weigh ′1 s1 + weigh ′1 s2).

Consider arbitrary k3 and vf such that

• k3 < k2,

• e 7−→k3 vf , and

• irred(vf ).

It remains to show that there exists v′f such that e′ 7−→∗ v′f and (k2−k3, vf , v′f ) ∈ RV JrealK ∅[α 7→
(χ, intTree)].

Note that from (k2, s, s
′) ∈ χ, it follows that there exists some i such that (k2, s, s

′) ∈ χi ⊂ χ.

• If i = 0, then from (k2, s, s
′) ∈ χi it follows that s = nil and s′ = lf .

Then, by the operational semantics, e 7−→1 0. That is, vf = 0 and k3 = 1.

Furthermore, by the operational semantics, there exists v′f = 0 such that e′ 7−→∗ v′f .

It remains to show that (k2 − 1, 0, 0) ∈ RV JrealK ∅[α 7→ (χ, intTree)] which is immediate
from the definition of RV JrealK.

• Else if i > 0, then from (k2, s, s
′) ∈ χi it follows that:

• s = cons(n, s0), where add(n, s0) 7−→∗ cons(n, s0),

• s′ = node(. . .), where there exists some s′0 such that add ′(n, s′0) 7−→∗ s′,

• (k2, s0, s
′
0) ∈ χi−1 ⊂ χ.
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Then, by the operational semantics, e 7−→1 (g n + weigh1 s0) 7−→k3−1 vf .

Suppose that s′0 ≡ node(m, s′10, s
′
20).

Then, either n < m and add ′(n, s′0) ≡ add ′(n,node(m, s′10, s
′
20) 7−→

node(m, add(n, s′10), s
′
20) 7−→∗ s′

or else, add ′(n, s′0) ≡ add ′(n,node(m, s′10, s
′
20) 7−→

node(m, s′10, add(n, s′20)) 7−→∗ s′.

Then, by the operational semantics,

• either there exists v′f1 such that e′ 7−→1 (g′ m + weigh ′1 ns′10 + weigh ′1 s′20) 7−→ v′f1,
where (add(n, s′10)) 7−→∗ ns′10

• or there exists some v′f2 such that e′ 7−→1 (g′ m + weigh ′1 s′10 + weigh ′1 ns′20) 7−→ v′f2,
where (add(n, s′20)) 7−→∗ ns′20.

Consider the expression (g′ m+weigh ′1 s′10 +weigh ′1 s′20 + g′ n), which evaluates to some v′f .

Note that it must be that v′f ≡ v′f1 ≡ v′f2.

Thus, it remains for us to show that (k2 − k3, vf , v′f ) ∈ RV JrealK ∅[α 7→ (χ, intTree)].

Furthermore note that the expression (weigh ′1 s′0 + g′ n) ≡ (weigh ′1 (node(m, s′10, s
′
20)) +

g′ n) 7−→1 (g′ m + weigh ′1 s′10 + weigh ′1 s′20 + g′ n) and therefore, this must also evaluate to
v′f .

Finally, note that the expressions (g n + weigh1 s0) and (g′ n + weigh ′1 s′0) both evaluate to
the same value — that is vf ≡ v′f , which we conclude as follows:

• From (k1, g, g′) ∈ RV Jint → realK ∅[α 7→ (χ, intTree)] and (k1, n, n) ∈ RV JintK ∅[α 7→
(χ, intTree)] (which is immediate from the definition of RV JintK), with appropriate
applications of Lemma C.9, it follows that g n and g′ n both evaluate to the same
value.

• From (k2,weigh1,weigh ′1) ∈ RV Jα → realK ∅[α 7→ (χ, intTree)] and (k2, s0, s
′
0) ∈

RV JαK ∅[α 7→ (χ, intTree)] ≡ χ, with appropriate applications of Lemma C.9, it
follows that weigh1 s0 and weigh ′1 s′0 both evaluate to the same value.

From vf ≡ v′f , it immediately follows that (k2 − k3, vf , v′f ) ∈ RV JrealK ∅[α 7→ (χ, intTree)]
as we needed to show.

II. Show •; • ` e′ ≤ e : τ .

The proof is analogous to that of (I).
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E Completeness and Quantified Types

In this section, we consider completeness of the logical relation for quantified types. As explained in Sec-
tion 3.4, the proof of completeness fails to go through for the logical relation in Appendix C. In order to
obtain a complete logical relation, we modify the logical relation from Appendix C so that the definition of
Relτ requires that each χ ∈ Relτ also be equivalence-respecting. Except for the definition of Relτ , the logical
relation is defined exactly as before.

It turns out, however, that our relational interpretation of existential types fails to satisfy the equivalence-
respecting property. Thus, in this section we show that our modified logical relation is sound and complete
for a language with recursive and quantified types, but no existential types.

Notation: λ∀ refers to the λ∀∃-calculus minus all terms, typing rules, etc. that have to do with existential
types.

Note: Some lemmas in this section hold for λ∀∃, while others only hold for the sub-language λ∀. The
lemmas are annotated accordingly.
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E.1 λ∀ Relational (PER) Model

v ≺ciu v′ : τ
def
= ∀E, τ1. •; • ` E : (•; • . τ) τ1 ∧ E[v] ⇓ =⇒ E[v′] ⇓

Relτ
def
= {χ ∈ 2Nat×CValues×CValues | ∀(j, v, v′) ∈ χ.

` v′ : τ ∧
∀i ≤ j. (i, v, v′) ∈ χ ∧
∀v′′. v′ ≺ciu v′′ : τ =⇒ (j, v, v′′) ∈ χ}

The rest of the model is defined exactly as in Figures 6 and 7 in Appendix C.

Figure 1: λ∀ Step-Indexed Relational Model (Complete)
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E.2 λ∀ Proofs: Validity of Pers

The goal of this section, is to show that each λ∀ type τ is a valid type — that is, RV JτK ρ ∈ Relτ [ρ] .
Specifically, this involves showing that the relational interpretation of a type τ satisfies the well-typedness
requirement, is closed under decreasing step-index, and is equivalence-respecting.

Note on Existential Types: It is important to note that for existential types, the equivalence-respecting
property does not hold (see the proof of Lemma E.1, where we have included the case for existential types
in order to show how the proof for existential types breaks down).

Consequences of Existential Types not being Equivalence-Respecting: It is important to note that
the equivalence-respecting property of a type is not required in order to prove the Fundamental Property
of the logical relation (thus we can reuse all lemmas in Section C.8) or to prove soundness with respect to
contextual equivalence (thus we can reuse all lemmas in Section C.10). In fact, the equivalence-respecting
property is required only in the proof of completeness of the logical relation with respect to contextual
equivalence (see Lemma E.5 in Section E.3). Thus, since the relational interpretation of existential types
is not equivalence-respecting, the logical relation in Section E.1 is not complete with respect to contextual
equivalence for existential types. However, if we omit existential types from the language (as we have done
by restricting attention to λ∀), the logical relation in Section E.1 is both sound and complete with respect
to contextual equivalence.

Note on Lemmas and Proofs that Follow: In the rest of Appendix E we will only present lemmas
and proofs that are new or different from those in Appendix C. In particular, we note that to prove the
fundamental theorem for λ∀ and to show soundness of our new logical relation for λ∀, we may reuse all of
the proofs in Sections C.7 through C.10 without any modifications (other than leaving out lemmas and cases
that pertain to existential types). Accordingly, in the proofs that appear in the rest of this section, we have
continued to appeal to lemmas from Appendix C where necessary.
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Lemma E.1 (λ∀ Per Equivalence-Respecting)

Let ρ ∈ RD J∆K and ∆ ` τ .
If (k, v1, v2) ∈ RV JτK ρ and v2 ≺ciu v3 : τ [ρ],
then (k, v1, v3) ∈ RV JτK ρ.

Proof

NOTE: This proof does not go through for existential types.

By induction on k and nested induction on the structure of the derivation ∆ ` τ .

Case (VarTy)
α ∈ ∆
∆ ` α

:

We have as premises

(1) (k, v1, v2) ∈ RV JαK ρ ≡ (k, v1, v2) ∈ ρsem(α), and
(2) v2 ≺ciu v3 : α[ρ] ≡ v2 ≺ciu v3 : ρsyn(α).

We are required to show that (k, v1, v3) ∈ RV JαK ρ
≡ (k, v1, v3) ∈ ρsem(α).

From ρ ∈ RD J∆K and α ∈ ∆, it follows that

• ρsem(α) ∈ Relρsyn(α).

Hence, by the definition of Relρsyn(α), since (k, v1, v2) ∈ ρsem(α) ∈ Relρsyn(α) and v2 ≺ciu v3 :
ρsyn(α), it follows that (k, v1, v3) ∈ ρsem(α).

Case (BoolTy)
∆ ` bool

:

We have as premises

(1) (k, v1, v2) ∈ RV JboolK ρ, and
(2) v2 ≺ciu v3 : bool[ρ] ≡ v2 ≺ciu v3 : bool.

Hence, from (1) it follows that (v1 = v2 = tt) ∨ (v1 = v2 = ff).
From (2) it follows that ` v3 : bool.
Hence, either v3 = tt or v3 = ff.
We show that v2 = v3 by contradiction:

• Suppose v2 6= v3. Then, either v2 = tt ∧ v3 = ff, or v2 = ff ∧ v3 = tt.

Case v2 = tt ∧ v3 = ff :
Instantiate (2) with if [·], tt, diverge and bool. Note that
• •; • ` if [·], tt, diverge : (•; • . bool) bool, and
• if [v2], tt, diverge ⇓, since v2 = tt.

Hence, if v3, tt, diverge ⇓ ≡ if ff, tt, diverge ⇓, since v3 = ff.
But clearly, if ff, tt, diverge 7−→ diverge and diverge ⇑. Hence, we have a contra-
diction.

Case v2 = ff ∧ v3 = tt :
Instantiate (2) with if [·], diverge, tt and bool. Note that
• •; • ` if [·], diverge, tt : (•; • . bool) bool, and
• if [v2], diverge, tt ⇓, since v2 = ff.

Hence, if v3, diverge, tt ⇓ ≡ if tt, diverge, tt ⇓, since v3 = tt.
But clearly, if tt, diverge, tt 7−→ diverge and diverge ⇑. Hence, we have a contra-
diction.
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Thus, it must be that v2 = v3.

We are required to show that (k, v1, v3) ∈ RV JboolK ρ,
which follows from

• ` v3 : bool,
which follows from v2 ≺ciu v3 : bool.

• (v1 = v3 = tt) ∨ (v1 = v3 = ff),
which follows from (v1 = v2 = v3 = tt) ∨ (v1 = v2 = v3 = ff),
which follows from

• (v1 = v2 = tt) ∨ (v1 = v2 = ff), and

• (v2 = v3 = tt) ∨ (v2 = v3 = ff).

Case (FnTy)
∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2
:

We have as premises

(1) (k, v1, v2) ∈ RV Jτ1 → τ2K ρ, and
(2) v2 ≺ciu v3 : (τ1 → τ2)[ρ] ≡ v2 ≺ciu v3 : (τ1)[ρ] → (τ2)[ρ].

Hence, from (1) it follows that v1 ≡ λx. e1 and v2 ≡ λx. e2.
From (2) it follows that ` v3 : (τ1)[ρ] → (τ2)[ρ]. Hence, v3 ≡ λx. e3.
We are required to show that (k, λx. e1, λx. e3) ∈ RV Jτ1 → τ2K ρ,
which follows from

• ` λx. e3 : (τ1 → τ2)[ρ],
which follows from (2).

• ∀j < k, v11, v
′
11. (j, v11, v

′
11) ∈ RV Jτ1K ρ =⇒ (j, e1[v11/x], e3[v′11/x]) ∈ RC Jτ2K ρ :

Consider arbitrary j, v11, v′11 such that

• j < k, and

• (j, v11, v
′
11) ∈ RV Jτ1K ρ.

We are required to show that (j, e1[v11/x], e3[v′11/x]) ∈ RC Jτ2K ρ.
Consider arbitrary i and ef11 such that

• i < j,

• e1[v11/x] 7−→i ef11 , and

• irred(ef11).

We are required to show that ∃e′f . e3[v′11/x] 7−→∗ e′f ∧ (j − i, ef11 , e
′
f ) ∈ RV Jτ2K ρ.

Instantiate the second conjunct of (1) with j, v11, and v′11. Note that

• j < k, and

• (j, v11, v
′
11) ∈ RV Jτ1K ρ.

Hence, (j, e1[v11/x], e2[v′11/x]) ∈ RC Jτ2K ρ.
Instantiate this with i and ef11 . Note that

• i < j,

• e1[v11/x] 7−→i ef11 , and

• irred(ef11).

Hence, there exists ef22 such that
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• e2[v′11/x] 7−→∗ ef22 , and

• (j − i, ef11 , ef22) ∈ RV Jτ2K ρ.

Hence, ef11 ≡ vf11 and ef22 ≡ vf22 .
Instantiate (2) with [·] v′11, and τ2. Note that

• •; • ` [·] v′11 : (•; • . (τ1)[ρ] → (τ2)[ρ]) (τ2)[ρ], and

• (λx. e2) v′11 ⇓,
which follows from (λx. e2) v′11 7−→1 e2[v′11/x] and e2[v′11/x] 7−→∗ vf22 ,
which follow from above.

Hence, there exists vf33 such that (λx. e3) v′11 ⇓ vf33 .
By the operational semantics, it must be that (λx. e3) v′11 7−→1 e3[v′11/x].
Hence, it must be that e3[v′11/x] ⇓ vf33 .
We show that vf22 ≺ciu vf33 : (τ2)[ρ] :

• Consider arbitrary E0 and τ0 such that

• •; • ` E0 : (•; • . (τ2)[ρ]) τ0, and

• E0[vf22 ] ⇓.

We are required to show that E0[vf33 ] ⇓.
Instantiate (2) with E0[[·] v′11] and τ0. Note that

• •; • ` E0[[·] v′11] : (•; • . (τ1)[ρ] → (τ2)[ρ]) τ0, and

• E0[[λx. e2] v′11] 7−→1 E0[e2[v′11/x]] 7−→∗ E0[vf22 ] ⇓.

Hence, E0[[λx. e3] v′11] ⇓.
By the operational semantics, it must be that E0[[λx. e3] v′11] 7−→1 E0[e3[v′11/x]] 7−→∗

E0[vf33 ].
Hence, it must be that E0[vf33 ] ⇓.

Take e′f = vf33 .
We are required to show

• e3[v′11/x] 7−→∗ vf33 ,
which follows from above, and

• (j − i, ef11 , e
′
f ) ∈ RV Jτ2K ρ,

which follows from the induction hypothesis applied to ∆ ` τ2, with

• ρ ∈ ∆,

• (j − i, vf11 , vf22) ∈ RV Jτ2K ρ, and

• vf22 ≺ciu vf33 : (τ2)[ρ].

Case (RecTy)
∆, α ` τ1

∆ ` µα. τ1
:

We have as premises

(1) (k, v1, v2) ∈ RV Jµα. τ1K ρ, and
(2) v2 ≺ciu v3 : (µα. τ1)[ρ] ≡ v2 ≺ciu v3 : µα. (τ1)[ρ].

Hence, from (1) it follows that v1 ≡ fold v11 and v2 ≡ fold v22.
From (2) it follows that ` v3 : µα. (τ1)[ρ]. Hence, v3 ≡ fold v33.
We are required to show that (k, fold v11, fold v33) ∈ RV Jµα. τ1K ρ,
which follows from
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• ` fold v33 : (µα. τ1)[ρ],
which follows from (2).

• ∀j < k. let χ = bRV Jµα. τ1K ρcj+1 in (j, v11, v33) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ1)[ρ])] :
Consider arbitrary j such that

• j < k.

Let χ = bRV Jµα. τ1K ρcj+1.
We are required to show that (j, v11, v33) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ1)[ρ])].
Instantiate the second conjunct of (1) with j. Note that

• j < k, and

• χ = bRV Jµα. τ1K ρcj+1.

Hence, (j, v11, v22) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ1)[ρ])].
Let ρ1 = ρ[α 7→ (χ, (µα. τ1)[ρ])]. Note that (τ1[µα. τ1/α])[ρ] ≡ (τ1)[ρ1].
We show that v22 ≺ciu v33 : (τ1)[ρ1]

≡ v22 ≺ciu v33 : (τ1[µα. τ1/α])[ρ]:

• Consider arbitrary E0 and τ0 such that

• •; • ` E0 : (•; • . (τ1[µα. τ1/α])[ρ]) τ0, and

• E0[v22] ⇓.

We are required to show that E0[v33] ⇓.
Instantiate (2) with E0[unfold [·]] and τ0. Note that

• •; • ` E0[unfold [·]] : (•; • . (µα. τ1)[ρ]) τ0, and

• E0[unfold [fold v22]] 7−→1 E0[v22] ⇓.

Hence, E0[unfold [fold v33]] ⇓.
By the operational semantics, it must be that E0[unfold [fold v33]] 7−→1 E0[v33].
Hence, it must be that E0[v33] ⇓.

Applying the induction hypothesis to ∆, α ` τ1, with

• ρ1 ∈ RD J∆, αK,
which follows (since ρ1 = ρ[α 7→ (χ, (µα. τ1)[ρ])]) from

• ρ ∈ RD J∆K, and

• χ = bRV Jµα. τ1K ρcj+1 ∈ Rel (µα. τ1)[ρ] , which follows from:
Consider arbitrary (i, v0, v

′
0) ∈ χ = bRV Jµα. τ1K ρcj+1.

Note that we have the three required properties:

• well-typedness: we have ` v′0 : (µα. τ1)[ρ],
which follows fom Lemma C.7 applied to ρ ∈ RD J∆K, ∆ ` µα. τ1, and
(i, v0, v

′
0) ∈ RV Jµα. τ1K ρ;

• closure with respect to decreasing step-index:
we have (i′, v0, v

′
0) ∈ bRV Jµα. τ1K ρcj+1 for arbitrary i′ ≤ i,

which follows from Lemma C.9 applied to ρ ∈ RD J∆K, ∆ ` µα. τ1,
(i, v0, v

′
0) ∈ RV Jµα. τ1K ρ and i′ ≤ i;

• equivalence-respecting: we have (i, v0, v
′′
0 ) ∈ bRV Jµα. τ1K ρcj+1 for arbitrary

v′′0 such that v′0 ≺ciu v′′0 : (µα. τ1)[ρ],
which follows from the outer induction hypothesis, noting that i < k (since
i ≤ j < k), applied to ρ ∈ RD J∆K, ∆ ` µα. τ1, (i, v0, v

′
0) ∈ RV Jµα. τ1K ρ,

and v′0 ≺ciu v′′0 : (µα. τ1)[ρ].
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• (j, v11, v22) ∈ RV Jτ1K ρ1,
which follows from above, and

• v22 ≺ciu v33 : (τ1)[ρ1],
which follows from above

we conclude that (j, v11, v33) ∈ RV Jτ1K ρ1.
Hence, (j, v11, v33) ∈ RV Jτ1K ρ[α 7→ (χ, (µα. τ1)[ρ])].

Case (AllTy)
∆, α ` τ1

∆ ` ∀α. τ1
:

We have as premises

(1) (k, v1, v2) ∈ RV J∀α. τ1K ρ, and
(2) v2 ≺ciu v3 : (∀α. τ1)[ρ] ≡ v2 ≺ciu v3 : ∀α. (τ1)[ρ].

Hence, from (1) it follows that v1 ≡ Λ. e11 and e2 ≡ Λ. e22.
From (2) it follows that ` v3 : ∀α. (τ1)[ρ]. Hence, v3 ≡ Λ. e33.
We are required to show that (k, Λ. e11,Λ. e33) ∈ RV J∀α. τ1K ρ,
which follows from

• ` Λ. e33 : (∀α. τ1)[ρ],
which follows from (2).

• ∀τ2, χ. χ ∈ Relτ2 =⇒ ∀j < k. (j, e11, e33) ∈ RC Jτ1K ρ[α 7→ (χ, τ2)] :
Consider arbitrary τ2, and χ such that

• χ ∈ Relτ2 .

We are required to show that ∀j < k. (j, e11, e33) ∈ RC Jτ1K ρ[α 7→ (χ, τ2)].
Consider arbitrary j such that

• j < k.

We are required to show that (j, e11, e33) ∈ RC Jτ1K ρ[α 7→ (χ, τ2)].
Consider arbitrary i and ef11 such that

• i < j,

• e11 7−→i ef11 , and

• irred(ef11).

We are required to show that ∃e′f . e33 7−→∗ e′f ∧ (j − i, ef11 , e
′
f ) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].

Instantiate the second conjunct of (1) with τ2, and χ. Note that

• χ ∈ Relτ2 .

Hence, ∀j < k. (j, e11, e22) ∈ RC Jτ1K ρ[α 7→ (χ, τ2)].
Instantiate this with j, noting that j < k.
Hence, (j, e11, e22) ∈ RC Jτ1K ρ[α 7→ (χ, τ2)].
Instantiate this with i and ef11 . Note that

• i < j,

• e11 7−→i ef11 , and

• irred(ef11).

Hence, there exists ef22 such that

• e22 7−→∗ ef22 , and
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• (j − i, ef11 , ef22) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].

Hence, ef11 ≡ vf11 and ef22 ≡ vf22 .
Instantiate (2) with [·] [ ] and τ1[τ2/α]. Note that

• •; • ` [·] [ ] : (•; • . ∀α. (τ1)[ρ]) (τ1)[ρ][τ2/α], and

• [Λ. e22] [ ] ⇓,
which follows from Λ. e22 [ ] 7−→1 e22 and e22 7−→∗ vf22 ,
which follow from above.

Hence, there exists vf33 such that Λ. e33 [ ] ⇓ vf33 .
By the operational semantics, it must that Λ. e33 [ ] 7−→1 e33.
Hence, it must be that e33 ⇓ vf33 .
Let ρ1 = ρ[α 7→ (χ, τ2)].
We show that vf22 ≺ciu vf33 : (τ1)[ρ1]

≡ v22 ≺ciu v33 : (τ1[τ2/α])[ρ]:

• Consider arbitrary E0 and τ0 such that

• •; • ` E0 : (•; • . (τ1[τ2/α])[ρ]) τ0, and

• E0[vf22 ] ⇓.

We are required to show that E0[vf33 ] ⇓.
Instantiate (2) with E0[[·] [ ]] and τ0. Note that

• •; • ` E0[[·] [ ]] : (•; • . (∀α. τ1)[ρ]) τ0, and

• E0[[Λ. e22] [ ]] 7−→1 E0[e22] 7−→∗ E0[vf22 ] ⇓.

Hence, E0[[Λ. e33] [ ]] ⇓.
By the operational semantics, it must be that E0[[Λ. e33] [ ]] 7−→1 E0[e33] 7−→∗ E0[vf33 ].
Hence, it must be that E0[vf33 ] ⇓.

Take e′f = vf33 .
We are required to show

• e33 7−→∗ vf33 ,
which follows from above, and

• (j − i, vf11 , vf33) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)] :
Applying the induction hypothesis to ∆, α ` τ1, with

• ρ1 ∈ RD J∆, αK,
which follows (since ρ1 = ρ[α 7→ (χ, τ2)]) from

• ρ ∈ RD J∆K, and

• χ ∈ Relτ2 ,
which follows from above.

• (j − i, vf11 , vf22) ∈ RV Jτ1K ρ1,
which follows from above, and

• vf22 ≺ciu vf33 : (τ1)[ρ1],
which follows from above

we conclude that (j − i, vf11 , vf33) ∈ RV Jτ1K ρ1.
Hence, (j − i, vf11 , vf33) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].
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Case (ExTy)
∆, α ` τ1

∆ ` ∃α. τ1
:

Note that this case of the proof fails to go through.
We have as premises

(1) (k, v1, v2) ∈ RV J∃α. τ1K ρ, and
(2) v2 ≺ciu v3 : (∃α. τ1)[ρ] ≡ v2 ≺ciu v3 : ∃α. (τ1)[ρ].

Hence, from (1) it follows that v1 ≡ pack v11 and v2 ≡ pack v22.
From (2) it follows that ` v3 : ∃α. (τ1)[ρ]. Hence, v3 ≡ pack v33.
We are required to show that (k, pack v11, pack v33) ∈ RV J∃α. τ1K ρ,
which follows from

• ` pack v33 : (∃α. τ1)[ρ],
which follows from (2).

• ∃τ2, χ. χ ∈ Relτ2 ∧ ∀j < k. (j, v11, v33) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)] :
From the second conjunct of (1) it follows that there exist τ2 and χ such that

(A) χ ∈ Relτ2 , and
(B) ∀j < k. (j, v11, v22) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].

From (A) we have a τ2 and χ such that χ ∈ Relτ2 .
Hence, it remains for us to show that ∀j < k. (j, v11, v33) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].
Consider arbitrary j such that

• j < k.

Instantiate (B) with j, noting that j < k.
Hence, (j, v11, v22) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)].
Let ρ1 = ρ[α 7→ (χ, τ2)]. Note that (τ1[τ2/α])[ρ] ≡ (τ1)[ρ1].
We are required to show that (j, v11, v33) ∈ RV Jτ1K ρ[α 7→ (χ, τ2)]

≡ (j, v11, v33) ∈ RV Jτ1K ρ1.

We attempt to prove the above as follows:
We can conclude that (j, v11, v33) ∈ RV Jτ1K ρ1 by applying the induction hypothesis to
∆, α ` τ1, but we require the following:

• ρ1 ∈ RD J∆, αK,
which follows (since ρ1 = ρ[α 7→ (χ, (µα. τ1)[ρ])]) from

• ρ ∈ RD J∆K, and

• χ ∈ Relτ2 ,
which follows from above

• (j, v11, v22) ∈ RV Jτ1K ρ1,
which follows from above, and

• v22 ≺ciu v33 : (τ1)[ρ1],
Problem: An attempt to prove this gets stuck:
We wish to show that v22 ≺ciu v33 : (τ1)[ρ1]

≡ v22 ≺ciu v33 : (τ1[τ2/α])[ρ]:

• Consider arbitrary E0 and τ0 such that

• •; • ` E0 : (•; • . (τ1[τ2/α])[ρ]) τ0, and

• E0[v22] ⇓.
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We are required to show that E0[v33] ⇓.
We could instantiate (2) with E0[unpack [·] asx inx] and τ0. To proceed, the
following two conditions should hold:

• (Z) •; • ` E0[unpack [·] asx inx] : (•; • . (∃α. τ1)[ρ]) τ0.
Problem: (Z) is false. The result of the unpack is x, which has type τ

[ρ]
1

(where FTV τ
[ρ]
1 = {α}). Thus, it is not the case that • ` τ

[ρ]
1 as required by

the premises of the unpack typing rule.

• E0[unpack [pack v22] asx inx] 7−→1 E0[v22] ⇓,
which follows from the operational semantics.

If (Z) were true, we could have proceeded as follows. We could now conclude that
E0[unpack [pack v33] asx inx] ⇓. Thus, by the operational semantics, it must be
that E0[unpack [pack v33] asx inx] 7−→1 E0[v33]. Hence, it must be that E0[v33] ⇓.

However, since (Z) does not hold, we cannot conclude that E0[v33] ⇓ as
required.

2
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Lemma E.2 (λ∀ Valid Per: RV JτK ρ ∈ Relτ [ρ])

Let ρ ∈ RD J∆K and ∆ ` τ .
Then RV JτK ρ ∈ Relτ [ρ] .

Proof

By the definition of Relτ [ρ] , it suffices to show:

∀(k, v, v′) ∈ RV JτK ρ. ` v′ : τ [ρ] ∧
∀j ≤ k. (j, v, v′) ∈ RV JτK ρ ∧
(∀v′′. v′ ≺ciu v′′ : τ [ρ] =⇒ (j, v, v′′) ∈ RV JτK ρ)

Consider arbitrary (k, v, v′) ∈ RV JτK ρ.

• Applying Lemma C.7 to ρ ∈ RD J∆K, ∆ ` τ , and (k, v, v′) ∈ RV JτK ρ, it follows that ` v′ : τ [ρ].

• Consider arbitrary j ≤ k.

Applying Lemma C.9 to ρ ∈ RD J∆K, ∆ ` τ , (k, v, v′) ∈ RV JτK ρ, and j ≤ k, it follows that
(j, v, v′) ∈ RV JτK ρ.

• Consider arbitrary v′′ such that v′ ≺ciu v′′ : τ [ρ].

Applying Lemma E.1 to ρ ∈ RD J∆K, ∆ ` τ , (k, v, v′) ∈ RV JτK ρ, and v′ ≺ciu v′′ : τ [ρ], it follows
that (k, v, v′′) ∈ RV JτK ρ.

2
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E.3 λ∀ Proofs: Completeness w.r.t. Contextual Equivalence

In this section, we show that �ctx ⊆ �ciu for λ∀∃. Furthermore, for λ∀ (i.e., λ∀∃ without existential
types), we show that �ciu ⊆ ≤. Thus, we may conclude that our logical relation for λ∀ is complete with
respect to contextual equivalence.

Lemma E.3 (λ∀∃ : �ctx Congruence)

If ∆; Γ ` e �ctx e′ : τ and ∆1; Γ1 ` C1 : (∆; Γ . τ) τ1,
then ∆1; Γ1 ` C1[e] �ctx C1[e′] : τ1.

Proof

Consider arbitrary C and τ0 such that

• •; • ` C : (∆1; Γ1 . τ1) τ0, and

• C[C1[e]] ⇓.

We are required to show that C[C1[e′]] ⇓.

Instantiate ∆; Γ ` e �ctx e′ : τ with C[C1[·]] and τ0. Note that

• •; • ` C[C1[·]] : (∆; Γ . τ) τ0, which follows using the (C-ctxt) rule:

(C-ctxt)
•; • ` C : (∆1; Γ1 . τ1) τ0 ∆1; Γ1 ` C1 : (∆; Γ . τ) τ1

•; • ` C[C1[·]] : (∆; Γ . τ) τ0

• C[C1[e]] ⇓.

Hence, C[C1[e′]] ⇓. 2
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Lemma E.4 (λ∀∃ : �ctx ⊆ �ciu)

If ∆; Γ ` e �ctx e′ : τ
then ∆; Γ ` e �ciu e′ : τ .

Proof

Consider arbitrary δ, γ, E, and τ1 such that

• δ |= ∆,

• ` γ : δ(Γ),

• •; • ` E : (•; • . δ(τ)) τ1, and

• E[γ(e)] ⇓.

If δ = {α1 7→ τ ′1, α2 7→ τ ′2, . . . αm 7→ τ ′m} and γ = {x1 7→ v1, x2 7→ v2, . . . , xn 7→ vn},
then let Cγ = (Λ.Λ. . . .Λ. λx1. λx2. . . . λxn. [·]) [ ]1 [ ]2 . . . [ ]m v1 v2 . . . vn.
Note that if we had explicit types in terms, we would have written

Cγ = (Λα1. Λα2. . . . Λαm. λx1. λx2. . . . λxn. [·]) [τ ′1] [τ
′
2] . . . [τ ′m] v1 v2 . . . vn

Note that •; • ` Cγ : (∆; Γ . τ) δ(τ).

Hence, note that

• •; • ` Cγ [e] �ctx Cγ [e′] : δ(τ),
which follows from Lemma E.3 applied to ∆; Γ ` e �ctx e′ : τ and •; • ` Cγ : (∆; Γ . τ) δ(τ).

Instantiate this with E and τ1. Note that

• •; • ` E : (•; • . δ(τ)) τ1,
which follows from above, and

• E[Cγ [e]] ⇓, which follows from

• E[Cγ [e]] 7−→∗ E[γ(e)],
which follows from the operational semantics and an examination of Cγ , and

• E[γ(e)] ⇓,
which follows from above.

Hence, E[Cγ [e′]] ⇓.

By the operational semantics, it must be that E[Cγ [e′]] 7−→∗ E[γ(e′)].

Hence, it must be that E[γ(e′)] ⇓. 2
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Lemma E.5 (λ∀ : �ciu ⊆ ≤)

If ∆; Γ ` e �ciu e′ : τ
then ∆; Γ ` e ≤ e′ : τ .

Proof

NOTE: This lemma holds only for λ∀ (i.e., λ∀∃ without existential types), since the proof makes use
of Lemma E.1 which does not hold for existential types.

Consider arbitrary k, ρ, γ, and γ′ such that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

We are required to show that (k, γ(e), γ′(e′)) ∈ RC JτK ρ.

Consider arbitrary j and ef such that

• j < k,

• γ(e) 7−→j ef , and

• irred(ef ).

Note that ∆; Γ ` e ≤ e : τ , which follows from Lemma C.29 applied to ∆; Γ ` e : τ .

Instantiate ∆; Γ ` e ≤ e : τ with k, ρ, γ, and γ′. Note that

• k ≥ 0,

• ρ ∈ RD J∆K, and

• (k, γ, γ′) ∈ RG JΓK ρ.

Hence, (k, γ(e), γ′(e)) ∈ RC JτK ρ.

Instantiate this with j and ef . Note that

• j < k,

• γ(e) 7−→j ef , and

• irred(ef ).

Hence, there exists e′f such that

• γ′(e) 7−→∗ e′f , and

• (k − j, ef , e′f ) ∈ RV JτK ρ.

Note that ef ≡ vf and e′f ≡ v′f .

Hence, γ′(e) ⇓ v′f .

Let δρ = {α 7→ τ | ρ(α) = (χ, τ)}.
Instantiate ∆; Γ ` e �ciu e′ : τ with δρ, γ′, [·], and τ . Note that
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• δρ |= ∆,
which follows from dom(δρ) = dom(ρ) = ∆,

• ` γ′ : δρ(Γ)
≡ ` γ′ : Γ[ρ],

,

which follows from Lemma C.8 applied to (k, γ, γ′) ∈ RG JΓK ρ,

• •; • ` [·] : (•; • . δρ(τ)) δρ(τ), and

• γ′(e) ⇓.

Hence, there exists v′′f such that γ′(e′) ⇓ v′′f .

Let e′′f = v′′f .

We are required to show that

• γ′(e′) 7−→∗ v′′f ,
which follows from above, and

• (k − j, vf , v′′f ) ∈ RV JτK ρ,
which follows from Lemma E.1 applied to

• ρ ∈ RD J∆K,

• ∆ ` τ ,

• (k − j, vf , v′f ) ∈ RV JτK ρ, and

• v′f ≺ciu v′′f : τ [ρ],
which follows from

• Consider arbitrary E1 and τ1 such that

• •; • ` E1 : (•; • . τ [ρ]) τ1, and

• E1[v′f ] ⇓.

We are required to show that E1[v′′f ] ⇓.

Let δρ = {α 7→ τ | ρ(α) = (χ, τ)}.
Instantiate ∆; Γ ` e �ciu e′ : τ with δρ, γ′, E1, and τ1. Note that

• δρ |= ∆,
which follows from dom(δρ) = dom(ρ) = ∆,

• ` γ′ : δρ(Γ)
≡ ` γ′ : Γ[ρ],

,

which follows from Lemma C.8 applied to (k, γ, γ′) ∈ RG JΓK ρ,

• •; • ` E1 : (•; • . δρ(τ)) τ1, and

• E1[γ′(e)] ⇓,
which follows from

• E1[γ′(e)] 7−→∗ E1[vf ],
which follows from γ′(e) 7−→∗ vf , and
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• E1[vf ] ⇓,
which follows from above.

Hence, E1[γ′(e′)] ⇓.

By the operational semantics, it must be that E1[γ′(e′)] 7−→∗ E1[v′′f ], which follows
from γ′(e′) 7−→∗ v′′f above.

Hence, it must be that E1[v′′f ] ⇓.

2
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E.4 λ∀ Example

In this section, we return to the higher-order function example in Section D.3. This is the only example
we considered in Appendix D that did not involve existential types. In this section, we work out the same
example using our new logical relation, which uses the modified definition of Relτ .

As in Section D, we wish to show that the closed terms e and e′ of type τ are contextually equivalent —
that is, •; • ` e 'ctx e′ : τ . It suffices to show •; • ` e ∼ e′ : τ .

Notation Let χ be a set of tuples of the form (k, v, v′) such that ` v′ : τ . We define the transitive closure
of χ under ciu approximation at type τ as follows:

χ∗τ = {(k, v1, v2) | (k, v1, v2) ∈ χ ∨ ((k, v1, v) ∈ χ ∧ v �ciu v2 : τ)}
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Example: Higher Order Functions I (see Section D.3)

Consider the following higher-order functions e and e′ of type τ (see Sumii and Pierce [19], Section 4.5).
Note that this example is essentially the “dual” of the example in Section D.1.

e = λf. f [ ] 〈1, λx. x
int= 0〉

e′ = λf. f [ ] 〈tt, λx.¬x〉
σ = ∀α. (α× (α → bool)) → 1
τ = σ → 1

We are required to show that •; • ` e ∼ e′ : τ . The proof is in two parts.

I. Show •; • ` e ≤ e′ : τ .

Consider an arbitrary k ≥ 0.

Unwinding definitions, we see that since e and e′ are closed values of closed type, it suffices to show
that (k, e, e′) ∈ RV JτK ∅ ≡ (k, λf. f [ ] 〈1, λx. x

int= 0〉, λf. f [ ] 〈tt, λx.¬x〉) ∈ RV Jσ → 1K ∅.
Note that we already have ` e′ : σ → 1.

Consider arbitrary j, v, and v′ such that

• j < k, and

• (j, v, v′) ∈ RV JσK ∅
≡ (j, v, v′) ∈ RV J∀α. (α× (α → bool)) → 1K ∅.

Note that ` v′ : σ, which follows from Lemma C.7 applied to (j, v, v′) ∈ RV JσK ∅.
Also, note that v = Λ. e1 and v′ = Λ. e′1, which follows from (j, v, v′) ∈ RV J∀α. . . .K ∅.
We are required to show that
(j, (f [ ] 〈1, λx. x

int= 0〉)[v/f ], (f [ ] 〈tt, λx.¬x〉)[v′/f ]) ∈ RC J1K ∅
≡ (j, (v [ ]) 〈1, λx. x

int= 0〉, (v′ [ ]) 〈tt, λx.¬x〉) ∈ RC J1K ∅
≡ (j, (Λ. e1 [ ]) 〈1, λx. x

int= 0〉, (Λ. e′1 [ ]) 〈tt, λx.¬x〉) ∈ RC J1K ∅.
Consider arbitrary j1 and ef1 such that

• j1 < j,

• ((Λ. e1 [ ]) 〈1, λx. x
int= 0〉) 7−→j1 ef1 , and

• irred(ef1).

By the operational semantics, it follows that

((Λ. e1 [ ]) 〈1, λx. x
int= 0〉) 7−→1 (e1 〈1, λx. x

int= 0〉)
7−→j1−1 ef1

Hence, by the operational semantics, it follows that there must exist j11 and ef11 such that

• e1 7−→j11 ef11 ,

• irred(ef11), and

• j11 ≤ j1 − 1.
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Let χ0 = {(k′, 1, tt) | k′ ≥ 0}.
Take τ2 = bool and χ = (χ0)∗bool.

Instantiate the second conjunct of (j, Λ. e1,Λ. e′1) ∈ RV J∀α. (α× (α → bool)) → 1K ∅ with χ and τ2.

Note that χ ∈ Relbool, which follows from the definition of χ0 and (χ0)∗bool.

Hence, we have ∀i < j. (i, e1, e
′
1) ∈ RC J(α× (α → bool)) → 1K ∅[α 7→ (χ, bool)].

Instantiate this with j1 noting that j1 < j.

Hence, we have (j1, e1, e
′
1) ∈ RC J(α× (α → bool)) → 1K ∅[α 7→ (χ, bool)].

Instantiate this with j11 and ef11 . Note that

• j11 < j1, which follows from j11 ≤ j1 − 1,

• e1 7−→j11 ef11 , and

• irred(ef11).

Hence, there exists e′f11
such that

• e′1 7−→∗ e′f11
and

• (j1 − j11, ef11 , e
′
f11

) ∈ RV J(α× (α → bool)) → 1K ∅[α 7→ (χ, bool)].

Hence, ef11 = λz. e2 and e′f11
= λz. e′2.

Then, by the operational semantics it follows that

((Λ. e1 [ ]) 〈1, λx. x
int= 0〉) 7−→1 (e1 〈1, λx. x

int= 0〉)
7−→j11 (ef11 〈1, λx. x

int= 0〉)
≡ (λz. e2 〈1, λx. x

int= 0〉)
7−→1 (e2[〈1, λx. x

int= 0〉/z])
7−→j12 ef1

Note that j1 = 1 + j11 + 1 + j12.

Let vz = 〈1, λx. x
int= 0〉.

Let v′z = 〈tt, λx.¬x〉.
Instantiate (j1 − j11, λz. e2, λz. e′2) ∈ RV J(α× (α → bool)) → 1K ∅[α 7→ (χ, bool)] with j12 + 1, vz, and
v′z. Note that

• j12 + 1 < j1 − j11, which follows from j12 = j1 − 1− j11 − 1, and

• (j12 + 1, vz, v
′
z) ∈ RV Jα× (α → bool)K ∅[α 7→ (χ, bool)]

≡ (j12 + 1, 〈1, λx. x
int= 0〉, 〈tt, λx.¬x〉) ∈ RV Jα× (α → bool)K ∅[α 7→ (χ, bool)],

which follows from

• ` 〈tt, λx.¬x〉 : (α× (α → bool))[bool/α]
≡ ` 〈tt, λx.¬x〉 : bool× (bool → bool), which follows from the static semantics.

• (j12 + 1, 1, tt) ∈ RV JαK ∅[α 7→ (χ, bool)]
≡ (j12 + 1, 1, tt) ∈ χ (by the definition of RV JαK ρ)
which follows from (j12 + 1, 1, tt) ∈ χ0 and χ0 ⊆ χ, which follows from our choice of χ.
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• (j12 +1, λx. x
int= 0, λx.¬x) ∈ RV Jα → boolK ∅[α 7→ (χ, bool)], which we conclude as follows:

First, note that ` λx.¬x : (α → bool)[bool/α] ≡ ` λx.¬x : bool → bool, which follows
easily from the static semantics.

Next, consider arbitrary i, v1, and v′1 such that

• i < j12 + 1, and

• (i, v1, v
′
1) ∈ RV JαK ∅[α 7→ (χ, bool)].

Note that RV JαK ∅[α 7→ (χ, bool)] ≡ χ by definition of RV JαK ρ.

Hence, (i, v1, v
′
1) ∈ χ.

Then, it must be that v1 = 1, which follows from the definition of χ.

Furthermore, it must be that v′1 = tt, which we conclude from the definition of χ as follows:
By the definition of χ, note that either

• v′1 = tt, or

• v′1 = v for some v such that tt ≺ciu v : bool. Since ≺ciu ≡≤ (by Lemmas C.46, E.4,
and E.5), it follows that tt ≤ v : bool. Hence, from the definiton of ≤ and RV JboolK,
it follows that v = tt.

We are required to show that

(i, (x int= 0)[v1/x], (¬x)[v′1/x]) ∈ RC JboolK ∅[α 7→ (χ, bool)]
≡ (i, v1

int= 0,¬v′1) ∈ RC JboolK ∅[α 7→ (χ, bool)]
≡ (i, 1 int= 0,¬tt) ∈ RC JboolK ∅[α 7→ (χ, bool)]

Note that (1 int= 0) 7−→1 ff and (¬tt) 7−→∗ ff.

Hence, it remains for us to show that (i− 1, ff, ff) ∈ RV JboolK ∅[α 7→ (χ, bool)], which is
immediate.

Hence, (j12 + 1, e2[vz/z], e′2[v
′
z/z]) ∈ RC J1K ∅[α 7→ (χ, bool)].

Instantiate this with j12 and ef1 . Note that

• j12 < j12 + 1,

• e2[vz/z] 7−→j12 ef1 , and

• irred(ef1).

Hence, there exists e′f1
such that

• e′2[v
′
z/z] 7−→∗ e′f1

, and

• (j12 + 1− j12, ef1 , e
′
f1

) ∈ RV J1K ∅[α 7→ (χ, bool)]
≡ (1, ef1 , e

′
f1

) ∈ RV J1K ∅[α 7→ (χ, bool)].
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Hence, ef1 = 〈 〉 and e′f1
= 〈 〉.

Hence, by the operational semantics we have

((Λ. e′1 [ ]) 〈tt, λx.¬x〉) 7−→1 (e′1 〈tt, λx.¬x〉)
7−→∗ (e′f11

〈tt, λx.¬x〉)
≡ (λz. e′2 〈tt, λx.¬x〉)
7−→1 (e′2[〈tt, λx.¬x〉/z])
7−→∗ e′f1

Take e′f1
= e′f1

≡ 〈 〉. We are required to show

• (Λ. e′1 [ ]) 〈tt, λx.¬x〉 7−→∗ e′f1
,

which follows from above, and

• (j − j1, ef1 , e
′
f1

) ∈ RV J1K ∅,
which follows from ef1 = e′f1

= 〈 〉.

II. Show •; • ` e′ ≤ e : τ .

The proof is analogous to that of (I).
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