
— From the sacred (Chrome/Flash bugs) to the profane (Environmental
Bisimulations).

e Sumii-Pierce POPL'05 work led, in part, to Derek's interest in
logical relations. Derek recommends it. It introduces things well,
even if the technique is a bit dated.

Back to Definition 6 in the 2009 paper. How do we justify the claim
that the reasoning with these environmental bisimulations is in the
same style as the reasoning in our KLRs? ink of X as a state space.
ink of (Δ,R,s,s')∈X as defining a state. e only heaps related in
this state are s and s'. In that state, R says what values are related
at what types. (Every element of R comprises two values and a type.)
What is the transition relation between the states? It's basically
baked in as the subset relation on R. If you're in a state (Δ,R,s,s'),
you can transition to any other state (Δ',R',s₁,s'₁) where R' ⊇ R. You
can see this in the Evaluation relation (Defintiion 6, 1b). is gives
you one way to define a big transition relation. e only place this
story is wrien down is the Hur-Dreyer POPL'12 paper. (e whole idea
of thinking about KLRs as working over STS' in worlds had not been
developed.)

What are the limitations, compared to KLRs? You can only encode public
transitions, since the encoding of transitions is in terms of R
geing bigger. us, the approach is fairly limited in terms of the
kinds of transition systems you can encode. It works perfectly fine
for the examples from the POPL'09 paper (Derek coauthor) but falls
down with examples that require private transitions or other features.

Aside: ere was an interesting, intermediate piece of work on
step-indexed bisimulations. Basically, served as a stepping-stone from
Sumii-Pierce (limited in its ability to reason about higher-order
functions) to the work on parametric bisimulations. Reference:

Koustavas, Wand.
Small bisimulations for reasoning about higher-order
imperative programs.
POPL'06.

e paper is worth reading. It has some good examples. It makes the
work on parametric bisimulations look simple.

— Parametric Bisimulations

Hur, Dreyer, Neis, Vafeiadis.



e Marriage of Bisimulations and Kripke Logical Relations.
POPL'12.

One way to understand this work is the proof obligation for functions
in bisimulation approaches (page 3, (5)):

If (τ' → τ,v₁,v₂) ∈ L,
then ∃x,e₁,e₂. v_i=λx.e_i
and ∀v'₁,v'₂. (τ',v'₁,v'₂) ∈ [G] ⇒ (τ,e₁[v'₁/x],e₂[v'₂/x]) ∈ L.

e question: What is this [G] from which you draw the arguments?
In Sumii's 2009 work, the arguments came from (Δ,R)∗, basically
the context closure of the “current state”.
at approach is /very/ syntactic. It requires you know that the syntax
in boht languages is the same so you can close over contexts.
What other approaches can there be?

— Normal-form Bisimulations

ere's another approach. It's called normal-form bisimulations (or
open bisimulations). e basic idea: Instead of trying to come up with
a set of values representing the related arguments, you instead just
pick a new variable x represening this unknown thing. Instead of
substitutiong [v'₁/x] and [v'₂/x], we just start reasoning about open
terms. When you actually try to use x (for example if it's a function
that you apply), you'll get stuck.

Citation: Støvring and Lassen. POPL'07.
Beer (e original paper): Lassen. Eager normal form bisimulations. 2005.

See §3 in Lassen'05. Look at (enf.4). To deal with λs, you assume they
have the same variables and you relate the (open) bodies. In (enf.2),
we have a call to a function x in evaluation position. e proof
obligation is basically that E and E' are related continuations.

Instead of trying to actually model what related things are at a point
where you're trying to quantify over some values you're given, you
just pick a fresh name and keep going. is works fine in the case
where the thing you're being given is a function. e only thing you
can do with a function is call them. When you call a function, you
have the obligation to pass related arguments and related
continuations. So this seems like a nice idea. ere were several
aempts (eg, Støvring-Lassen, POPL'07) to extend the approach. It
gets rather complicated. As far as Derek can see, it was never
developed enough to deal with the kind of reasoning we can do with



recent KLRs.

— Back to Parametric Bisimulations

e goal was to develop something that wasn't tied fundamentally to syntax, is
simpler than work on bisimulations, and has the full power of recent KLRs.

Recall
If (τ' → τ,v₁,v₂) ∈ L,
then ∃x,e₁,e₂. v_i=λx.e_i
and ∀v'₁,v'₂. (τ',v'₁,v'₂) ∈ [G] ⇒ (τ,e₁[v'₁/x],e₂[v'₂/x]) ∈ L.

e trick in picking [G]: Don't!

Refer to Derek's POPL'12 slides, the slide on “Definition of
consistent(~L)”. We write ~L for local knowledge about what things are
equivalent. ere are two other relations to sort out: e relation
for values (~1) and the relation for terms (~2). You have to quantify
over values that are related by some larger equivalence (so you know
your ~L isn't simply wrong). Rather than pick a global equivalence ~G,
make ~G a parameter of the whole model. You make some assumptions
about ~G; for example ~G ⊇ ~L. But otherwise, ~G can relate anything.
e idea: If ~G relates some junk (4,true)∈~G, then you'll get stuck
but that's OK so long as the arguments and continuations are related
(following work on open bisimulations). You're calling “functions”
that are related by ~G: It's not your fault you got stuck, it's the
environment's fault. (It would be our fault if we passed the
environment 0 and 3 rather than related ints.) is motivates taking
~exp_G as ~2.

What is ~exp_G? It formalizes the idea that our terms should behave
equivalently “locally”. We now have three cases. Related terms both
diverge, both converge, or both get stuck calling some functions
(f₁,f₂) related by ~G. In this case, you pass control to the context,
get back some values r₁,r₂, assume they're related, then continue.
Recall that when we did proofs in our KLR models (eg, the Awkward
example), we reasoned in exactly this way.

So what's going on? We're encoding what our logical relations proofs
looked like. (Obviously the model looks different.) e structure of
the proofs is reflected in the definition of the bisimulation.

So why is this good? Since you formalize exactly how the proofs are
structured, it's easier to compose them transitively. is comes back



to the main limitation of the work on ML-Assembly. If you want to
reason about “vertical compositonality”, then you need to be able to
transitively compose equivalence proofs. When you have a
highly-constrained structure wherein you know that the code is
eventually going to call some unknown function, then the only way to
do the proof is to use the case where you get stuck calling some
function related by ~G. With KLRs, that's the only way Derek knows how
to handle such proofs but the model does not impose that proof
structure. ere may be a clever or brute-force proof. In this method,
the *only* way to prove such things is by using the “stuck” case of
the bisimulation. Since you constrain how the proof is structured, you
know the structure of the proof follows—in some sense—the structure of
the code. Because of that, it's possible to compose the proofs
transitively.

e paper handles modelling worlds, abstract types, etc. It's much
like what we've done with KLRs.

An example (Very Awkward): See §7.1 in the paper. To do a proof, you
define a world W that has some state space S.

When you prove the example using KLRs, you sort of reason at the
“instance” level. With this model, you reason at the “class” level.
You have to construct your worlds so that you can have any number of
copies. (Hence the Loc ⇀ XXX in the example.)

When you set up a proof, you specify the islands you're going to use
in your proof and you restrict yourself to worlds that only have those
islands. KLRs are, in a sense, more general than necessary. We define
the world space to include any possible island. But LR proofs extend
the world with a few kinds of islands (typically one), tailored to the
proof. What about the context? It could extend the world with other
kinds of islands. Well that's true, but if you're just trying to show
the relatedness of your two programs wrt contextual equivalence, then
you only need to handle the kinds of islands introduced by the
compatibility lemmas. (Recall that except for the ref type,
compatibility lemmas had no interaction with worlds/islands.) In this
technique, we worry only about the islands we care about plus “the ref
island”. ings were set up so you can prove if two equivalences were
estabilished using two different worlds, then you can join things
together.

is leads to a nice benefit: You can define your islands without
using step-indexing.



Incidentally, this intuition came to Derek from looking at some papers
on logics for storable locks (from the concurrency class a couple
years ago). ere's circularity in modelling such logics. ere were
different approaches to modelling these logics. One used
step-indexing. e other approach was to state up-front “these are the
kinds of assertions my proof cares about” and using that restricted
view to deal with the circularity.

Back to the Very Awkward example.
e line

w.L(s)(G)(τ) := { (v₁,v₂[ell/x]) | ell µo dom(s) }
corresponds to stating in state s, I claim these things are related.

e interesting part of the proof: Now that you've defined this world,
you have to show its consistent.

Limitations overcome since the model in POPL'12 (in a recent LICS
submission).

• See the paragraph “e Trouble with η-Equivalence”. It requires
introducing a notion of “stuering” into the bisimulation so that you
don't have to make progress immediately. You can not make progress on
one side so long as you only do so finite many times. at's
sufficient for η-expansion: Terms are finite so you only η-expand
finitely many times.

• Continuations and control operators.

— Reasoning compositionally about open terms

Open equivalences are problematic. Type systems simply don't express
enough information about free variables to be practically useful (for,
say, verification in a single language).

Suppose we want to prove A ≈ B. ey both are clients of some C. What
do I do? If C's type is too uninformative, it's not going to help; for
example

C:τ ⊢ A ≈ B
may not be provable. e equivalence may only be true because a
specific C provides some specific functionality. But we still want to
reason compositionally, without examining the implementation of C.

You could try



let C = CSpec in A ≈ let C = CSpec in B
where CSpec is some reference implementation of C; for example, a
simple implementation of a hash table. You could then try to show

CSpec ≈ CActual
and use contextual equivalence to obtain the goal

let C = CActual in A ≈ let C = CSpec in B.

at's the kind of reasoning you'd expect to be able to do with
contextual equivalence. Looks reasonable.

Two problems:
• You have to cough up the CSpec code. is is a basic limitation of
the technique. You might argue that CSpec should be specified in some
more abstract way (rather than by writing some code). Not a big deal.

• is approach assumes the code of the module that A depends on is
“owned” by A. It's let-bound. What if we have

let C = CActual in
let Foo = Whatever in
let A = Whatever' in
⋯

where all these guys depend on CActual. So the hash table module is
shared by all the clients, of which A is only one. en the approach
based on contextual equivalence falls down since it assumes A has
complete control over the module. (Real programs work this way.)

So the main idea is to move away from contextual equivalence and move
toward specifying the behavior you care about in some model/logic.
Each client would have a private view. In some sense, this is what
Neel's ICFP'12 paper (Superficially substructural types) was about.

Very interesting work: Merging this kind of reasoning with the kind of
relational reasoning we've been doing in this course.


