
Here's some history on the callback with lock example.

Leading up to the POPL'09 paper, Derek had been looking for a more
exicting example. He found a similar example in a paper on proving
representation indepedence for OO programs. (It's a rather more
complicated approach.) He tried to prove it using the POPL'09 model.
Being the first thing they had thought of, that model is more
complicated than the one they seled on for the JFP version of the
paper. e proof was ad hoc and relied heavily on abusing the
step-indices in the model to encode “windows of time” during which
things were true. It turns out the example should not have been
provable. It does not hold in the presence of higher-order state and
callcc together.

In the original paper, they hadn't dealt with callcc. ey did not
have ⊤⊤-closure. ey were able to prove the example in that model
only because they built the model wrong, basically.

At the same time, there are other examples that only hold in the
absence of callcc. Today we'll talk about the ICFP'10 paper. We'll
deal with a simpler example that the story so far cannot account for.

Jacob amsborg, one of Lars Birkedal's students, created the
following example and showed it to Derek. It has two names. e Very
Awkward Example and the Well-Bracketed State-Change Example.

Example (Very Awkward):
τ = (1 → 1) → int
v₁ = λf.(f(); f(); 1)
e₂ = let x = ref 0 in

λf.(x := 0; f(); x := 1; f(); !x)

With just exceptions, these are inequivalent. Our f can, the second
time it's called, invokes the whole mess again with a second f' that,
as soon as its called, throws an exn to f which terminates with x ↪ 0.
(You can find the distinguishing context in the paper.)

Suppose we have no callcc with higher-order state and no exceptions.
Are these, intuitively, equivalent? is example boils down to what
are called well-brackeded computations. Intuitively, when you call f
the second time, it may cause x to go temporarily to zero but it will
go back to one eventually. Every set to zero is followed by a set to
one.



It's a nice example because such well-bracketed reasoning is not
captured by the transition systems we've been using. One way to
understand this example. ere are two roles in the transition system.
We have control over the data structure. We can make the transition
from one back to zero. at should be OK. But when we call this
function f—coming to us from the context—should not be able to move
from one to zero. Internally, sure, but its externally observable
behavior is that f stays where we leave it. e mechanism to handle
this example is to distinguish between transitions that can be made
internally to a computation and all transitions: Private vs public
transitions. Public transitions are a subset of private transitions.

Our STS looks like

x↪0 → x↪1

with a private transition going the other way and the necessary
(public) self transitions. (Derek draws private transitions with
dashed arrows.)

We have to prove that the computation
x := 0; f(); x := 1; f(); !x

makes a public transition. Internally, it can make private moves. We
limit the callback f—the context—to making only public transitions.
is kind of reasoning has a certain rely-guarantee flavor. You show
that your computation makes a public move but you may assume that
other computations that may interfere with you make only public moves.

As another example, here's the transition system for the callback with
lock example. Recall:

τ = ((1 → 1) → 1) × (1 → int)
e₁ = C[f(); x := !x + 1]
e₂ = C[let n = !x in f(); x := n + 1]
C = let b = ref true in let x = ref 0 in

<λf.if !b then (b := false; •; b := true) else (),
 λ_.!x>.

e transition system has

• Countably many Unlocked States with public transitions between them:

(b↪true,x↪0) →
(b↪true,x↪1) →



(b↪true,x↪2) →
⋯

• Countably many locked states:

(b↪false,x↪0)
(b↪false,x↪1)
⋯

• Private (or public) transitions from (b↪true,x↪n) to (b↪false,x↪n)
for every n∈ℕ.

• Private transitions from (b↪false,x↪n) to (b↪true,x↪n+1) for every
n∈ℕ.

— HW

For HW: Come up with a variant of the callback with lock example that
requires the full transition system and cannot be proven with the
simpler STS

(b↪true,x↪_) (b↪false,x↪n)

with two private transitions: One labelled n going from le to right
and one unlablled going from right to le.

—

We'll now formalize these private/public transitions.
[Derek threw up the model in his JFP paper.]

• In an island, we now have two STS rather than one. e public one is
a subset of the private one.

• We use the private STS in V[τ]ρ, quantifying over arbitrary future worlds.

• We use the public STS in K[τ]ρ, quantifying over public future worlds.

It makes sense for the continuation relation to be monotone wrt public
future worlds. (e best way to see this is to work out, say, the proof
of Very Awkward.)

Why don't these example work with callcc? e problem is very simple.
Values have a stronger monotonicity condition than continuations. With



callcc, you throw continuations into the value language. You can take
any continuation and view it as a value that can be passed around.
is forces you to merge public and private transitions: Any
monotonicity property that must hold for values must hold for
continuations as well, once continuations become first-class.

— Other things in the paper

Inconsistent states and their motivating example: We may return to
this later. e thing that's interesting about this example is there
are calls to some f in related places. e functions you're passing f
are clearly not equal. e example is tied to a particular property of
divergence. In an inconsistent state, the two programs are
inconsistent. One has terminated and the other has diverged. If you've
reached such a state, you know you'll be able to prove a contradiction
later in the proof. (e program on the le will not terminate, but
you've assumed it will terminate.) See the paper for details.

Backtracking. is permits you to deal with, say, the callback with
lock example in the presence of first-order state and continuations.
We have to do away with the private transitions, but we can use
backtracking to behave as if we still had them. (e problem isn't
first-order vs higher-order state. e problem: e HOS model uses
world-indexed heap relations.)

Exceptions. Unlike continuations, exns do not prevent you from using
private transitions. Exceptions cannot just return to your earlier
scope. See p.30 in the paper.


