
Last time, we gave a model for first-order state based on Pis and
Stark.

— Metatheory

Let's work through the proof of the bind lemma. If we can prove it,
then the proofs of the compatiblity lemmas from before will almost
always “carry over” with lile work. We'll then turn to adequacy, the
example we looked at last week, and an example that proved “awkward”
for such models.

Lemma (Closed bind lemma):
If (W,e₁,e₂) ∈ E[τ]ρ,
and (∀v₁,v₂. ∀W' ⊒ W. (W',v₁,v₂) ∈ V[τ]ρ ⇒ (W,K₁[v₁],K₂[v₂]) ∈ E[τ']ρ')
then ((W,K₁[e₁],K₂[e₂]) ∈ E[τ']ρ'.

Proof:
Suppose (W,K'₁,K'₂) ∈ K[τ']ρ'.
TS: (W,K'₁[K₁[e₁]], K'₂[K₂[e₂]]) ∈ O.

By the first assumption,
STS: (W',K'₁[K₁],K'₁[K₂]) ∈ K[τ]ρ

(Note: K'₁[K₁] composes the two contexts, preserving
K₁'s hole.)

Suppose W' ⊒ W. (W',v₁,v₂) ∈ V[τ]ρ.
(1) STS: (W',K'₁[K₁[v₁]],K'₂[K₂[v₂]]) ∈ O.

By the second hypothesis,
WK: (W',K₁[v₂],K₂[v₂]) ∈ E[τ']ρ'.

To conclude, we need to know that K'₁, K'₂ are related at W'
by the definition of E[τ']ρ'. We know they are related at W.
By montonicity of the K[–] relation,
WK: (W,K'₁,K'₂) ∈ K[τ']ρ'
⇒ (1).

Q.E.D.

We never opened the definition of O. at's reasonable. e proof
shouldn't have to talk about heaps in any interesting way. Semantics
should be compositional. e sequencing of different effectful
operations does not itself care about the heaps. We've isolated
operations that effect the heaps in this O thing. (We've glossed over
compatibility cases involving pure operations. In the pure operations,



you do have to expand the O because you have something to show in
those cases. But even then, you expand the O only in a boring way. You
want to know, for example, that if two terms are related by O and they
take some steps of expansion, then the terms are still related by O.
To show that, you quantify over heaps that are related by the world,
and show aer expansion that the so-obtained heaps satisfy the same
world.)

Lemma (Compatibility for allocation):
Δ; Γ ⊢ e₁ ≈ e₂ : int
—
Δ; Γ ⊢ ref e₁ ≈ ref e₂ : ref

Proof:
By the bind lemma for open terms, this reduces to the
following.

Q.E.D.

Lemma:
If (W,v₁,v₂) ∈ V[int],
then (W,ref v₁,ref v₂) ∈ E[re].

Proof:
Suppose (W,K₁,K₂) ∈ K[re].
TS: (W,K₁[ref v₁],K₂[ref v₂]) ∈ O.

Suppose (h₁,h₂) : W.
TS: h₁;K₁[ref v₁] ↓↓W.j h₂;K₂[ref v₂].

Let ell₁ ∉ dom(h₁) and ell₂ ∉ dom(h₂).
STS: h₁,ell₁↦v₁;K₁[ell₁] ↓↓(W.j-1) h₂,ell₂↦v₂;K₂[ell₂].
(Aside, we could prove this for W.j steps.
In this particular proof, we don't need the stronger
result.)

Define W' = ▷W++{ (ell₁↦n,ell₂↦n) | n ∈ ℤ }.
(Read ++ as extended with. We bumped step indices
with ▷W to be consistent. We could have proved
the stronger result.)
TS: W' ⊒ W ∧ (h₁,ell₁↦v₁,h₂,ell₂↦v₂) : W'
⇒(Monotonicity)

(W',K₁,K₂) ∈ K[re] ∧ (h₁,ell₁↦v₁,h₂,ell₂↦v₂) : W'
⇒ (W',K₁[ell₁],K₂[ell₂]) ∈ O.
STS: (W',ell₁,ell₂) ∈ V[re].

is is true since we added an island of the right form



to W to obtain W'.
Q.E.D.

Remarks:
• General procedure: For some world (with the right step index), show
the heaps satisfy the world, show the continuations are related in the
world, and show the values are related in the world.

• Regarding our not using the stronger step indices W.j and our using
world W vs ▷W in the previous proof: In step-indexing with first-order
state you do not have to count all of the steps. Steps do maer for
recursion in that seing. With higher-order state that will change.

HW: Prove compatibility for ! and :=.

— Adequacy

Lemma (Adequacy):
If ⊢ e₁ ≈ e₂ : τ,
then ∅;e₁ ↓↓ ∅;e₂.

(Aside: We could allow for arbitrary starting heaps. is is
simpler.)

Proof:
We know e₁,e₂ are related in any world. We want to pick a
world W such that the empty heaps satisfy W. (We'll pick the
world with no islands.)

Let n∈ℕ. Set W₀ := (n,∅).

By assumption, ∀n. (W₀,e₁,e₂) ∈ E[τ].
WK: ∅,∅ : W₀.
TS: (W₀,•,•) ∈ K[τ] (very easy)
⇒ ∅;e₁ ↓↓n ∅;e₂.

We've shown co-termination for arbitrary n.
us ∅;e₁ ↓↓ ∅;e₂.

Q.E.D.

— Example

Recall our motivating example:

If



τ = (1 → 1) × (1 → int)
e₁ = let x = ref 0 in (λ_.x := !x + 1, λ_.!x)
e₂ = let x = ref 0 in (λ_.x := !x - 1, λ_.0 - !x),

then
⊢ e₁ ≈ e₂ : τ.

Proof:
TS: ∀W. (W,e₁,e₂) ∈ E[τ].
Suppose (W,K₁,K₂) ∈ K[τ] and h₁,h₁ : W.
TS: h₁;K₁[e₁] ↓↓W.j h₂;K₂[e₂].

Let's execute e₁ and e₂.
STS: ∀l₁∉dom(h₁), l₂∉dom(h₂).

h₁,l₁↦0; K₁[v₁] ↓↓W.j h₂,l₂↦0; K₂[v₂]
where

v₁ = <λ_.ell₁ := !ell₁ + 1, λ_.!ell₁>
v₂ = <λ_.ell₁ := !ell₁ - 1, λ_.0 - !ell₁>.

Define W' = W++(“a new island with invariant
{ (ell₁↦n,ell₂↦-n) | n ∈ ℕ }”).

We can show
(h₁,l₁↦0), (h₂,l₂↦0) : W'.

Like before, we le the separation making h₁,h₂ : W alone and
just added a new island.
By monotonicity, we know (W',K₁,K₂) ∈ K[τ].
STS: (W',v₁,v₂) ∈ V[τ].

Aside: Notice we didn't do anything interesting with
K₁, K₂ at all. e reason is in this language, we have
a property of the operational semantics, sometimes
called a “uniform reduction semantics”. e behavior
of terms is independent of the evaluation contexts you
put them in. (If e₁ ↦∗ e₂, then K[e₁] ↦∗ K[e₂].) In
proving this thing, we only needed to reason about
these local reduction steps. It didn't maer what K₁
and K₂ were at all. Because of that, we can define e
Pis and Stark “principle of local invariants”. at
gives us a way of writing this proof without ever
mentioning K₁ and K₂. See Pis and Stark, Proposition
5.1 (page 32). is idea only works with languages
with a uniform reduction semantics. It wouldn't work
with continuations, for example.

STS: (W',λ_.ell₁ := !ell₁ + 1,λ_.ell₁ := !ell₁ - 1) ∈ V[1→1] ∧



(W',λ_.!ell₁,λ_.0 - !ell₁) ∈ V[1→int].

For the first conjunct, let W'' ⊒ W'. (We'll reuse some variables.)
TS: (W'',ell₁ := !ell₁ + 1,ell₁ := !ell₁ - 1) ∈ E[1].
Suppose (W'',K₁,K₂) ∈ K[1] and h₁,h₂ : W''.
TS: h₁;K₁[ell₁ := !ell₁ + 1] ↓↓W''.j h₂;K₂[ell₁ := !ell₁ - 1]

Since h₁ and h₂ satisfy an extension of our world, we can
paern match, picking out our island.
We've preserved the invariant we set up: We can change the
piece of the heaps concerning our island.

WK: ∃n,h'₁,h'₂.
h₁ = [ell₁↦n] ⊎ h'₁ ∧ h₂ = [ell₂↦n] ⊎ h'₂ ∧
∀n'. [ell₁↦n'] ⊎ h'₁ ∧ h₂ = [ell₂↦n'] ⊎ h'₂ : W''.

STS: h₁[ell₁ := n+1];K₁[()] ↓↓W''.j h₂[ell₂ := -n-1];K₂[()].
WK h₁[ell₁ := n+1],h₂[ell₂ := -n-1] : W'' ∧

(W'',K₁,K₂) ∈ K[1] ∧
(W'',(),()) ∈ V[1].

e proof for the second conjunct is similar.
Q.E.D.

— Motiving example for transitional invariants

Here's the simplest example not easily handled by our fixed
invariants.

Example (Awkard (Pis and Stark)):
τ = (1→1) → int
v₁ =  λf.(f(); 1)
e₂ = let x = ref 0 in λf.(x := 1; f(); !x).

Our notion of invariant is too weak. e idea here is that once we set
x to 1, we'll never change it back. us v₁ and e₂ are equivalent. We
can't express an invariant satisfied by x starting out 0 and later
becoming 1 (and staying 1).

What we want to do is say there are two states this module can be in.
In the initial state, x points to zero. In the second state, x points
to one. e x points to zero state is initial. e x points to one
state, final. ere's one transition:



x↪0 → x↪1

We can then reason about Awkward. We set up an island with such a
transitional invariant. Before calling f, we know we're in the x↪1
state. We know that no context can move back to the x↪0 state.


