
For the rest of the course, we'll use logical relations to reason
about mutable state. Many of the techniques we've developed so far
will scale up naturally. We'll also need so-called Kripke logical
relations. e idea is to index the logical relation by a possible
world used to encode invariants on local state. /Local state/ is some
piece of mutable state that's kept private to a module (so that the
module can impose some invariants on it).

ere are two dimensions that lead to different, interesting
approaches.

• What kind of state are we talking about?

We'll start today with simple, first-order state. at means refs only
to values of base type. For simplicity, we'll use refs to integers.

Higher-order state means you can have references to values of
arbitrary types. It's more complicated to model for reasons that are
similar to the reason that general recursive types were more difficult
to model than restricted recursive types: Naive aempts hit
circularity. (e circularity comes up in the definition of possible
worlds, rather than directly in the definition of the logical
relation.)

Aside: First-order vs higher-order does not just determine how you
technically set up the model. You end up with different in reasoning
principles.

• What kind of invariants? We'll start model that allows you to
establish a fixed invariant about local state (Pis and Stark, 1998).
We'll get to so-called transitional invariants (Ahmed-Dreyer-Rossberg,
2009). You allow the invariants over state to change over time in a
structured way.

ese dimensions are orthogonal. While ADR'09 addressed both
higher-order state and transitional invariants, we'll cover them one
at a time. e structure of the next several lectures:

1. First-order state with simple invariants.
2. Transitional invariants.
3. Higher-order state.
4. Even richer forms of transitional invariants.
(Probably based on Dreyer, Neis, Birkedal 2010).

e invariants we'll cover in (4), unlike those in (2), sometimes come
with restrictions; for example, some only work in the absense of
continuations.

— Mutable state

Let's start by extending the language we've worked with so far with
first-order mutable state.

Syntax:
τ ::= ⋯ | ref
e ::= ⋯ | ref e | !e | e₁ := e₂ | ell
v ::= ⋯ | ell
K ::= ⋯ | ref K | !K | K := e | v := K

We've a base type: References to integers, the obvious ML-style
expressions, and pointer values as expressions. We assume base types
int and 1 (with suitable constants). We've seen these before.

Statics:

Δ; Γ ⊢ e : int
—
Δ; Γ ⊢ ref e : ref

Δ; Γ ⊢ e : ref
—
Δ; Γ ⊢ !e : int

Δ; Γ ⊢ e₁ : ref
Δ; Γ ⊢ e₂ : int
—
Δ; Γ ⊢ (e₁ := e₂) : 1

What about ell? A typical way to prove soundness is to extend the
typing judgements with

Σ ::= ∅ | Σ, ell
and track allocated locations. ese Σ's just get propogated through,
without interacting with everything, except we might add a rule

ell ∈ Σ
—

Σ; Δ; Γ ⊢ ell : ref

e point of such a rule: We only refer to ell's that have been
allocated. It's useful when you try to prove preservation.

We're not going to take this approach for the simple reason that we're
going to build an untyped model. So instead, we have no typing rule
for locations.

is means ell's may only come up dynamically. You cannot write a
well-typed program with free locations.

Dynamics:

We change the judgements we had before, adding heaps (and
tweaking the arrows so things remain readable going forward).

Heaps h ::= ∅ | h, ell↦v

Judgement h; e ↪ h'; e'

All of the rules from before carry over to the new
judgement.

ell ∉ dom(h)
—
h; K[ref v] ↪ h,ell↦v; K[ell]

—
h,ell↦v; K[!ell] ↪ h,ell↦v; K[v]

—
h,ell↦_; K[ell := v] ↪ h,ell↦v; K[()]

— An example: Reasoning about local state

Aside: Pis and Stark offer several more interesting examples. We'll
get to even more interesting examples when we discuss more recent
papers.

is example is somewhat like an example we saw in the pure seing
when we worked with existentials. (Aside: Generally, we can hide state

using type abstraction or, imperatively, with local state. More on
this point later.)

ink of a counter object with two methods: Increment the counter and
get its current value.

τ = (1 → 1) × (1 → int)
e₁ = let x = ref 0 in (λ_.x := !x + 1, λ_.!x)
e₂ = let x = ref 0 in (λ_.x := !x - 1, λ_.0 - !x).

Aside: We can encode let:
let x = e₁ in e₂ = (λx.e₁)e₂.

We'd like to prove e₁ ≡ e₂ : τ. Intuitively, it makes sense. We can
impose a relational invariant on the local pieces of the heap owned by
the e_i:

Whenever x is n for e₁, then it's -n for e₂.

Fuzzy foreshadowing:
Pretend we've run these programs, allocating ell₁ for x in e₁
and ell₂ for x in e₂. en the island we want looks like

{ ([ell₁↦n],[ell₂↦-n]) | n ∈ ℤ }.
where the notation [ell₁↦n₁,⋯,ell_k↦n_k] means
the heap ∅,ell₁↦n₁,⋯,ell_k↦n_k.

Aside from Dave: Such islands can represent “one-sided” heap
invariants; for example,

{ (∅, [ell↦n]) | n ∈ ℕ }
relates the empty heap on the le to all heaps h satisfying
dom(h) = { ell } and h(ell) ≥ 0 on the right.

Here, the thing that's abstract is the invariant on the local state.
It doesn't show up in the types at all. (e same kind of reasoning
that showed up with our existential examples will come up.)

e kinds of reasoning you can do with local state is much richer than
the kinds of reasoning you can do with abstract types. ere's a lot
of interesting stuff going on in the semantics of state that isn't
reflected in the simple type system for existentials. e type system
has fixed, abstract types. For each abstract type, you pick a fixed
relation. at gives you a fixed invariant. Particularly interesting
(and the motivation for the POPL'09 paper) is when you combine
invariants on local state with invariants on abstract types.

— Kripke logical relations

e idea is to formalize the notion of “invariants on local state”
using a “possible world” W. A possible world encodes all of the
invariants on the local state of the terms that we're reasoning about.

We'll end up with something of the form

(W,e₁,e₂) ∈ E[τ]ρ

Meaning e₁ and e₂ are related under world W. Unlike the past, we no
longer know the e₁ and e₂ behave the same under any possible
assumptions. What we know is that under invariants about heaps (that
show up as e₁ and e₂ run) encoded in W, e₁ and e₂ behave equivalently.

Diverging from Pis and Stark, we'll retain our step indices.
Moreover, a world W will be a tuple of “islands” where an island is
just a relation on heaps govering its own piece of the “whole” heap.
(What Pis and Stark do amounts to having a single island.)

Some useful sets:

Island = Sub(Heap × Heap)
(An island ι ∈ Island is a relation on heaps.)

World = { W = (j,ω) | j ∈ ℕ ∧ ∃n. ω ∈ Islandⁿ }
(A world W ∈ World comprises a step index and
a tuple of islands.)

Where Islandⁿ is just an n-tuple of islands. Each island in the tuple
will provide invariants for a different “module” or piece of local
state. In our proofs, we'll start with some unkown world W and, as
needed, extend the world with a new island governing “our” local
state. It'll be like width extension in record subtyping. at this
lets you hold on to your invariants will become clear when we define
the future world relation.

World extension: We define W' ⊒ W (read W' extends W).

W' ⊒ W if W' = (j',ω') ∧ W = (j,w) ∧ j' ≤ j ∧
ω' ∈ Island^{n'} ∧ ω ∈ Island^{n} ∧ n' ≥ n ∧
∀i∈1..n. ω'.i = ω.i

ink of W' as the future and W as the past. We used ω.i to denote the

ith island in the tuple ω. e definition ensures that the
step-indices make sense and ω is a prefix of ω'.

Future world operator: We also define a future world operator that
we'll only ever apply when we know the current world isn't at
step-index zero:

▷W = (j-1,ω) if W = (j,w) ∧ j>0

Note ▷W is undefined when W.j = 0.

Aside: Pis and Stark do not use such syntactic islands. ey use a
separating conjunction to achieve the same effect. In more expressive
models, their approach may be more flexible than what we're doing, but
Derek hasn't had that come up to date.

World satisfaction: We use these worlds to impose invariants. We want
to know when two heaps satisfy these invariants. Read h₁,h₂ : W as “h₁
and h₂ satisfy W”.

h₁,h₂ : W if
W = (j,ω) ∧ ω ∈ Islandⁿ ∧
∀i∈{1,2}. ∃h¹_i, ⋯, hⁿ_i.

(h_i = h¹_i ⊎ ⋯ ⊎ hⁿ_i ∧
∀k∈1..n. (h₁^k, h₂^k) ∈ ω.k).

Monotonicity: Our earlier notion of montonicity wrt downward closure
generalizes to world extension. A key property we'll ensure is
montonicity of the value relation with respect to world extension.
(Aside: We'll continue to use this phrase world extension later on
when it stops being, in some sense, the right phrase.)

Monotonicity:
If (W,v₁,v₂) ∈ V[τ]ρ,
then ∀W' ⊒ W. (W',v₁,v₂) ∈ V[τ]ρ.

Intuitively, we care about monotonicty so that we can add “other”
invariants on disjoint pieces of state without ruining our “current”
invariants. If I claim that two values are equivalent, I may give them
to you without knowing when you'll use them. My invariants have to
survive even if you impose your own invariants on your own local
state.

e value relation at function types:

V[σ→τ]ρ = { (W,λx.e₁,λx.e₂) | ∀W'⊒W.
(W',v₁,v₂) ∈ V[σ]ρ ⇒
(W',e₁[v₁/x],e₂[v₂/x]) ∈ E[τ]ρ }

e proof of congruence of the logical relation will ensure that
there's nothing some well-typed piece of code can do to ruin some
other module's local invariants.

e value relation at ref types:

V[re]ρ = { (W,ell₁,ell₂) | ∃i. W.ω.i =
{ ([ell₁↦n],[ell₂↦n]) | n ∈ ℤ } }.

Idea: Related references store the same value.

Aside from Dave: Islands impose invariants on heaps. Actual heaps come
into play via world satisfaction. So V[re] says W has an island
imposing an invariant that forces any heaps h₁,h₂ : W to satisfy
h₁(ell₁) = h₂(ell₂).

Aside: One can use semantic models like ours to prove safety of the
language. (Oen you don't need such fancy models for safety, but
sometimes you do.) With this kind of language, if we only wanted to
prove safety, we could restrict our islands to be of a specific form,
comprising the invariant we stick at the ref type: Related
references store the same value. at's the least we must do.

Aside: e language permits us to impose more invariants using our
islands. Well-typed programs are guaranteed not to care about
invariants other than those on ref types.

Two locations are related when the world enforces the invariant that
they're related. We're not saying anything about what their contents
are. We don't know their contents. eir contents will show up in some
pair of heaps h₁ and h₂ satisfying W. We'll know, by the invariant,
that the contents of ell₁ and ell₂ in h₁ and h₂ are the same integer.

e invariant we impose in V[re] are precisely those we need to prove
compatibility at ref type.

ere are many different ways of handling this type.

estion: Why focus on singleton heaps?

Answer: Good question. It depends on how much you want to
prove about ref types. Ref types are actually quite poorly
behaved. ere are many very subtle equivalences involving ref
types that are not robust under mild changes to the language.
(Maybe not so much with this language, but certainly in the
higher-order case.) ere are disgusting equivalences that
shouldn't hold but do because of an accident.

General references are a useful but somewhat unfortunate
compromise (when it comes to actually doing verification).
When you put ref types in the interface of (say) an ML module,
the module's clients can do things to them. e module can no
longer impose invariants on those values.

e point: ere are different ways to model the ref type. How
you model the ref type gives you different ways to reason
about equivalences. You can impose more and more subtle
invariants on the ref type that allow you to prove more
equivalences. Derek has come to the conclusion that you should
not worry about ML-style references as their properties with
respect to contextual equivalence aren't so hot.

e value realtion at other types is prey much what you expect.

e expression and continuation relations:

E[τ]ρ := { (W,e₁,e₂) | ∀K₁, K₂.
(W,K₁,K₂) ∈ K[τ]ρ ⇒
(W,K₁[e₁],K₂[e₂]) ∈ O }

K[τ]ρ := { (W,K₁,K₂) | ∀v₁,v₂. ∀W'⊒W.
(W',v₁,v₂) ∈ V[τ]ρ ⇒
(W',K₁[v₁],K₂[v₂]) ∈ O }

where O is a set of observations (we finally talk about heaps and
world satisfaction):

O = { (W,e₁,e₂) | ∀h₁,h₂ : W. h₁,e₁ ↓↓W.j h₂; e₂ }

where

h₁,e₁ ↓↓W.j h₂; e₂ if
(h₁;e₁↓ ∧ h₂;e₂↓) ∨

(h₁;e₁ ↪W.j ∧ h₁;e₂ ↪W.j)

is is a slick presentation of the double implication “If one of them
terminates in W.j steps, then the other one terminates (and
vice-versa).”. If one of them gets stuck in W.j steps, then they won't
be in O.

Open logical relation:

D[Δ] := { ρ ∈ Δ → Cand }
G[Γ]ρ := { (W,γ₁,γ₂) | ∀(x:τ) ∈ Γ. (W,γ₁x,γ₂x) ∈ V[τ]ρ }

Δ; Γ ⊢ e₁ ≈ e₂ : τ if
Δ; Γ ⊢ e₁ : τ ∧
Δ; Γ ⊢ e₂ : τ ∧
∀ρ∈D[Δ]. ∀(W,γ₁,γ₂)∈G[Γ]ρ. ∀δ₁,δ₂ : Δ → CTyp.
(W,δ₁γ₁e₁,δ₂γ₂e₂) ∈ E[τ]ρ.

Next time, we'll show some cases for soundness and move on to more
interesting worlds.

