
— Proving the Støvring and Lassen Example

Let's start with the Støvring and Lassen (2007) example from several
lectures ago. Recall:

τ := µα.¬int → α
φ₁ := fix f(x:τ):int. callcc(k.f((unfold x)k))
φ₂ := λy:τ.callcc(k.(fix f(x:τ):int. f((unfold x)k)) y).

Informally, φ₁ and φ₂ are similar, except that φ₁ grabs its
continuation each time around the loop. ese should be the same since
the continuation each time around the loop should be the same (it's a
tail recursive function).

Proposition: φ₁ ≡ φ₂ : τ → int.

We can prove this in the step-indexed, ⊤⊤-closed model.

Proof:
Let n∈ℕ.
TS: (n,φ₁,φ₂) ∈ V[τ→int].

Let j, v₁, v₂. Assume j≤n and (j,v₁,v₂) ∈ V[τ].
TS: (F₁,F₂) ∈ E[int]
where F₁ := callcc(k.f((unfold v₁)k))
and F₂ := callcc(k.(fix f(x:τ):int. f((unfold x)k)) v₂).

Let K₁, K₂. Assume (j,K₁,K₂) ∈ K[int].
TS: K₁[F₁] ↓↓j K₂[F₂].

Aside: You can think of these kinds of proofs as being
coinductive arguments (basically bisimulations) established by
induction on steps.

WK:
K₁[F₁] ↦∗ K₁[φ₁(unfold v₁)(cont K₁)] ∧
K₂[F₂] ↦∗ K₂[F_{K₂}(unfold v₂)(cont K₂)]

where F_{K₂} := fix f(x:τ):int. f((unfold x)(cont K₂)).

STS: K₁[φ₁(unfold v₁)(cont K₁)] ↓↓j
K₂[F_{K₂}(unfold v₂)(cont K₂)].

is is basically where we got stuck when we last tried to
prove this example.



is is our goal. Intuitively, it's our coinductive
hypothesis. So how do we prove it? On Dec 11th, we tried to
proceed without generalizing. Let's generalize over all values
w₁, w₂ in these contexts and over all step indices i≤j.

We'll prove the following lemma, instantiated with i := j and
w_i := v_i to complete this proof.

Q.E.D.

Lemma:
∀i≤j. (i,w₁,w₂) ∈ V[τ] ⇒

K₁[φ₁(unfold w₁)(cont K₁)] ↓↓i
K₂[F_{K₂}(unfold w₂)(cont K₂)].

Proof:
By induction on i.
Let i>0 and assume (i,w₁,w₂) ∈ V[τ].
WK: (i,unfold w₁,unfold w₂) ∈ E[¬int→τ].

By downward closure of K[],
WK: (i,cont K₁,cont K₂) ∈ V[¬int].

∴ (i,(unfold w₁)(cont K₁),(unfold w₂)(cont K₂)) ∈ E[τ].

STS: (i,K₁[φ₁ •],K₂[F_{K₂} •]) ∈ K[τ].

Let i' ≤ i, w'₁, w'₂. Assume (i',w'₁,w'₂) ∈ V[τ].
TS: K₁[φ₁ w'₁] ↓↓i' K₂[F_{K₂} w'₂].

WK:
† K₁[φ₁ w'₁] ↦+ K₁[φ₁((unfold w'₁)(cont K₁))]

K₂[F_{K₂} w'₂] ↦+ K₂[F_{K₂}(unfold w'₂)(cont K₂))].

It's important that the le-hand side takes a positive number
of steps.

By downward closure,
(i'-1,w'₁,w'₂) ∈ V[τ].

By the IH,
K₁[φ₁((unfold w'₁)(cont K₁))] ↓↓(i'-1)
K₂[F_{K₂}(unfold w'₂)(cont K₂))].

Since we took a positive numbe of steps in †, we have
K₁[φ₁ w'₁] ↓↓i' K₂[F_{K₂} w'₂].

Q.E.D.



ere's a clear logical structure to how you reason about these
things. It seems like you shouldn't need to fuss with the step
indices. All statements “internalize” the notion of step-wise
approximation.

estion from Deepak: Can we prove and then use a general fixed point
rule? We did a similar induction in our last proof.

Answer:
If you just have a rule for fixed points, then it only helps
proving terms related. In this example, it wouldn't help. Our
lemma worked with whole programs

— Logical step-indexed logical relations

[Aside from Dave: Derek threw up his paper. I couldn't really keep
up.]

e idea: In doing these logical relations proofs, Derek quickly got
bored. e step indices quickly got annoying and tedious. It seemed to
him that it couldn't possibly maer (most of the time) how many steps
you count.

e key ideas behind the paper:

• To use a relational logic for expressing parametricity proofs. at
idea was old (if uncovered so far in the class). See Plotkin and
Abadi's logic for parameteric polymorphism. e idea, basically, is
you can express proofs using parametricity in a clean, abstract way.
It's essentially a second-order logic with a primitve notion of typed
relations. e nice thing, then, is you can express as a logical
formula the statment saying when two things are related.

• Why do this? We want to hide the steps. But the steps pervade all
the reasoning. We have to li everything—most importantly, the
statement when two things are logically related—into the logic. What
is the logical way of accounting for these steps?

Two ideas: Appel and a bunch of other people (a very modal model of a
modern major type system) plus Abadi-Plotkin. Combining these ideas
seemed to be very useful for structuring step-indexed models. e
idea: A later modality. It gives you way of saying φ is true “one step
in the future”. is modality gives you a very easy way to express the
limited references to steps you actually need in your proofs.



Derek threw up the paper.

e paper's language is quite close to the one Amal used (for
comparison).

Figure 3 presents the syntax of the core logic.

ere is a lot of standard stuff.

Interesting: A primitive notion of relations.

∀X.P is just first-order quantification.

If we want things to be values, we have a predicate Val(e).

∀R.P is quantification over relations.

ere are constructors for building relations. Examples:
\bar{x}.P = (x₁,x₂).P := { (x₁,x₂) | P }.

e interesting new bit: recursive relations µr.R give you a
way to write down what it means to be logically related at
recursive type. ere are restrictions on what these things
can be. ey have to be /contractive/. Basically, the meaning
of R only depends on r one step later. Intuitively, r may only
appear in R under a later modality.

An interesting new bit: ▷P. is is true at step-level n if P
true at step-level n+1.

So the idea is we'll interpret the logic in Figure 3 over steps. e
meaning of a formula depends on a step-index. Basically, all
statements are step-indexed so you can hide most work with indices.

§3.2. On page 7, they give a model for the core logic.
We assume that all things are downward closed.
(Wrien as semantic truth values form a complete Heyting algebra in the 

paper.)

All propositions are true at n=0.

To read the rules for n>0:



δ is a mapping from the relation variables in R to
some interpretations of those relations. It's
analogous to the ρ's in our work. Semantic,
world-indexed, monotone relations.

A is an atomic proposition. We rely on some (not-step
indexed) interpretation function to make sense of
those base facts.

e interpretations of µr.R (gets smaller) and
▷(P₁,⋯,P_n) (gets larger) uses a trick. e whole
thing is defined first by induction on n and then by
induction on the size of the relation. e size
function is defined so that ▷φ has size zero for any
φ.

e caligraphic P is just a list P₁,⋯,P_n of atomic
propositions akin to a context.

Aside from Deepak/Derek: e whole point of the construction is to
isolate the atomic things A from the step indices. In principle, you
could try to push the step indices into A and their interpretation
function I.

Figure 5 provides the core logic's inference rules.

e idea:
Set up this core logic. (Prove it sound.)

en extend the logic with useful primitives for talking about
programs.

en define the logical relation purely within the logic. (Do
all the LR metatheory within the logic.)

e only thing we have to prove sound are the axioms in Figure 5. e
judgement is interpreted:

X; R; P ⊢ P := ∀n≥0. ∀γ∈[[X]]. ∀δ∈[[R]]. [[γP]]δn ⇒ [[γP]]δn.

Aside: It's not clear that these are the “right” axioms.

How did they generate these axioms? ey wrote down what holds for the
standard step-indexed models. Some of these axioms do not hold when



you add state. Derek would have to look it up; maybe existentials or
universals.

Aside: Neel's recent work avoids the ▷⇒ axiom.

Distributivity axioms: ▷ distributes with all connectives.

Some axioms that seemed convenient for replacement of
syntactically equal terms (e₁ = e₂ is an atomic proposition)
and semantically equal relations.

e most interesting rules are MONO and LÖB.

Löb is the coinduction princple. As long as you can show P is true
now, given that its true one step later, then its true now. is is
the idea we used in our proofs. e nice thing here: You don't have to
talk about n. (Recall the logic defines all things true at n=0. is
means you have to be careful at the n=1 case.)

Note the use of a syntactic equality e₁ = e₂ differs from
Plotkin-Abadi logic.

Note the use of R₁ ≡ R₂ is relational equality (definable in the
logic).

§4.2 covers the atomic relations they needed.

ese are all over closed terms.

Interestingly: ey only count unroll/roll reductions. is is
slightly more precise than Amal who counts everything. See
I(e₁ ⇝0 e₂) and I(e₁ ⇝1 e₂)

Interestingly, the model is made complete without ⊤⊤-closure.
If you're using a step-indexed model, you can make it complete
as follows. Recall we started with

E[τ]ρ := { (n,e₁,e₂) |
∀j≤n. e₁ ↓j v₁ ⇒ ∃v₂. e₂ ↓ v₂ ∧

(n-j,v₁,v₂) ∈ V[τ]ρ }

We can make it complete by replacing ↓ v₂ with
ciu-approximation:



E[τ]ρ := { (n,e₁,e₂) |
∀j≤n. e₁ ↓j v₁ ⇒ ∃v₂. v₂ ≤u e₂ ∧

(n-j,v₁,v₂) ∈ V[τ]ρ }

Recall that to prove completeness, we needed a
ciu-approximation closure property. We can bake it in.

Returning to the paper. You can state whatever rules you want about
your atomic propositions so long as you can prove them “offline”.

§4.3 On page 12, they give a step-indexed logical relation that almost
does not mention steps. It uses some notation given at the end of
§4.2.

Note the defintion of the LR is a meta-level function. Given a type
and a ρ, it gives you a formula in the logic. (e logic does not
define V[τ]ρ, the metalevel does.)

At a high-level, if you take this syntactic LR and merge it with the
semantics of the logic, then you get back something quite close the
step-indexed logical relations we've been working with. Derek et al
factored out the work with step indices.

Note in the LR for E[τ]ρ, you have a case distinction. You don't want
to case analyze using proofs. ey provided some lemmas to avoid most
of that.

In Figure 7, they give some useful derivable (modulo the facts proved
“outside” about our atomic formulas) rules for proving things in the
logical relation. To actually prove these properties, they used Löb
induction.

e Bind rule—more general than Bind2 and the bind we've used—lets us
prove

∃v. x+y↓v ∧ y+x↓v
(v,v)∈V[int]
—⋯ EXP and CIU ⋯
⋯ ⊢ (x+y,y+x) ∈ E[int]
—CIU
y, f₁1 ↓ y, y ≤u f₂1, ⋯, ⊢ (x+y,y+f₂0) ∈ E[int]
—BIND2
⋯,x,f₁0↓x, x ≤u f₂0,Val(x) ⊢ (x+f₁1,f₂1+f₂0) ∈ E[int]

=



⋯,x₁,x₂,f₁0↓x₁,x₂ ≤u f₂0,(x₁,x₂)∈V[int] ⊢ (x₁+f₁1,f₂1+f₂0) ∈ V[int]
—BIND

† f₁,f₂,(f₁,f₂)∈V[int→int] ⊢ (f₁0+f₁1,f₂1+f₂0)∈E[int]
—
⊢ (λf.f(1)+f(0), λf.f(0)+f(1)) ∈ V[(int→int)→int]

It's easy to show the first premise in the Bind rule. Under the
context in †, ⊢ (f₁0,f₂0) ∈ E[int].
It's easy to show that

x≤u f₂0 ⇒ y+x ≤ y+f₂0.

We couldn't prove this with our biorthogonal model. Since it's
compatible with callcc and continuations ruin things.

e FUNEXT rule only works because they only count roll-unroll
reductions as steps that maer. Compare it to the model we defined:

V[σ→τ]ρ := { (n,λx.e₁,λx.e₂) | ∀j≤n. ∀v₁,v₂.
(j,v₁,v₂) ∈ V[σ]ρ ⇒ (j,e₁[v₁/x],e₂[v₂/x]) ∈ E[τ]ρ }

We could not prove the property in FUNEXT given this definition.

Note on the metatheory for this logical relation: Adequacy is the one
thing that requires an appeal to the model.

Another nice thing this paper does: It gives (in the logic) a
symmetric version of the LR. e direction d of logical approximation
becomes a parameter of the judgement. If you can prove your judgement
parametrically in d, then you've proven a symmetric version. Figure 9
provides symmetric versions of several derivable rules.


