
— Syntactic minimal invariants

e example I'll give next time is the so-called syntactic minimal
invariants theorem. e theorem (presented in the LSLR paper to be
discussed next time) reads:

If τ = µα.1+(α→α),
then

λx:τ.x ≡
fix f(x:τ).

case (unfold x) of
inj₁ () ⇒ fold(inj₁ ())

| inj₂ g ⇒ (* g : τ→τ *)
(* basically, we do an η-expand of τ→τ *)

fold(inj₂(λy:τ.f(g(f y)))).

It's kind of like an extensionality (or η-expansion) property. You
need fixed points to even state it. Note τ is kind of like the type
representing domains for the untyped λ-calculus. In the inj₂ case, we
basically want to apply g. It gets somewhat annoying to prove the
theorem in the model directly.

is theorem is related to a proof method Derek hasn't taught us. See
Pis' “Relational properties of domain” 1996. e approach boils down
to trying to deal with both positive and negative occurrences of type
variables in types using more advanced (categorical) techniques.
Later, Birkedal and Harper (1999) presented a syntactic version of
Pis' “minimal invariants” construction. Later, Crary and Harper
(2007) extended the B&H approach to general recursive types and
polymorphism; that is, to the same exact seing we're considering
with the step-indexed model. ey can prove the same kind of examples
we can prove with Amal's method. In Derek's opinion, Amal's method is
easier to understand. (is minimal invariants property underlies all
this work.)

Aside: Pis has recently argued that step-indexing combined with
biorthogonality is the way to go. (ere may well be examples that can
be proven with “minimal invariants” but not with step-indexing, but
Derek can't say off the top of his head.)

— Encoding fixed points

Recall, it wasn't easy to prove (directly via admissibility) that succ
ones ≡ twos. We'll give a third proof that relies on the basic
coninductive reasoning we get from the step-indexed model.



Amal's model doesn't assume the language has fixed points. Given
recursive types, we can encode fixed points. In case you haven't seen
that encoding:

fix f(x).e := λy.(unfold v) v y
v := fold(λz.(λf.λx.e) (λy.(unfold z) z y))

where y, z ∉ fv(e).

Basically, you write down the CBV version of the Y combinator,
inserting folds and unfolds in the right places. If you ignore the
outermost η-expansion λy.— y, we have basically

λz.(λf.λx.e)(z z) =: F
and

Y F = (λz.F (z z))(λz.F (z z)).

We can prove the property we want fix to have:
(fix f(x).e) v ↦+ e[fix f(x).e/f,v/x].

e important thing is this takes a positive number of steps to
unfold.

— Example: ones and twos

Recall:
τ = µα.1→(int×α)
ones = fold(fix f().<1,fold f>
twos = fold(fix f().<2,fold f>
succ = fix f(s:τ):τ.

let c = (unfold s)() in
fold λ().<1+π₁c,f(π₂ c)>

We want to prove
twos ≈ succ ones : τ

⇐
twos ≾ succ ones : τ ∧
succ ones ≾ twos : τ.

Consider the first conjunct. We'll sketch half of the proof to show
how such things go.

TS: twos ≾ succ ones : τ.

Let n ∈ ℕ.
TS: (n,twos,succ ones) ∈ E[τ].



Set twos' := fold (λ().<1+π₁<1,ones>,succ(π₂<1,ones>)>).
By closure under expansion,
STS: (n,twos,twos') ∈ V[τ].
⇐ (n-1,

 fix f().<2,fold f>,
 λ().<1+π₁<1,ones>,succ(π₂<1,ones>)>) ∈ V[1→(int×τ)].

Let j ≤ n-1.
By closure under expansion (and downward closure),
STS: (j,

 <2,fold f>,
 <1+π₁<1,ones>,succ(π₂<1,ones>)>) ∈ E[int×τ].

⇐
(j,
 <2,twos>,
 <2,succ ones>) ∈ E[int×τ]

⇐
(j,
 <2,twos>,
 <2,twos'>) ∈ E[int×τ]

⇐ (j,twos,twos') ∈ V[τ].

On the le-hand side we took a number of reduction steps in
unrolling the fix. (Extra steps on the right don't cause
complications.) Why is this still valid reasoning? By downward
closure.

At this point in the proof, it looks like we're trying to
prove twos≈twos' assuming twos≈twos'. But j<n. So when we
introduce n, we need to insert an induction. When we reach
such a loop in a step-indexed proof, it's critical that we can
prove the base case. We then reason with the induction
principle

P(0) ∧ ∀j<n.P(j) ⇒ ∀n.P(n).

For our proof, the base case is trivial.

Note that while we're doing induction, the reasoning is coinductive.
We made some progress (were productive), then relied on induction.

— Completeness and Transitivity

Completeness of the LR: How does that story play out for



step-indexing? It's (mildly) interesting and can be discussed without
a lot of technical detail.

Combining step-indexing with biorthogonality is interesting and very
useful if you work with a language that needs ⊤⊤-closure.

ere's also the point of transitivity of the LR. Appel and
McAllister's original model was conjectured it was a PER-model. Amal
observed the model fails to be transitive. She showed one way of
regaining transitivity for the language with just recursive types and
not with polymorphic types.

Why care about transitivity?

It depends on your application. If you only care about contextual
equivalences, you don't need a transitive proof method. You can use
the transitivity of contextual equivalence/approximation to connect
your subproofs.

If you cannot rely on contextual equivalence, then you want the LR to
be transitive; eg, if you're working with different langauges (no
single notion of context) or you're using the LR to give the model of
some equational theory.

Amal used a trick to show transitivity for her LR for recursive types.
Basically, bake syntactic typing conditions into the model.
(Ironically, the original motivation for the step-indexed model was to
avoid the syntactic typing judgement in foundational PCC.)
Transitivity is generally interesting. Amal's specific technique less
so.

So we'll talk about completeness, achieved by combining the model with
⊤⊤-closure.

— Completness

Let's briefly discuss completeness.

Basically, we could use the device of CIU-approximation we've seen
before.

Recall ≡ctx ⇒ ≡ciu was easy. Recall ≈ ⇒ ≡ctx. What were the key things
we used in proving ≡ciu ⇒ ≈?



Intuitively, we proved
e₁ ≡ciu e₂ : τ
e₁ ≈ e₁ : τ
—
e₁ ≈ e₂ : τ

using ⊤⊤-closure. In words, we used (e₁,e₁)∈E[τ] together with
e₁ ≡u e₂ : τ 

to prove
e₁ ≈ e₂ : τ.

Intuitively, we now need
e₁ ≾ciu e₂ : τ
e₁ ≾log e₁ : τ
—
e₁ ≾log e₂ : τ.

Without ⊤⊤-closure, existential types cause problems.

In Amal's TR, she writes out the flawed proof and points out the
precise problem. Interestingly, all the other cases go through.
Roughly, this suggests step-indexing “gets at” some of the same things
that ⊤⊤-closure gets at. Step-indexing doesn't quite give you
admissibility—like ⊤⊤-closure does—it just takes “reasoning at the
limit” off the table. Somehow, to a large extent, step-indexing gives
you the equivalence-preserving property. For purposes of time, we'll
not work through the proofs Amal gives (for all but existential types)
of

If (n,e₁,e₂) ∈ E[τ]ρ
and e₂ ≾ciu e₃ : ρ₂τ,
then (n,e₁,e₃) ∈ E[τ]ρ.

If you look at the Crary-Harper paper (same language, basically), they
just leave out existentials and say “ah, you can Church-encode them”.
at works fine and the corresponding LR is complete. e model of the
Church encoding for existentials does not say there exists blah; it
just says for any client, the client cannot tell the difference blah.
In that respect, ⊤⊤-closure corresponds to the Church-encoding. Both
use a form of double-negation.

— Combining step-indexing and ⊤⊤-closure

We'll stick with an untyped model (but the pros and cons are subtle).

Recall we defined
e₁ ↓↓ e₂ as e₁↓ ⇔ e₂↓.



at works fine in a typed language. In an untyped language, it works
or not based on how you define e₁↓. In the untyped model, terms can
get stuck. You have to decide if geing stuck is part of
“terminates”. We'd like to say “you must eliminate the possibility
that terms are stuck”.

Without going through the exercise of working out the model with stuck
terms to see what, if anything, goes wrong, it's hard to say crisply
what goes wrong.

In the untyped version of the Pis-style model, we'll avoid stuck
states:

e₁ ↓↓ e₂ := (e₁↓ ∧ e₂↓) ∨ (e₁↑ ∧ e₂↑)
Where e↑ (diverges) means infinte reduction.

Derek's gut feeling: We can finesse the superficial complication of
this verison (i.e., we must perform case analyses).

We'll fudge. We'll present a typed model without types and without the
case distinctions in ↓↓.

What should change from the model we have now to add ⊤⊤-closure? e E
relation.

We want:

E[τ]ρ := { (n,e₁,e₂) | ∀K₁,K₂. (n,K₁,K₂) ∈ K[τ]ρ ⇒ K₁[e₁] ↓↓n K₂[e₂] }

But how do we define ↓↓n?

One nice thing given us by ⊤⊤-closure: We can define things
symmetrically again. Where

e₁ ↓↓n e₂ := (e₁↓k<n ⇒ e₂↓) ∧ (e₂ ↓k<n ⇒ e₁↓)

at's fine in the typed model. We write e₁↓k<n to mean e₁ terminates
to a value in k<n steps. (We're ruling out stuck states.)

For the untyped model, we'd want
e₁ ↓↓n e₂ := (e₁↓ ∧ e₂↓) ∨ (e₁ ↦n e'₁ ∧ e₂ ↦n e'₂).

is seems awkward to work with because you'd have to do case analysis
throughout your proofs. In fact you can avoid that with some lemmas.
(In the typed seing, these are equivalent.)

K[τ]ρ := { (n,K₁,K₂) | ∀v₁,v₂.∀j≤n.



(j,v₁,v₂) ∈ V[τ]ρ ⇒ K₁[v₁] ↓↓j K₂[v₂] }

You can use an aempt to prove downard closure to decide where to put
the quantifications over j. But there's also an intuition.

Recall from last time that we don't care if E is downward closed but
we do care that K is. We don't generally expect terms to be
“portable”. e only thing we are ever “given” as hypotheses are
values (in CBV). To show terms are related at n steps, we only care
about running them right now. Continuations are like functional
values. ey have to be applicable later. (Especially since we don't
know how long it will take for the argument passed to the continuation
to evaluate.)

at's it. With general Kripke structures, we'd quantify over future
worlds in K[τ]ρ.

— Metatheory

Given the time we have remaining, lets just prove some compatibility
lemmas. e structure of the proofs will be different now that we have
⊤⊤-closure.

We'll start with the bind lemma.

Lemma (Bind for closed terms):
If (n,f₁,f₂) ∈ V[σ→τ]ρ
and (n,v₁,v₂) ∈ V[σ]ρ,
then (n,f₁ v₁,f₂ v₂) ∈ E[τ]ρ.

Pf:
By our first assumption,

f₁ = λx.e₁ ∧
f₂ = λx.e₂ ∧
(n,e₁[v₁/x],e₂[v₂/x]) ∈ E[τ]ρ.

WK: f₁ v₁ = (λx.e₁) v₁ ↦ e₁[v₁/x] ∧
f₂ v₂ = (λx.e₂) v₂ ↦ e₂[v₂/x].

We want a closure under expansion property so that we can
conclude

(n,f₁ v₁,f₂ v₂) ∈ E[τ]ρ.

Let (n,K₁,K₂) ∈ K[τ]ρ.
TS: K₁[f₁ v₁] ↓↓(n+1) K₂[f₂ v₂]
⇐ K₁[e₁[v₁/x]] ↓↓n K₂[e₂[v₂/x]].



(Such closure under expansion properties work out with either
variant of ↓↓n.)

Q.E.D.

e POPL'11 paper includes a general version of this property that was
very useful. It basically said that if two programs coterminate at n
steps and they both expand for k steps, then they coterminate for n+k
steps.


