
— Step-indexing continued

Appel-McAllester (2001) proposed the original idea of step-indexing;
originally called indexing. ey dealt with recursive and polymorphic
types. (e paper is on the web page.) It was originally part of their
foundational proof-carrying code project: ey wanted to semantically
model types as sets of machine programs. Step-indexing let them
semantically model recursive types.

Even though they were talking about applying high-level types to
low-level code, they wanted to avoid a syntactic typing discipline.
(For reasons Derek has never completely understood. Mainly to make
things more “foundational”.)

ey came up with a good idea: How to handle general recursive types.
e method they developed ended up having nothing to do with machine
programs. (e fact that it works for that level is quite
interesting.)

ey didn't want to get involved in the more denotational approaches
to modelling recursive types.

ey weren't doing relational reasoning. ey weren't reasoning about
equivalences. ey just wanted to define a (unary) model of types such
that if a machine program was in that model, then it satisfied some
safety properties.

Amal (2006) showed how to use (basically) the same approach to reason
about equivalences of high-level programs. She dealt with recursive
and polymorphic types. Arguably, it's a completely different
application, using the same sort of model, except binary instead of
unary. is binary approach was conjectured as useful in
Appel-McAllester.

Interestingly, she did this aer her 2005 thesis work, a unary
step-indexed model for higher-order state with recursive and
polymorphic types. (Just safety.) To Derek, Amal's thesis was more
interesting technically. On a conceptual level, her 2006 work was an
equally important result.

It wasn't until Ahmed-Dreyer-Rossberg (2009) dealt with relational
reasoning about recursive, polymorphic, and general reference types.

What was suprising at the time of Ahmed's 2006 paper: People who



originally saw the Appel-McAllester model viewed it as a “nice hack”.
Since you're counting steps, this couldn't possible be used to reason
about observational equivalence and extensional reasoning. In 2006,
Ahmed handled several examples (possibly all of the examples) from
Sumii-Pierce (2005), a paper on using bisimulations to reason about
recursive and polymorphic types. She basically showed you could use an
“inductive” method like logical relations to mirror such work.
Moreover, she proved wrong the hemming and hawing about the
“intensional” technique of step-indexing.

We want to define the relation on terms. ere are several very
different ways. We'll follow Ahmed 2006. It seems a bit annoying: It
looks like you have to count and add up steps. It looks a bit hacky.
at doesn't have to be the case. She just happened to have set it up
that way.

Once we combine step-indexing with biorthogonality, we'll see it
actually simplifies certain things.

We'll work with her approach. We'll see that certain reasoning about
equivalences that change the control flow are possible in her original
model but not in the model with biorthogonality.

— Logical approximation

Recall from last time:

Cand = { R ∈ Sub(ℕ×CVal×CVal) |
∀(n,v₁,v₂) ∈ R. ∀j<n. (j,v₁,v₂) ∈ R }

V[σ→τ]ρ := { (n,λx.e₁,λx.e₂) | ∀j≤n. ∀v₁,v₂.
(j,v₁,v₂) ∈ V[σ]ρ ⇒ (j,e₁[v₁/x],e₂[v₂/x]) ∈ E[τ]ρ }

V[µα.τ]ρ := { (n,fold v₁,fold v₂) | ∀j<n. (j,v₁,v₂) ∈ V[τ[µα.τ/α]]ρ }

Here's what we'll do for terms:

Recall the rough (so rough its wrong) idea:
Two programs are related if you drop them in any context and
run that program for n steps of computation, then you won't
end up in a situation where one terminates and the other will
diverge.

[In class, we kicked around some ideas.]



e following idea is almost right.
If e₁ goes to a value v₁ in under n steps,
then e₂ goes to a value v₂
and the values are related.
(Plus the symmetric thing.)

Derek: You need to define the logical relation in an asymmetric way.
We define logical approximation asymmetrically. We'll define
equivalence later.

E[τ]ρ := { (n,e₁,e₂) | ∀k<n, e'₁.
e₁ ↓k e'₁ ⇒ ∃v₂. e₂ ↓ v₂ ∧ (n-k, e'₁, v₂) ∈ V[τ]ρ }

Here's a key point: We can't write e₁ ↓k v₁ here. at leaves the
relation too weak. We have to show that e'₁ ends up being a value. We
want to rule out stuck terms. We want to build a relation that
includes within it the notion that the terms are well-behaved. We
don't want a stuck e₁ to be trivially related to any e₂.

Ahmed used e₁ ↦k e'₁ ∧ irred(e₁) where irred(e₁) means “not stuck”.

We define
e ↓k e' :⇔ e₁ ↦k e'₁ ∧ irred(e₁)

Aside: e idea of defining the relation all at once—rather than via
logical approximation—did not work when Amal and Derek tried to make
it work one aernoon. ey couldn't build a sound model.

Aside: Derek thinks we might be able to put stuck terms in the model
(and not suffer as a result).

Observe, that if e₁ doesn't terminate, it approximates everything:
∀n,e. (n,⊥,e) ∈ E[τ]ρ.

Aside: We set up our base case with values in canonical form (e.g.,
(n,λx.e₁, λx.e₂) ∈ V[σ→τ]). ey correspond to k=0 in E[σ→τ].

To reason about logical equivalence, we'll use logical approximation
in both directions.

Let's li our logical approximation to open terms.

D[Δ] := { ρ ∈ Δ → Cand }
G[Γ]ρ := { (n,γ₁,γ₂) | ∀(x:τ) ∈ Γ. (n,γ₁x,γ₂x) ∈ V[τ]ρ }



Δ; Γ ⊢ e₁ ≾ e₂ : τ :⇔
Δ; Γ ⊢ e₁ : τ ∧ Δ; Γ ⊢ e₂ : τ ∧
∀ρ∈D[Δ].∀(n,γ₁,γ₂) ∈ G[Γ]ρ. ∀δ₁,δ₂ ∈ Δ → CTyp.
(n,δ₁γ₁e₁,δ₂γ₂e₂) ∈ E[τ]ρ.

What's changed from our earlier models:
We're defining the relation asymmetrically.
We're carrying around step indices.

— Metatheory

What we want to show is that our logical approximation is contained in
contextual approximation. Contextual approximation is just the
one-sided version of contextual equivalence. See Ahmed 2006.

Consider the Pis-style definition of contextual equivalence we used.
Contextual approximation no longer satisfies symmetry. It still must
satisfy all the compatibility lemmas. e difference is in Adequacy.
It will look like:

⊢ e₁ ≾ e₂ : τ ∧ e₁↓ ⇒ e₂↓.
at is, it's half of adequacy. Later, we will see how this plays out
in a Pis-style typed LR.

We want to show ≾ is adequate and compatible. We'll do a few cases.
(Ahmed handles them all in her technical report.)

NB we will need downard closure for V[τ]ρ. It's easy to prove. We
quantified over smaller indices when we defined V[σ→τ], so downard
closure there is trivial and does not need downard closure of E[τ]. We
happened to define V[∀α.τ] in terms of E[τ] at the same step-index.
(We could bake it into every part of V[τ]ρ, but that makes proving
stuff using the LR more annoying. It's cleaner to bake in just
enough.)

Aside from Deepak: In more complicated models, we do not necessarily
know that E[τ]ρ is monotone.

Lemma (Adequacy):
If ⊢ e₁ ≾ e₂ : τ
and e₁↓,
then e₂↓.

Pf:



Suppose ⊢ e₁ ≾ e₂ : τ
⇒ ∀n.(n,e₁,e₂) ∈ E[τ].

Suppose ⊢ e₁ ↓
⇒ ∃k. e₁ ↓k e'₁.

(Aside: We wrote e'₁ for fun. We know its a value by syntactic
means: e₁ is well-typed.)

TS: e₂↓.

Pick n>k
⇒ (n,e₁,e₂) ∈ E[τ]
⇒(k<n)

e₂↓.

(Aside: Its important that they are related for all steps. We
needed to pick n>k.)

Q.E.D.

Lemma (Compatibility for functions):
Δ; Γ, x:σ ⊢ e₁ ≾ e₂ : τ
—
Δ; Γ ⊢ λx.e₁ ≾ λx.e₂ : σ → τ.

Proof:
Let ρ∈D[Δ] and (n,γ₁,γ₂) ∈ G[Γ]ρ and δ₁,δ₂ ∈ Δ→CTyp.
TS: (n,δ₁γ₁(λx.e₁),δ₂γ₂(λx.e₂)) = (n,λx.δ₁γ₁e₁,λx.δ₂γ₂e₂) ∈ V[σ→τ]ρ.
Let k≤n. Suppose (k,v₁,v₂) ∈ V[σ]ρ.
TS: (k,δ₁γ₁e₁[v₁/x],δ₂γ₂e₂[v₂/x]) ∈ E[τ]ρ.
Set γ'_i := γ_i,x↦v_i.
STS: (k,δ₁γ'₁e₁,δ₂γ'₂e₂) ∈ E[τ]ρ.
We want to instantiate the premise with γ'₁,γ'₂.
To do that, we must show (k,γ'₁,γ'₂) ∈ G[Γ,x:σ]ρ.
is follows from downward closure: (n,γ₁,γ₂) ⇒ (k,γ₁,γ₂).

Q.E.D.

Many things remain easy. For example, LR inclusion.

Before going on, we want the bind lemma. at means we have to figure
out how to state it in this seing.

Recall what we did in symmetric models:
If (e₁,e₂) ∈ E[τ]ρ



and ∀(v₁,v₂) ∈ V[τ]ρ. (K₁[v₁],K₂[v₂]) ∈ E[τ']ρ',
then (K₁[e₁],K₂[e₂]) ∈ E[τ']ρ'.

Lemma (Bind for closed terms):
If (n,e₁,e₂) ∈ E[τ]ρ
and ∀j≤n. ∀v₁,v₂. (j,v₁,v₂) ∈ V[τ]ρ ⇒ (j,K₁[v₁],K₂[v₂]) ∈ E[τ']ρ',
then (n,K₁[e₁],K₂[e₂]) ∈ E[τ']ρ'.

Proof: HW for Tuesday.

estion: Why didn't we have to be strict with the step-indices?
Answer:

Derek prefers to use < only where its absolutely necessary
(for us, that means in V[µα.τ]).

Lemma (Bind for open terms):
Δ; Γ ⊢ e₁ ≾ e₂ : σ
Δ; Γ, x:σ ⊢ K₁[x] ≾ K₂[x] : τ
x ∉ fv(K₁,K₂)
—
Δ; Γ ⊢ K₁[e₁] ≾ K₂[e₂] : τ

Proof: HW for Tuesday.
Discussion: You'll be given some n (your goal). It reduces by
the bind lemma for closed terms to showing

∀j≤n. ∀v₁,v₂. (j,v₁,v₂) ∈ V[τ]ρ ⇒ (j,K₁[v₁],K₂[v₂]) ∈ E[τ']ρ'.

To do that, you need to use downward closure so you can extend
the context. (is part of the argument is quite similar to
compatibility for V[σ→τ]ρ.)

Aside: e logic Derek, Amal, and Lars developed effectively merges
these two versions of the bind lemma together. You can reason about
specific ρ's with inference rules. We'll discuss this next week.

Lemma (Compatibility for applications):
Δ; Γ ⊢ e₁ ≾ e₂ : σ → τ
Δ; Γ ⊢ e'₁ ≾ e'₂ : σ
—
Δ; Γ ⊢ e₁ e'₁ ≾ e₂ e'₂ : τ

Proof:
Using the open bind lemma, this reduces (exactly as before) to
showing



Δ; Γ, x:σ→τ, x':σ ⊢ x x' ≾ x x' : τ
⇐

∀n,v₁,v₂,v'₁,v'₂.
(n,v₁,v₂) ∈ V[σ→τ]ρ ∧
(n,v'₁,v'₂) ∈ V[σ]ρ
⇒ (n, v₁ v'₁, v₂ v'₂) ∈ E[τ]ρ.

Unrolling E[τ]ρ, let j≤n and assume there exists e₁ satisfying
v₁ v'₁ ↓j e₁.

STS: v₂ v'₂ ↓ e₂ ∧ (n-j,e₁,e₂) ∈ V[τ]ρ.

By the definition of V[σ→τ]ρ,
WK: ∃e'₁, e'₂. v₁ = λx.e'₁ ∧ v₂ = λx.e'₂ ∧
1. (n,e'₁[v'₁/x],e'₂[v'₂/x]) ∈ E[τ]ρ.

WK: v₁ v'₁ ↦ e'₁[v'₁/x] ↓{j-1} e₁ ∧
v₂ v'₂ ↦ e'₂[v'₂/x] ∧
j-1 < n.

⇒(1)
v₂ v'₂ ↦ e'₂[v'₂/x] ↓ e₂ ∧
(n-j+1,e₁,e₂) ∈ V[τ]ρ

⇒ v₂ v'₂ ↓ e₂ ∧ (n-j,e₁,e₂) ∈ V[τ]ρ.
Q.E.D.

Aside: e only steps you really need to count in the E relation are
the unfold/fold steps. (We'll see this when we discuss the logic
paper.)

Using the bind lemma, we can reduce compatibility for fold to
Δ; Γ, x: τ[µα.τ/α] ⊢ fold x ≾ fold x : µα.τ.

Lemma (Compatibility for fold):
Suppose (n,v₁,v₂) ∈ V[τ[µα.τ]/α]]ρ.
Show (n,fold v₁,fold v₂) ∈ V[µα.τ]ρ ⊆ E[µα.τρ].

Proof:
STS: ∀j<n. (j,v₁,v₂) ∈ V[τ[µα.τ/α]]ρ.
is follows from downard closure.
(Derek expected to do more work. In Amal's proofs, she didn't
use the Bind lemma. She baked it into each of her
compatibility proofs.)

Q.E.D.

Lemma (Compatibility for unfold):
Suppose (n,v₁,v₂) ∈ V[τ[µα.τ]/α]]ρ.



Show (n,unfold v₁,unfold v₂) ∈ E[τ[µα.τ/α]]ρ.
Proof:

Let j<n and assume there exists e₁ s.t.
unfold v₁ ↓j e₁.

TS: ∃e₂. unfold v₂ ↓ e₂ ∧
(n-j,e₁,e₂) ∈ V[τ[µα.τ/α]]ρ.

e first assumption implies
v₁ = fold v'₁ ∧ v₂ = fold v'₂ ∧
∀j'<n. (j',v'₁,v'₂) ∈ V[τ[µα.τ/α]]ρ.

ere's only one step of reduction to go from these folds to
those unfolds.
WK: e₁ = v'₁ ∧ e₂ = v'₂ ∧ j = 1.
STS: (n-1,v'₁,v'₂) ∈ τ[µα.τ/α]]ρ.
Pick j' := n-1 < n and we're done.

Q.E.D.

e rest of the compatibility lemmas will be very similar.

— Admissibility

We never talked about admissibility. We needed it to prove recursive
types related. But once we have recursive types and functions, we can
encode fixed points in the language. A coinductive proof technique for
fixed points fall out from the step-indexed logical relation.

We've taken these finite approximations, limited to the admissibility
lemma, and pervaded them through the entire model. What we've built is
“something like” a relation on the nth finite approximation.

One of the complaints we can make about this model: It gets annoying
to prove things with it because we must deal with these step indices
even when we don't want to.

Admissibility isn't baked into the model. What's baked in is that
we're always relating finite approximations. We never prove that
things are related “in the limit” and that suffices to prove
contextual approximation.


