
— Motivating step-indexing

Recall the Støvring and Lassen example from last week.

e problem: Apparently it's unprovable in our current model. So the
example motivates our next extension to the model (step-indexing).

Recall the example:
τ := µα.(¬int)→α
φ₁ := fix f(x:τ):int. callcc(k.f((unfold x)k))
φ₂ := λy:τ.callcc(k.(fix f(x:τ):int. f((unfold x)k)) y).

Prop: φ₁ ≡ φ₂ : τ → int.

e point is φ₁ captures a new continuation every time around the loop
while φ₂ only captures one continuation. But it doesn't maer.

Last time, we got stuck early. Let's push the proof a lile further
to get well and truly stuck.

Proof idea:
Let (K₁,K₂) ∈ K[int], (v₁,v₂) ∈ V[τ].
TS: K₁[φ₁ v₁]↓↓K₂[φ₂ v₂].

First, evaluate these guys to make the structure of the things
match up, more or less.

K₁[φ₁ v₁] ↦∗ K₁[φ₁((unfold v₁)(cont K₁))]
K₂[φ₂ v₂] ↦∗ K₂[F_{K₂} ((unfold v₂) (cont K₂))]

where F_{K₂} := fix f(x:τ):int. f((unfold x)(cont K₂)).

STS: K₁[φ₁((unfold v₁)(cont K₁))] ↓↓ K₂[F_{K₂} ((unfold v₂) (cont K₂))].

Last time, we observed the following pairs are related:
((K₁,K₂) ∈ K[int] ⇒ (cont K₁,cont K₂) ∈ V[¬int]) ∧
((v₁,v₂) ∈ V[τ] ⇒ (unfold v₁,unfold v₂) ∈ E[(¬int)→τ]).

and claimed STS (φ₁,F_{K₂}) ∈ V[τ]. But to use this argument,
you have to know they're equivalent under arbitrary contexts.
Clearly not: φ₁ uses callcc while F_{K₂} doesn't—it just
assumes its current continuation is K₂ and behaves that way.
at idea certainly doesn't work.

We can try something else. Given the pairs above,
WK: ((unfold v₁)(cont K₁), (unfold v₂)(cont K₂)) ∈ E[τ].
us



† STS: (K₁[φ₁(•)],K₂[F_{K₂}(•)]) ∈ K[τ].

is is the right way to procede. (We'll be able to complete
this proof once we change the model in the way that we'll
need.)

Let's try to prove † to see where it breaks down.

Let (w₁,w₂) ∈ V[τ].
(1) TS: K₁[φ₁ w₁] ↓↓ K₂[F_{K₂} w₂]

Note we've kinda gone back to the beginning.

Reducing both sides,
(2) STS: K₁[φ₁((unfold w₁)(cont K₁)] ↓↓ K₂[F_{K₂} ((unfold w₂)(cont K₂))].

But we've reached our starting point.

We could try boiling down (1), treating (2) as a coinduction
hypothesis. e following does not work, but provides good
intuition:

Show: ∀n.
K₁[φ₁((unfold w₁)(cont K₁))] ↓↓n K₂[F_{K₂} ((unfold w₂)(cont K₂))].

Where ↓↓n (“co-terminates up to n steps”) means if the guy on
the le terminates within n steps of computation, then the
guy on the right terminates.

End proof idea.

If you try to prove this by induction, it ends up not working. In the
definition of the LR at arrow types, we don't count these indices.
Moreover, there's nothing in the relation on continuations that talks
about the number of steps of computation.

is idea of what goes wrong leads us to step-indexing. Induction on
the number of steps in the computation justifies the coinductive
argument we'd like to write.

e way you see whether or not coinductive reasoning is valid: Is the
argument “productive”. Do we always have positive movement in the
proof. (You don't want to prove something is true given that it's
true. You want to take some steps before the recursive calls.)



e basic idea of step-indexing is to build this induction on the
number of steps of computation into the model. (All things are related
for some number of steps of computation.)

In retrospect, it makes sense that this example doesn't work. It comes
from a paper on bisimulations (and coinductive proo).

Not only is there no proof that these are not equivalent in this
language, but Derek is prey sure they are logically related. ey're
contextually equivalent and via ⊤⊤-closure that should imply logically
related.

— A simpler example

Assume
⊢ e₀ : bool
k : ¬τ ⊢ e₁ : τ
k : ¬τ ⊢ e₂ : τ

Show
⊢ callcc(k.if e₀ then e₁ else e₂)
≡

if e₀ then callcc(k.e₁) else callcc(k.e₂)
: τ

Intuition: In the former, you grab the continuation then do the if;
either it goes to e₁ or it goes to e₂. In the laer, you do the
callcc before the e₁ or the e₂ but at those points, its the same
continuation as in the former example.

HW: Prove this using our model from last time (and parametricity).

Aside: ere exists a simpler proof that goes through the CIU
theorem:

By the CIU theorem,
STS: ∀ K ÷ τ. K[callcc⋯] ↓↓ K[if ⋯]

Assume the le-hand side terminates:
K[callcc ⋯] ↦∗ K[if e₀ then e₁[cont K/k] else e₂[cont K/k]].

We used the fact that k ∉ fv(e₀).

STS: K[if e₀ then e₁[cont K/k] else e₂[cont K/k]] ↓↓
K[if e₀ then callcc(k.e₁) else callcc(k.e₂)].

e proof would be easy if e₀ ↓ v ∈ {true,false}. But since



our language has callcc, it's not obvious that it must
(despite the fact that the le-hand side terminates). How do
you prove “CIU equivalence of evaluation contexts”?

In the LR proof, this is straightfoward. You start with e₀≈e₀
and show that the le-hand continuation is related to the
right-hand contiuation.

Ie, the continuation • then e₁[cont K/k] else e₂[cont K/k]
and the continuation • then callcc(k.e₁) else callcc(k.e₂)
are equivalent.

estion (Deepak): We're reasoning about (true,true) or (false,false).
Somehow we've “lost” the case that e₀ captures its continuation.

Answer: at's not actually what we're proving with
⊤⊤-closure. We never assume that the values we plug in on both
sides are the result of evaluating e₀. All we need to show is
that if we're passed related values, we do something good. We
do not need to connect these related values to evaluation of
e₀. ere's nothing in such proofs to say that e₀ evaluates to
true or false. (is is particularly true once you have
state.)

is is related to the fact that it was very easy to add
continuations to the model. e model does not equate as many
terms as we would like. It only relates terms that are
equivalent in the presence of callcc. It does not relate terms
that are not equivalent in the presence of callcc.

In particular,
λf. f(0) + f(1) ≡ λf. f(1) + f(0)

in System F.

None of our ⊤⊤-closed models will let us prove this
equivalence since we cannot prove (0,1)∈V[int]. We could prove
it in a model that doesn't “observe evaluation order”.

(Aside: Derek is prey sure we can prove this in the
step-indexed model coming next week.)

We know the semantics of System F is “context free”.
Evaluation doesn't care what the context is. In our seing
with callcc, you can't just swap ordering. Either side may
capture continuations. Here's a distinguishing context:



callcc(k.•(λx.throw x to k))

e point: k can do different things based on x=0 or x=1.
We're taking advantage of one power of callcc: e ability to
just “return” from a function. We've thrown goto into the
language: Whenever you communicate with an uknown piece of
code, you have no idea what will happen next.

Aside from Sco/Derek: In a sense, callcc is an effect.

— General recursive types

We've already seen one motivating example for step-indexing. e
original motivation was to model recursive types in general (ie,
without the strictly positive restriction).

We want
‡ V[µα.τ]ρ := { (fold v₁,fold v₂) | (v₁,v₂) ∈ V[τ[µα.τ/α]]ρ }
⇔

V[µα.τ]ρ := { (fold v₁,fold v₂) | (v₁,v₂) ∈ V[τ]ρ,α↦µα.τ }

e problem last Tuesday was the type gets bigger, in general, on the
right hand side. We saw that while this equation was true (assuming
positivity), we couldn't define it this way. If α appears negatively
in τ, we'd be taking a fixed point of a non-monotone function.

(Aside: Derek thinks if you can assume that such an equation
exists for arbitrary τ, then you can derive a contradiction.
Consider

µα.α→α

is is the type of the domain of arrows in the untyped lambda
calculus:

app : D → (D → D) “= unfold”
lam : (D → D) → D “= fold”

Derek will get back to this example on ursday aer some
thought.)

We saw ‡ isn't even a well-founded definition. e idea of
step-indexing is to force a related definition to be well-founded.



We'll first do a slight variant of the model from

Ahmed, 2006: “Step-indexed syntactic logical relations for
recursive and quantified types”.

It's a nice paper. is new version fixes bugs in the ESOP'06 version.

(Aside: Amal goes way below the level of pedantry Derek
expects. is TR is around 200 pages.)

e flaw in the ESOP paper: She was arguing that her LR was complete
wrt contextual equivalence. She used a similar argument to Pis'. She
relied on this equivalence-respecting property we saw. e problem: In
the case of one type constructor, the logical relation is not
equivalence-respecting in the presence of existentials, one of her
type constructors. We'll get to this when we get to it. (e solution
is very simple if you want a complete relation: Add ⊤⊤-closure or
remove existentials.)

Sco: You can encode existentials as universals. So why is there a
problem with existentials but not universals?

Answer: Recall how we extended the model with existentials:

(a) V[∃α.τ]ρ := { (pack [σ₁,v₁] as ∃α.τ, pack [σ₂,v₂] as ∃α.τ) |
∃R∈Cand. (v₁,v₂) ∈ V[τ]ρ,α↦R }.

Recall the Church encoding for existentials:
∃α.τ := ∀β.(∀α.(τ→β)) → β.

ink of this as a kind of double-negation. It's a kind of
¬¬(∃α.τ). For all continuations that expect some existential
package, you can apply them and get some good result out. You
can instantiate those continuations in some way that makes
them happy; that's the double negation point.

By the principle of representation independence, if two things
are related by V[∃α.τ], then their η-expansion will be
related.

e other direction doesn't work.

If two existential packages are contextually equivalent,
that's a lot like saying they're related by the double



negation. For any continuations you're given, you can
instantatite them in related ways. But our Church encoding
doesn't force you to use its continuation. Put another way,
just because you have related existentiaal packages, does not
mean the underlying values are related candidates.
(b) V[∀β.(∀α.(τ→β)) → β.] =“kinda” { (p₁,p₂) |

∀(k₁,k₂) ∈ [∀α.τ→β]. (k₁ p₁,k₂ p₂) ∈ E[β] }

We have (a) ⊆ (b) but not (b) ⊆ (a). (b) doesn't say how k₁ p₁
and k₂ and p₂ are related but (a) does.

— Step-indexed model

e basic idea is surprisingly simpleminded. It was deemed a hack
initially. With use, it's earned respect. It's a very good idea:

Index all the relations by a natural number n representing the
number of steps of computation for which the things “act
equivalently”.

at's the intuition. It doesn't hold up to scrutiny, but it's the
rough idea.

In particular, if you want to know whether or not fold v₁ and fold v₂
“act equivalently” for n steps of computation, you have to know that
v₁ and v₂ “act equivalently” for n-1 steps.

We will define

V[µα.τ]ρ := { (n,fold v₁,fold v₂) | ∀j<n. (j,v₁,v₂) ∈ V[τ[µα.τ/α]]ρ }

Aside: We could have used n-1 rather than j<n. Derek used this
definition because Amal had.

ere are different ways to write these things depending on how
obvious you want it to be that the relations are well-founded. You
only care about whether things are related for n steps. Here, that's
defined in terms of relatedness for strictly fewer than n steps.

e whole construction will be defined first by induction on n and
second by induction on τ.

Since we're writing this as a set rather than as a relation, this may
look a lile dodgy. If you view the RHS as a relation, it's clearly



well-defined:
V_m[µα.τ]ρ := { (n,fold v₁,fold v₂) | ∀n<m. ∀j<n.

(j,v₁,v₂) ∈ V_n[τ[µα.τ/α]]ρ }
e point: When the step-indexing gets really tricky, you can make the
notation heavier to show that the thing is well-defined.

estion (Deepak): Can we work with an n-indexed family of binary
relations? What will break?

Answer: It's hard to say exactly what will break. In ends up
being equivalent in this seing. Ultimately, we care about
the union of all these V_m's.

estion: When n is zero, what happens?

Answer: Informally, there are no steps of computation to use,
so there's nothing to show. Formally, the fuss with step
indexing becomes vacuous; you need only prove the
side-conditions (here, that the values are folds).

Our new definition of candidates bakes in a downard-closure condition
with respect to the step indices:

Cand = { R ∈ Sub(ℕ×CVal×CVal) |
∀(n,v₁,v₂) ∈ R. ∀j<n. (j,v₁,v₂) ∈ R }

We only want to talk about relations that are downard-closed. is is
an instance of a more general paern we'll see when we get to (more
general) Kripke models. You bake downward closure over the Kripke
order into Cand. (Here, by analogy, j is the future world.)

V[bool]ρ := { (n,v₁,v₂) | v₁ = v₂ = true ∨ v₁ = v₂ = false }

Aside: ere are versions of the model where, at n=0, you
relate all values. (So that truth at step 0 is trivial.)

V[σ×τ]ρ := { (n,<v₁,v'₁>,<v₂,v'₂>) |
(n,v₁,v₂) ∈ V[σ]ρ ∧ (n,v'₁,v'₂) ∈ V[τ]ρ }

In this case: Because the type got smaller, the step-index
could remain the same. It didn't have to. We could have
replaced n's on the right by n-1's.

We're building monotonicity into the relation. Because



monotonicity is preserved inductively by the type, we don't
need to do anything in this case.

V[σ→τ]ρ := { (n,λx.e₁,λx.e₂) | ∀j≤n. ∀v₁,v₂.
(j,v₁,v₂) ∈ V[σ]ρ ⇒ (j,e₁[v₁/x],e₂[v₂/x]) ∈ E[τ]ρ }

Aside: We need only ordinary lambdas in the language.
Fix is a derived from once you have general recursive types.
(Aside from Dave: Derek explains the derived from on 18 Dec.
For the record:

fix f(x).e := λy.(unfold v) v y
where v := fold(λz.(λf.λx.e) (λy.(unfold z) z y))
and y, z ∉ fv(e).)

We're following Amal for the moment. (ere are other ways to
do this. We could have used (n,v₁,v₂) rather than forcing
related values to be lambdas.)

e type gets smaller. We don't need strict j<n as we did with
fold.

We quantify over all j's other than n so that the logical
relation is downward-closed. We didn't need to do it in the
case for pairs because we can prove inductively that we don't
need to. e point: When we go to prove validity, we'll need
j≤n at function types. We won't need it at pair types. is is
very common with Kripke models: You bake downard closure into
the definition at arrow types so your proof goes through.

V[∀α.τ]ρ :=  { (n,Λα.e₁,Λα.e₂) | ∀σ₁,σ₂ ∈ CTyp. ∀R ∈ Cand.
(n, e₁[σ₁/α], e₂[σ₂/α]) ∈ E[τ](ρ,α↦R) }

Note we don't need j. Since there's no negative occurrence
of the logical relation, we can push around n.

Etcetera.

Aside: ere's a question that comes up. We're trying to determine
whether two things are related at n steps. In ∀α.τ, we quantify over
Cand (relating stuff at arbitrary steps). We only care about the piece
of R that cares about n or fewer steps.

Next time, we'll define the relation on expressions and continuations.


