
— Stream example: Proof using admissibility

We can use admissibility to prove our streams example.

What Derek forgot last time: e admissibility condition is more general
that what we tried to use.

Recall:
τ := µα.1→(int × α)
ones : τ := fold (fix f ().<1,fold f>)
twos : τ := fold (fix f().<2,fold f>)

succ : τ → τ := fix f(s).
let c = unfold (s()) in
fold (λ().<1 + π₁c, f(π₂c)>)

Prop:
succ ones ≡ twos : τ.

We tried to set twos' := fold(λ().<1 + π₁<1,ones>, succ(π₂ <1,ones>)>)
and to prove twos' ≈ twos using admissibility (Sco induction).

We got stuck in the case for n=1, trying to relate the non-recursive
function “body of twos'” to the recursive function “body of twos”.

Idea: It was the non-recursiveness of twos' that screwed us up.

e point: When you prove such equivalences using Sco indution, you
need to work with recursive functions but you need not work with the
same recursive function on both sides.

Recall Pis' definition of the admissibility property:

∀n.(e[F_n/x],e'[F'_n/x]) ∈ E[τ]ρ
—
(e[F/x],e'[F'/x]) ∈ E[τ]ρ

In our proof aempt last time, we restricted ourselves to using this
at e = e'.

Today, we'll try the proof with e = x and e' = succ. (Successor is a
recursive function.)

Proof:

Set e := x
and e' := λ().<1+π₁<1,ones>, x(π₂<1,ones>)>.
With e', we've made a hole in twos' where succ had been.

Observe
twos = fold (e[foo/x]) ∧
twos' = fold (e'[succ/x]).

Set foo := fix f().<2,fold f>.

By the model and our unrolling of the µ last time,
STS: (e[foo/x],e'[succ/x]) ∈ E[1→(int × τ)]
⇐ (Admissibility)

∀n. (e[foo_n/x],e'[succ_n/x]) ∈ E[1→(int × τ)].

Proof by induction on n.

Case n = 0. Trivial. (Slightly less so than last time.)
e[foo₀/x] = foo₀ and foo₀()↑.
e'[succ₀/x] ↦∗ K[succ₀ ones]↑.

Case:
Assume IH for every k<n.
TS: (e[foo_n/x],e'[succ_n/x]) ∈ E[1→(int × τ)]
⇐(β)

(foo_n(),(e'[succ_n/x]) ()) ∈ E[int×τ].

Observe foo_n() ↦∗ <2,fold(foo_{n-1})>
and (e'[succ_n/x]) ()

↦∗ <2,succ_n ones>
↦∗ <2,fold (e'[succ_{n-1}]/x])>.

STS: (fold(foo_{n-1}), fold (e'[succ_{n-1}]/x])) ∈ V[τ]
⇐(IH)

(foo_{n-1},e'[succ_{n-1}]/x]) ∈ E[1→(int×τ)].
Q.E.D.

e coninductive proof was nicer. But for this example, we didn't need
the coinduction built into the model. In other words, for this
particular example, we didn't care that the model was defined with gfp
rather than lfp.

Aside: is proof justifies defining admissibility in terms of a pair
of distinct terms e and e'.

— Adding callcc to the language

e natural next step is to move toward general recursive types. We'll
not do that today.

We'll talk about another interesting feature—considered challenging to
reason about—that becomes simple to reason about with ⊤⊤-closure:
Continuations. is extension shows both the power and the limitations
of ⊤⊤-closure. We'll return to this point later.

We'll follow Dreyer, Neis, and Birkedal (JFP, 2012) except we'll write
cont(τ) as ¬τ for kicks.

Syntax:
Types τ ::= ⋯ | ¬τ
Terms e ::= ⋯ | callcc (x.e) | throw e₁ to e₂ | cont(K)
Values v ::= ⋯ | cont(K)
Evaluation Contexts K ::= ⋯ | throw K to e | throw v to K

Idea: Callcc binds x to the current continuation (injected
into a value form) and runs e. Cont(K) is the value form.
row “applies” one of these values.

Statics:

Δ; Γ, x:¬τ ⊢ e : τ
—
Δ; Γ ⊢ callcc (x.e) : τ

Intuition: Logically speaking, this rule says (¬A → A) → A.
True classically, not intuitionistically. Idea: Continuations
correspond to classical logic.

Δ; Γ ⊢ e₁ : τ
Δ; Γ ⊢ e₂ : ¬τ
—
Δ; Γ ⊢ throw e₁ to e₂ : σ

Intuition: From τ ∧ ¬τ, you can conclude anything.

Aside: If you want the language to have unique types, you can
annotate callcc and throw with types. (We've not bothered thus

far.) is'd be equivalent to concluding with ∀α.α rather than
σ except it wouldn't mix concepts.

Δ; Γ ⊢ K ÷ τ
—
Δ; Γ ⊢ cont K : ¬τ

Aside: In the paper we're following, they defined typing for
full contexts C. We've already defined Δ; Γ ⊢ K ÷ τ using the
specialization of those C rules to evaluation contexts K.

Dynamics:

K[callcc(x.e)] ↦ K[e[cont(K)/x]]

K[throw v to (cont K')] ↦ K'[v]

Note: We've ensured typing preservation, not type
preservation. e whole program has a type on either
side of ↦. But the types differ.

Note: We use β reductions locally during proofs
involving the model. With this reduction rule, we
cannot reduce whole programs. (In our proofs, we've
only ever used closure under expansion using β for
types like → that work in arbitrary contexts.)

— Adding callcc to the (⊤⊤-closed) model

NB this is a completely orthogonal extension. We don't have to change
E[] and K[].

Our existing proof of closure under expansion only used β-reductions
other than this one. is reduction obviously won't fit into that
lemma. But we can restrict the statement of the lemma to those notions
of β for which it works.

We have to extend the model. e blindingly obvious thing works:

V[¬τ]ρ := { (cont K₁,cont K₂) | (K₁,K₂) ∈ K[τ]ρ }

All the trivial metatheory lemmas (ought to) go through. We'll stop to
prove any that turn up in the compatibility lemma.

— Metatheory

Lemma (Compatibility for callcc):
Δ; Γ, x : ¬τ ⊢ e₁ ≈ e₂ : τ
—
Δ; Γ ⊢ callcc(x.e₁) ≈ callcc(x.e₂) : τ

Proof:
Let ρ ∈ D[Δ], (γ₁,γ₂) ∈ G[Γ]ρ, δ₁,δ₂ ∈ Δ → CTyp.
TS: (δ₁γ₁callcc(x.e₁), δ₂γ₂callcc(x.e₂)) ∈ E[τ]ρ
⇐ (callcc(x.δ₁γ₁e₁), callcc(x.δ₂γ₂e₂)) ∈ E[τ]ρ.

Let (K₁,K₂) ∈ K[τ]ρ.
TS: K₁[callcc(x.δ₁γ₁e₁)]↓↓K₂[callcc(x.δ₂γ₂e₂)].

Since K_i[callcc(x.δ_iγ_ie_i)] ↦ K_i[δ_iγ_ie_i[cont K_i/x]],
STS: K₁[δ₁γ₁e₁[cont K₁/x]]↓↓K₂[δ₂γ₂e₂[cont K₂/x]].

Set γ'_i := γ_i,x↦cont K_i.
WK: (K₁,K₂) ∈ K[τ]ρ
⇒ (cont K₁,cont K₂) ∈ V[¬τ]ρ
⇒ (γ'₁,γ'₂) ∈ G[Γ,x:¬τ]ρ.

By premise,
(δ₁γ₁e₁[cont K₁/x], δ₂γ₂e₂[cont K₂/x]) = (δ₁γ'₁e₁,δ₂γ'₂e₂) ∈ E[τ]ρ

⇒(Definition E[τ]ρ)
K₁[δ₁γ₁e₁[cont K₁/x]]↓↓K₂[δ₂γ₂e₂[cont K₂/x]].

Q.E.D.

Lemma (Compatibility for throw):
Δ; Γ ⊢ e₁ ≈ e'₁ : τ
Δ; Γ ⊢ e₂ ≈ e'₂ : ¬τ
—
Δ; Γ ⊢ throw e₁ to e'₁ ≈ throw e₂ to e'₂ : σ

Proof:
By the bind lemma, this reduces to showing:

If (v₁,v₂) ∈ V[τ]ρ
and (v'₁,v'₂) ∈ V[¬τ]ρ,
then (throw v₁ to v'₁, throw v₂ to v'₂) ∈ E[σ]ρ.

Let (K₁,K₂) ∈ K[σ]ρ.
TS: K₁[throw v₁ to v'₁]↓↓K₂[throw v₂ to v'₂].

Unrolling (v'₁,v'₂) ∈ V[¬τ]ρ, there exist (K'₁,K'₂) ∈ K[τ]ρ
satisfying

v'_i = cont K'_i (i ∈ {1,2}).

By the dynamic semantics of throw,
STS: K'₁[v₁]↓↓K'₂[v₂]
⇐ (K'₁,K'₂) ∈ K[τ]ρ ∧

(v₁,v₂) ∈ V[τ]ρ.
Q.E.D.

It's possible in this langauge to show a compatibility lemma for
cont(K). It's not really necessary since we don't want programmers to
write these things in their proofs. Avoiding it means our notion of
contextual equivalence doesn't cover that type. We could prove it. For
example, in the paper, Derek et al defined

Δ; Γ ⊢ K₁ ≈ K₂ ÷ τ := ∀ρ∈D[Δ], (γ₁,γ₂)∈G[Γ]ρ, δ₁,δ₂ ∈ Δ → CTyp.
(δ₁γ₁K₁,δ₂γ₂K₂) ∈ K[τ]ρ

and then proved the compatibility lemma

Δ; Γ ⊢ K₁ ≈ K₂ ÷ τ
—
Δ; Γ ⊢ cont K₁ ≈ cont K₂ : ¬τ.

— A small example

is looks rather contrived, but Derek doesn't have too many examples
of interesting proofs involving callcc. (We'll have beer examples
once we add state.)

is example is from Støvring and Lassen (POPL'07). It uses
admissibility and callcc.

Define:
τ := µα.(¬int)→α
φ₁ := fix f(x:τ):int. callcc(k.f((unfold x)k))
φ₂ := λy:τ.callcc(k.(fix f(x:τ):int. f((unfold x)k)) y).

Prop: φ₁ ≡ φ₂ : τ → int.

Proof idea:
Idea: We have to reduce to the point where both sides have a

k, then we'll have an admissibility proof.

Set F_k := fix f(x:τ):int. f((unfold x)(cont k))
so that φ₂ = λy:τ.callcc(k.F_k y)).

Let (v₁,v₂)∈V[τ], (K₁,K₂)∈K[int].
TS: K₁[φ₁ v₁]↓↓K₂[φ₂ v₂]
⇐(β)

K₁[φ₁ ((unfold v₁) (cont K₁))] ↓↓ K₂[F_{K₂} ((unfold v₂) (cont K₂))].

We'll pick this up next time.

— Pros and Cons

Point about callcc: It was easy to add continuations to our language,
but continuations change contextual equivalence. In giving the context
additional distinguishing power, we lose equivalences. Contexts with
callcc can make more distinctions than contexts without.

Point about ⊤⊤-closure: With ⊤⊤-closure, it was very easy to add
continuations to our model. at seems very nice, but it has a
down-side: ⊤⊤-closed models cannot prove some contextual equivalences.

e following example touches both points.

Example:

τ := (int → int)→int
e₁ := λf.f(0)+f(1)
e₂ := λf.f(1)+f(0).

en e₁ ≡ e₂ : τ in the language without callcc but not in the
language with callcc. (Exercise: Find a distinguishing context in the
presence of callcc.) Moreover, even without callcc, you cannot prove
the equivalence using our ⊤⊤-closed model. Such proofs boil down to
showing

K₁[f(0)] ↓↓ K₂[f(1)]
(e.g., via the bind lemma) while you want to have to prove

K₁[f(0)]↓↓K₂[f(0)].

