
Today we'll talk about recursive types. Before we do general recursive
types (probably next time), we'll start with strictly positive
recursive types. e reason: at's a fairly straightforward extension
of the model we have so far and will let us work out an interesting
example. We'll also extend the model with continuations (relatively
simple) and work on an example involving both extensions.

— Recursive Types (Strictly Positive)

Syntax:
Types τ ::= ⋯ | µα.τ
Terms e ::= ⋯ | fold e | unfold e
Values v ::= ⋯ | fold v
Eval.Ctxs K ::= ⋯ | fold K | unfold K

Syntactic restriction: α may occur only strictly positively in
µα.τ; that is, it only appears to the right of arrows.

Examples:
Nat := µα.1+α
Stream(τ) := µα.τ×(1 → α)

ere's another encoding of streams, oen seen:
Stream'(τ) := µα.τxα.

But we're in a CBV language. Stream'(τ) has no inhabitants.
(is'll become clear when we extend the model
and even when we write the typing rules.)

Statics:

Δ; Γ ⊢ e : τ[µα.τ/α]
—
Δ; Γ ⊢ fold e : µα.τ

Δ; Γ ⊢ e : µα.τ
—
Δ; Γ ⊢ unfold e : τ[µα.τ/α]

Dynamics:

K[unfold (fold v)] ↦r K[v]

How might we extend the model?

Intuitively, we'd like to write
V[µα.τ]ρ = { (fold v₁,fold v₂) | (v₁,v₂) ∈ V[τ[µα.τ/α]]ρ } (I wish)

is is not a valid definition: e type on the right has not goen
smaller and we're defining our LR by induction on τ.

A similar problem came up when we first tried to define V[∀α.τ]ρ.

We'll do a similar trick in this seing:

V[µα.τ]ρ := fp λR.{ (fold v₁,fold v₂) | (v₁,v₂) ∈ V[τ]ρ,α↦R }.

where fp represents some unspecified fixed point operator—either
greatest or least—(for reasons that will become clear (or unclear) in
a moment). e function in this defintion has type VRel → VRel. In
general, we can take a fixed point if the function is monotone.
(anks to the Tarski fixed point theorem.)

Recall that F monotone means “the more things that are in R, the more
are in f(R)”. For us, X ⊆ Y ⇒ F(X) ⊆ F(Y).

By the Tarski fixed-point theorem, we'll be able to conclude the
equation we want:

† V[µα.τ]ρ = { (fold v₁,fold v₂) | (v₁,v₂) ∈ V[τ]ρ,α↦V[µα.τ]ρ }

For this to work, we need our F : VRel → VRel monotone. (We might be
able to relax from “strictly positive” to “positive”; eg, permiing
types like (int → α) → α.)

Aside: With equi-recursive types, things are not so easy. You have a
non-trivial syntactic type equality µα.τ ≡ τ[µα.τ/α]. (For all of our
languages so far, we have no conversions at the type level. Equi- as
opposed to our iso-recursive types don't work that way.) To do this
properly, you have to define type equality co-inductively. In the
seing of this simple language, equi-recursive types are not a big
deal. Type-checking is decidable and admits a simple algorithm.

So, how do we show this desired monotonicity property?

estion: What's fp?
Answer:

We're punting on fp (= either least or greatest fixed point)

because Derek cannot tell if it maers. Derek and Neel
conjecture that in our language, lfp and gfp coincide.

Conjecture: e least and greatest fixed points coincide.

Evidence: Regardless of which one you choose, just based on †
and the Sco Induction Principle for fixed points, you can do
“coinductive reasoning” about types like streams. You don't
have to rely on this being the greatest fixed point to do such
reasoning. With least fixed points, you can rely on the
implicitly coinductive Sco Induction Principle.

ere's more online. Neel happens to have blogged about this a
few weeks ago:

hp://semantic-domain.blogspot.de/2012/11/polymorphism-and-
limit-colimit.html

For specificity, we'll use the following definition:

V[µα.τ]ρ := gfp λR.{ (fold v₁,fold v₂) | (v₁,v₂) ∈ V[τ]ρ,α↦R }.

Derek is unsure how this encoding of recursive types relates to the
Church encodings of inductive and coinductive types in (CBV) System F.

Aside: Without recursion in our term language, adding recursive types
our way makes lile sense. With the Church-encodings, the iteration
is built into the encoding.

— Montonicity

eorem (Monotonicity of the LR):
If α positive in τ, then
i. V[τ]ρ, E[τ]ρ, K[τ]ρ well-defined
ii. X ⊆ Y ⇒ V[τ]ρ,α↦X ⊆ V[τ]ρ,α↦Y
iii. X ⊆ Y ⇒ K[τ]ρ,α↦Y ⊆ K[τ]ρ,α↦X.
iv. X ⊆ Y ⇒ E[τ]ρ,α↦X ⊆ E[τ]ρ,α↦Y

Aside from Dave:
In class, these were numbered (0,i,iii,ii).

While taking my notes, I added (v) X ⊆ Y ⇒ fp(F(X)) ⊆ fp(F(Y))
where F : VRel → VRel := λR.{ (fold v₁,fold v₂) | (v₁,v₂) ∈ V[τ]ρ,α↦R }.
Derek proved the inclusion he needs in the µβ.σ case.

Proof:
By lexiographic induction, first on τ and then on the order
[i < ii < iii < iv].

Boring case τ = τ₁×τ₂:
Let (<v₁,v₂>,<v'₁,v'₂>) ∈ V[τ₁×τ₂]ρ,α↦X.
WK: (v₁,v'₁)∈V[τ₁]ρ,α↦X

(v₂,v'₂)∈V[τ₂]ρ,α↦X
By IH, change X to Y

(<v₁,v'₁>,<v₂,v'₂>) ∈ V[τ₁×τ₂]ρ,α↦Y.

Interesting Case τ = τ₁→τ₂:
Let (v₁,v₂) ∈ V[τ₁→τ₂]ρ,α↦X
Let (v'₁,v'₂) ∈ V[τ₁]ρ,α↦Y
TS: (v₁ v'₁,v₂ v'₂) ∈ E[τ₂]ρ,α↦Y.

Since α does not appear in τ,
WK: (v'₁,v'₂) ∈ V[τ₁]ρ,α↦Y
⇒ (Irrelevance)

(v'₁,v'₂) ∈ V[τ₁]ρ,α↦X.
By assumption

(v₁ v'₁,v₂ v'₂) ∈ E[τ₂]ρ,α↦X.
By IH, we're done.

(Failed) Interesting Case τ = µβ.σ:
Let (fold v₁,fold v₂) ∈ V[µβ.σ]ρ,α↦X.
So (v₁,v₂) ∈ V[σ]ρ,α↦X,β↦(V[µβ.σ]ρ,α↦X)
= V[σ]ρ,β↦(V[µβ.σ]ρ,α↦X),α↦X.
By IH,
= V[σ]ρ,β↦(V[µβ.σ]ρ,α↦X),α↦Y.
⋯ oops. ere's still an X ⋯

Interesting Case τ = µβ.σ:
Let (fold v₁,fold v₂) ∈ V[µβ.σ]ρ,α↦X
= gfp(λR. {(fold w₁,fold w₂) | (w₁,w₂) ∈ V[σ]ρ,α↦X,β↦R }).

STS:
gfp(λR. {(fold w₁,fold w₂) | (w₁,w₂) ∈ V[σ]ρ,α↦X,β↦R }).

⊆ gfp(λR. {(fold w₁,fold w₂) | (w₁,w₂) ∈ V[σ]ρ,α↦Y,β↦R }).
is follows from the IH; the claim

If F ≤ G (ie, ∀X. F(X) ⊆ G(X)),
then gfp F ⊆ gfp G;

and basic properties of laices.

ere are more boring cases; they should go through.

Argument for K, part (iii):
Aside: In class, Derek dealt with things out of order (E[]
before K[]).

Let (v₁,v₂) ∈ V[τ]ρ,α↦X
WK: (K₁,K₂) ∈ K[τ]ρ,α↦Y
TS: K₁[v₁]↓↓K₂[v₂]
⇐ (By IH part (i))

(v₁,v₂) ∈ V[τ]ρ,α↦Y.

Argument for E, part (iv):

Let (K₁,K₂) ∈ K[τ]ρ,α↦Y
WK: (e₁,e₂) ∈ E[τ]ρ,α↦X
TS: K₁[e₁]↓↓K₂[e₂]
⇐ (By IH part (iii))

(K₁,K₂)∈K[τ]ρ,α↦X.

Q.E.D.

— Example: Stream types

Greatest fixed points give you a coinduction principle.

e idea behind Tarski's fixed point theorm:
TS: x ∈ gfp F
STS: x ∈ A ⊆ F(A).

(Called a post-fixed point of F. Sometimes wrien “A is
F-consistent”.)

In other words, if you assume the things in A are related, then in
fact they behave in a related way. You get to make that assumption
(the thing you're proving) in a coinductive way. Tarski's theorem says
the gfp is the union of all such A's. (Kleene's starts with the full
set and takes the intersection at the limit. It's only for continuous
functions.)

Define:
τ := µα.1→(int × α)
ones : τ := fold (fix f().<1,fold f>)
twos : τ := fold (fix f().<2,fold f>)

succ : τ → τ := fix f(s).
let c = unfold (s()) in
fold (λ().<1 + π₁c, f(π₂c)>)

Prop:
succ ones ≡ twos : τ.

Proof:
First, we evaluate the le hand side to a value so we can
work in the value relation.

succ ones
↦∗ let c = <1,ones> in fold (λ().<1 + π₁c, f(π₂c)>
↦∗ fold (λ().<1+π₁<1,ones>, succ(π₂<1,ones>))
=: twos'.

STS: (twos',twos) ∈ V[τ] = V[µα.1→(int × α)].

(Aside: We could have reasoned with ≡ up front to deal with
these β reductions. In the middle of a proof, you can't
generally do that. However with models closed under
ciu-equivalence (such as the typed model) we can oen use
ciu-equivalence to β-reduce open terms mid-proof.)

We'll use Tarski's fixed point theorem. Even if we had used
the least fixed point, we could still do the proof with our
unrolling property †.

So we'll pick x := (twos',twos),
pick A := { (twos',twos') },
F := λR. {(fold v₁,fold v₂) | (v₁,v₂) ∈ V[σ]α↦R }.
where σ := 1→(int × α)
STS: A ⊆ F(A)
TS: (λ().<1+π₁<1,ones>, succ(π₂<1,ones>),

 fix f().<2,fold f>) ∈ V[σ]α↦A.
⇐ (β reducing to values)

(<2,twos'>,<2,twos>) ∈ V[int×α]α↦A
⇐ (twos',twos) ∈ V[α]α↦A = A.

Q.E.D.

Alternative Non-proof (Unfolding τ and applying the Sco Induction
Principle):

Define some notation
twos =: fold F

twos' =: fold F'
STS: (F',F) ∈ V[1→(int × τ)].

How does Sco Induction work?

To show two functions are related, it suffices to show
all their finite approximations are related.

STS: ∀n. (F'_n,F_n) ∈ V[1→(int×τ)].

By induction on n.

Case 0: Divergent function on both sides. Trivial.

Case:
Assume ∀k<n. (F'_k,F_k) ∈ V[1→(int×τ)].
TS: (F'_n,F_n) ∈ V[1→(int×τ)].

Applying these to related unit values, we get bodies
that must be shown related:
STS: (<2,twos'>, <2,fold F_{n-1}>) ∈ E[int×τ].

Since twos' is not recursive, all its approximiations
except F'_0 are identical. In particular, twos' = fold
F'_{n-1}.

⋯ Damn: We can't do the case for n=1 as there's no way
to li F'_0 to F'_1. ⋯

End-Non-Proof

Derek thinks we can fix the preceding non-proof. He sees two potential
fixes.

e more involved way:
Prove a one-sided version of Sco Induction allowing us to
keep F' fixed and only consider approximations F_i of F.

Nevermind: is won't work for n=1 (thanks Beta).

e other approach: HW for Tuesday.
You might need to transitively compose some proofs.

e point is not this example. It's to show that we don't rely
on "gfp".

Idea: We have
twos = fold F
twos' = fold F'

Define a twos'' between the two, prove directly that (twos',
twos'') are related and use sco induction to prove that
(twos'', F) are related.

— Aside: Stuck states

is came up aer class.

Our notion of cotermination

e↓↓e' iff (e↓ ⇔ e↓)

permits stuck states. ey cause problems in the untyped model. For
example, the proof of

(∀v₁,v₂. (v₁,v₂) ∈ E[τ₁]ρ ⇒ (v₁,v₂) ∈ V[τ₁]ρ)
∧ (∀v₁,v₂. (v₁,v₂) ∈ E[τ₂]ρ ⇒ (v₁,v₂) ∈ V[τ₂]ρ)
⇒ (∀v₁,v₂. (v₁,v₂) ∈ E[τ₁×τ₂]ρ ⇒ (v₁,v₂) ∈ V[τ₁×τ₂]ρ)

does not go through.

Fix: Define cotermination to rule out stuck states. One alternative:

e↓↓e' :⇔ (e↓ ∧ e'↓) ∨ (e↑ ∧ e'↑)

where e↑ (read “e diverges”) means e reduces indefinitely.

