
Today Derek will sketch his proof for the unwinding theorem.

Some time soon, he will try to show how we use the LR to reason about
equivalences in the presence of recursion. (Pis doesn't much /use/
the LR in his chapter.)

Soon, Derek'll introduce types over which you'd write recursive
programs. We'll talk about inductive and coinductive types. Derek
doesn't know of a particularly clear presentation of this. On Tuesday,
he'll extend the langauge and model with primitive inductive and
coinductive types.

Today, we'll take a detour. We'll extend the language and model with
continuations (in particular, call/cc).

— Long proofs and the Unwinding eorem

Nobody completed the homework.

One of the things Derek is trying to teach is how to “separate the
wheat from the cha”. In doing a proof, try to identify what are the
interesting bits and what's the boring stuff (that should be skipped).

Derek believes the basic argument for the Unwinding eorem is
straightfoward.

e phrases “observe that φ” and “note that φ” in published proofs
usually mean someone's intuition says φ is true, but they've not
proven it as it's too boring. (In making this observation, Derek is
just being honest.)

eorem (Unwinding): Let F = fix f(x).hat(e).
1. If e[F/]↓, then ∃n. e[F_n/]↓.
2. If e[F_n/]↓, then e[F/]↓.

Proof:
Intuition (1): Suppose e[F/] ↦∗ v in n steps, then F was
unrolled at most n times, so e[F_n/] ought to terminate.

Intuition (2): e termination behavior of F_n is worse than
that of F.

Derek's idea for proving both involves essentially the same
argument.



is becomes tricky as you do it operationally. You'd like to
reason as if you had a simulation relation between F and F_n.
But F_{n+1} unrolls to F_n.

We'll set up a simulation relation. A kind of congruence
permiing the two programs to differ in a limited way.

ere are two directions of approximation.

For one, define the relation

e₁ ⊒n e₂ :⇔
e congruence closure of

F ⊒n F_m if m ≥ n.
F_m ⊑n F if m ≥ n.

Congruence closure: e smallest relation closed under the
congruence rules.

Pf of (1). Suppose e[F/] ↓m (⇔ takes exactly m steps to
terminate).

We'll generalize to the following.
(†) ∀k.∀n. n>k ∧ e₁ ⊒n e₂ ∧ e₁ ↓k ⇒ e₂↓.

If we can prove this, then instantiating it with k=m, n=m+1,
e₁ = e[F/], e₂ = e[F_n/] reduces our proof burden to e₁ ⊒n
e₂.

Observe that e[F/] ⊒n e[F_n/] since ⊒n is a congruence (and
is substitutive, etcetera).

Proof of (†).
ere's a boring part and an interesting part. (We'll have an
“observe” in our proof.)

Proof by induction on k.

Case k = 0:
e₁ a value. since e₁ ⊒n e₂, observe that e₂ value.

Case k = k'+1.



en e₁ ↦ e'₁ ↓k'.

Case (the interesting case):
e₁ = K₁[F v₁] ∧
e₂ = K₂[F_m v₂]

where
K₁ ⊒n K₂ ∧
v₁ ⊒n v₂ ∧
m ≥ n.

en e'₁ = K₁[hat{e}[F/][v₁/x]].

e₂ ↦ e'₂ = K₂[hat{e}[F_{m-1}/][v₂/x]].

Aside: We've reduced k to k'. We've reduced m
to m-1. We've got to reduce n.

To instantiate the IH, pick n' := n-1
and k' := k-1.
To apply the IH,
TS: e'₁ ⊒n' e'₂.
WK: K₁ ⊒n K₂ ⇒ K₁ ⊒n' K₂.
WK: v₁ ⊒n v₂ ⇒ v₁ ⊒n' v₂.
WK: F ⊒{n-1} F_{m-1} ⇐ m-1 ≥ n-1.

By induction, e'₂↓ ⇒ e₂↓.

Case (some other β reduction):
e₁ = K₁[v₁ v'₂]
e₂ = K₂[v₂ v'₂]

Where all these things are congruences:
K₁ ⊒n K₂
v₁ ⊒n v₂
v'₁ ⊒n v'₂

WK: v₁ = fix f(x).hat{e₁}
v₂ = fix f(x).hat{e₂}

where hat{e₁} ⊒n hat{e₂}

By assumption
e₁ ↦ K₁[hat{e₁}[v₁/][v'₁/x]] ↓{k-1}

Observe
e₂ ↦ K₂[hat{e₂}[v₂/][v'₂/x]].



TS: K₂[hat{e₂}[v₂/][v'₂/x]] ↓.

By properties of CC,
hat{e₂}[v₂/][v'₂/x] ⊒n hat{e₂}[v₂/][v'₂/x].

TS: k-1 < k < n.

Pick k' = k-1, n' = n. (Deepak says n' = n-1.)
By induction: K₂[hat{e₂}[v₂/][v'₂/x]] ↓.

Case (other cases): Similar to the previous case.
Q.E.D.

— Homework for next Tuesday: Prove (2).

— Contextual equivalence at existential types

Recall the brain teaser:

τ = ∃α.(α→α)→bool
v₁ = pack [unit, λf. f() = ()] as τ
v₂ = pack [bool, λf. f true = true ∧ f false = false] as τ

e false assumption: e context has no access to α.

C = unpack • as [α,x] in (x : (α → α) →bool)
x (λy:α. (we now have a y:α and can fool the thing!)

if x (λz.y) then y else ⊥)

e point: Contextual (in)equivalence for arbitrary values of
existential type can be nontrivial.

Here's a step toward a new brain teaser:

τ = ∃α.(α→α)→bool
v₁ = pack [int, λf. f(0) = 0 ∧ f(1) = 1] as τ
v₂ = pack [bool, λf. f true = true ∧ f false = false] as τ

is can be proven using representation independence.
Pick R = { (0,true), (1,false) }.
en f ∈ [R→R].

Now consider

τ = ∃α.(α→α)→bool



v₁ = pack [int, λf. f(0) = 0 ∧ f(1) = 1 ∧ f(2) = 2] as τ
v₂ = pack [bool, λf. f true = true ∧ f false = false] as τ

Do we have v₁ ≡ v₂ : τ or not?

Pis' chapter includes one or two versions of our original example.

e verison in System F with fix:

τ = ∃α. (α→bool) → bool.
v₁ = pack [void, λf.⊥] as τ
v₂ = pack [bool, λf.(f (true) ≠ f (false)) orelse ⊥] as τ

Idea: e only thing the context can supply is the divergent function
or a constant function. In either case v₂'s function always diverges.

We'll see v₁ ≡ v₂ : τ. (‡)

[Aside for Neel: A version in System F:
τ = ∃α. (α→bool) → bool.
v₁ = pack [void, λf.false] as τ
v₂ = pack [bool, λf.f (true) ≠ f (false)] as τ
We could show v₁ ≡ v₂ : τ.]

e key to proving ‡ simply is to use ≡'s transitivity.

Our untyped ≈ fails to be transitive.
But we know: e₁ ≈ e₂ ∧ e₂ ≈ e₃ ⇒ e₁ ≡ctx e₃.

So can we come up with intermediate expressions helping us morph v₁ to
v₂?

A good first step: Change void to bool.

τ = ∃α. (α→bool) → bool.
v'₁ = pack [bool, λf.⊥]
v₁ = pack [void, λf.⊥]

v'₂ = pack [bool, λf.(f (true) ≠ f (true)) orelse ⊥]
v₂ = pack [bool, λf.(f (true) ≠ f (false)) orelse ⊥]

To show v'₁ ≈ v₁, pick R = ∅ (the only choice).

To show v'₂ ≈ v₂, pick R = {(true,true), (false,true)}.



f₁ true ↓ v and f₂ true ↓ v
f₁ false ↓ v' and f₂ true ↓ v'
by determinism of evaluation, v = v'.
so f₁ true = f₁ false. so the v'₂ always diverges.

is is a much shorter proof than the one Pis offers.

is example also serves as a counterexample to the transitivity of
our untyped logical relation.

It's also a counterexample to the transitivity of the typed /value/
logical relation. e typed term relation is transitive. e typed
value relation is not transitive at existential types.

(Aside: e ⊤⊤-closed term relation coincides with contextual
equivalence. But you do representation independence proofs in the
value relation.)

— Coincidence for existentials

Let's try to do the proof of the coincidence property for
existentials, to see where things break down.

Idea: Clients of an abstract datatype may be unable to differentiate
two different implementations for “very bizzare reasons”.

Idea: Knowing two existentials are contextually equivalent doesn't
tell you very much. It could be just a syntactic fact that happens to
be true because the type system fails to make some distinction.
(Semantically, you'd like to say two things are contextually
equivalent if there's a representation independence proof connecting
them.)

We'll start by stating this in a way that can't be right.

We want to show “something like”:
If (v₁,v₂) ∈ E[∃α.τ]ρ,
then (v₁,v₂) ∈ V[∃α.τ]ρ.

We really want to put some condition on τ. We want its representatives
to be ⊤⊤-closed. We might state this (fuzzily):

∀ρ. ∀v₁,v₂. (v₁,v₂) ∈ E[τ]ρ ⇒ (v₁,v₂) ∈ V[τ]ρ'

To make progress, suppose we're doing this for the typed relation. We



know v_i = pack [σ_i, w_i] as ⋯ for i ∈ {1,2}.

Inuitively: ere's nothing in the structure of these packs that tells
us what relation to use.

You'll find in the homework a similar problem with sum types (but it's
solvable). In the case for sums, you can say ∃i∈{1,2} such that you
can use inj_i in both. e choice of 1, 2 is evident in the structure
of the term. Put another way, the logical relation is “proof relevant”
whereas with existentials it's “proof irrelevant”.

Aside: ere's recent work on “proof relevant logical relations”
trying to address this issue with existentials (warning: categories):

Nick Benton, Martin Hoffmann, and Vivek Nigam.
Abstract Effects and Proof-Relevant Logical Relations.
Dra, 2012.
hp://research.microso.com/en-us/um/people/nick/setoids.pdf


