
Modified: 20121203

We'll start with the proof of the triangle theorem (≡u = ≈ = ≡ctx).

We'll contrast our setup with Pis'.

We'll return to some questions raised a few lectures ago about
admissibility.

We'll maybe consider some examples involving existential types.

— Completeness of the logical relation

Recall: ⊢ γ : Γ :⇔ ∀(x:τ)∈Γ. ⊢ γx : τ.
Notation: ⊢ δ : Δ :⇔ δ ∈ Δ → CTyp.

Recall our definitions:
e₁ ≡u e₂ : τ if ∀K÷τ. K[e₁] ↓↓ K[e₂]

∧ ⊢ e₁ : τ ∧ ⊢ e₂ : τ.

Δ; Γ ⊢ e₁ ≡u e₂ : τ if
∀δ : Δ, γ : δΓ. ⊢ δγe₁ ≡u δγe₂ : δτ ∧
Δ; Γ ⊢ e₁ : τ ∧ Δ; Γ ⊢ e₂ : τ.

eorem:
Δ; Γ ⊢ e₁ ≡ctx e₂ : τ ⇒
Δ; Γ ⊢ e₁ ≡u e₂ : τ.

Proof:
(For Pis, who bakes substitutivity into the definition of
congruence, this is trivial. We didn't.)

Let δ:Δ and γ : δΓ and K÷δτ.
TS: K[δγe₁] ↓↓ K[δγe₂].

We want to reduce or expand δγe_i so we end up
with something of the form K'[e_i] on either side.
(Reductions and expansions work for proving
cotermination.)

Suppose Δ = α₁,⋯,α_n and Γ = x₁:τ₁, ⋯, x_m:τ_m.
K[δγe₁] ∗↤ K[(Λα₁. ⋯. Λα_n.λx₁. ⋯. λx_m. e₁)[δα₁]⋯[δα_n](γx₁)⋯(γx_m)]
K[δγe₂] ∗↤ K[(Λα₁. ⋯. Λα_n.λx₁. ⋯. λx_m. e₂)[δα₁]⋯[δα_n](γx₁)⋯(γx_m)].

TS: K[δγe₁] ↓↓ K[δγe₂]



STS: K[(Λα₁. ⋯. Λα_n.λx₁. ⋯. λx_m. e₁)[δα₁]⋯[δα_n](γx₁)⋯(γx_m)] ↓↓
K[(Λα₁. ⋯. Λα_n.λx₁. ⋯. λx_m. e₂)[δα₁]⋯[δα_n](γx₁)⋯(γx_m)].

is follows from ≡ctx: Applications of the compatibility lemmas.

(ese ⋯'s can be replaced by an inductive definition.)
Q.E.D.

eorem:
Δ; Γ ⊢ e₁ ≡u e₂ : τ ⇒ Δ; Γ ⊢ e₁ ≈ e₂ : τ.

Proof:
By FTLR, Δ; Γ ⊢ e₁ ≈ e₁ : τ.
By CIU transitivity, Δ; Γ ⊢ e₁ ≈ e₂ : τ.

Q.E.D.

eorem (CIU-equivalence-respecting property aka “CIU-transitivity”):
If Δ; Γ ⊢ e₁ ≈ e₂ : τ
and Δ; Γ ⊢ e₂ ≡u e₃ : τ
then Δ; Γ ⊢ e₁ ≈ e₃ : τ.

Proof:
Let ρ∈D[Δ] and (γ₁,γ₂) ∈ G[Γ]ρ.
TS: (ρ₁γ₁e₁, ρ₂γ₂e₃) ∈ E[τ]ρ.
By first assumption,
WK: (ρ₁γ₁e₁,ρ₂γ₂e₂) ∈ E[τ]ρ.
Instantiating with ρ₂ and γ₂ and the second assumption,
WK: ρ₂γ₂e₂ ≡u ρ₂γ₂e₃ : ρ₂τ.
By CIU-transitivity for closed terms,
we're done.

Q.E.D.

eorem (CIU-transitivity for closed terms):
If (e₁,e₂) ∈ E[τ]ρ
and ⊢ e₂ ≡u e₃ : ρ₂τ
then (e₁,e₃) ∈ E[τ]ρ.

Note that we need the syntactic typing assumptions in ρ to even state
this theorem.

Proof:
Let (K₁,K₂) ∈ K[τ]ρ.
TS: K₁[e₁] ↓↓ K₂[e₃].

By first assumption,
WK: K₁[e₁] ↓↓ K₂[e₂].



By second assumption,
WK: K₂[e₂] ↓↓ K₂[e₃]
⇐ K₂÷ρ₂τ.
But that's a side condition baked into ρ.

By transitivity of ↓↓,
we're done.

Q.E.D.

Aside: e proofs we just gave assume the language has type and term
abstractions. We didn't even look at the defintion of V[–]ρ. Most
languages have such abstractions. e moment you do ⊤⊤-closure, you
get completeness for free. (But completeness doesn't help. Somehow it
doesn't make it easier to prove anything.)

— Other uses of CIU-equivalence

Aside: With five minutes thought, it does not seem to be the case that
a direct proof ≡ctx ⇒ ≈ is impossible. We may not need ≡u for
completeness of the LR. Derek seems to recall there is some reason to
go with ≡u; perhaps related to a more complicated model.

≡u serves other purposes: e CIU-theorem: ≡u ⊆ ≡ctx.

From the CIU-theorem we get simple syntactic reduction/expansion
properties for free. (Honsell-Mason-Smith-Talco, 1995).

Sketchy Corollary of the CIU-theorem (See Pis, 7.5.8)[Conversions]:
– Δ; Γ ⊢ (fix f(x).e)v ≡ctx e[fix f(x).e/][v/x] : τ

– let x₁ = e₁ in (let x₂ = e₂ in e) ≡ctx
let x₂ = (let x₁ = e₁ in e₂) in e : τ
⇐ x₁ ∉ fv(e).

— Pis' extensionality theorem

Now we're ready to prove some theorems that seem to need the typed
model.

Let's prove (part o) Pis' extensionality theorem. Derek thinks its
sort of misnamed. Several properties are called extensionality.

eorem (Pis, 7.7.1)[Extensionality for values]:



Part 2:
(Suppose f, f' ∈ CVal.)
⊢ f ≡ f' : σ → τ iff ∀v:σ. ⊢ f v ≡ f' v : τ.

Proof:
(⇒)
Observe, by equivalence of ≡ctx and ≈,

⊢ f ≡ f' : σ → τ
iff

∀v ≡ v' : σ. f v ≡ f' v' : τ (Intermediate characterization.)
⇒ ∀v:σ. ⊢ f v ≡ f' v : τ.

(⇐)
Suppose v≡v' : σ and ∀v'':σ. f v'' ≡ f' v'' : τ
TS: ⊢ f v ≡ f' v : τ.

Instantiating,
WK: ⊢ f v ≡ f' v : τ.
⇒ (≡ a congruence)

⊢ f v ≡ f' v' : τ.
Q.E.D.

— Comparing our approach to Pis' approach

How does Pis do things?

He does not split between a value relation and a term relation.
Everything is one big relation. So here's a lile guide to reading
Pis.

When he wants to talk about the values that come from his LR, he
restricts to values.

Roughly, for example

(†) E[σ→τ]ρ := E[σ]ρ → E[τ]ρ

where → is the relational action of the arrow type constructor. Pis
proves several theorems (that are at first glance hard to parse) that
boil down to “his approach and our approach coincide”.

He shows (Lemma 7.6.13) roughly:
(7.20) E[σ]ρ → E[τ]ρ = V[σ]ρ → E[τ]ρ

What Pis writes, literally:



fun ((r₁)^{vst}, (r₂)^{st}) = fun (r₁, (r₂)^{st}).

Pis' more abstract approach makes it easier to prove certain closure
properties. Our approach seems somehow more direct.

is kind of theorem is necessary for Pis because he defines the LR
like †, but he wants to use it like (7.20).

Note the E-only relations make a lot of sense when you begin with a
call-by-name seing. You certainly want function arguments to be
terms, not values. (To be fair, that's where Pis started.)

He shows roughly:
(7.19) (v₁,v₂) ∈ V[σ→τ]ρ ⇔ (v₁,v₂) ∈ E[σ→τ]ρ

What Pis writes:
fun (r₁, (r₂)^{st}) ⇔ fun (r₁, (r₂)^{st})^{stv}

is came up when we proved Admissibility. We used ⊤⊤-closure to prove
admissibility. e question was “does admissibility hold for E-related
recursive functions in the value relation”? e answer is no.

At the end of the day, you can prove a similar thing (⊤⊤-closure adds
nothing) at every type except type variables.

We could change the model so that only ⊤⊤-closed relations are
candidates, fixing type variables.

However, we have a fundamental problem with existentials. If you know
two existentials are contextually equivalent, you cannot conclude
much. (ey may be equivalent for some “really disturbing reasons”.)

e following result holds (probably) for both the untyped and typed
models. We'll drop the typing side conditions.

Lemma (Half of coincidence at function type):
(v₁,v₂) ∈ E[σ→τ]ρ ⇒ (v₁,v₂) ∈ V[σ→τ]ρ.

Proof:
Suppose (v₁,v₂) ∈ E[σ→τ]ρ.
TS: (v₁,v₂) ∈ V[σ→τ]ρ.

Let (v'₁,v'₂) ∈ V[σ]ρ.
TS: (v₁ v'₁, v₂ v'₂) ∈ E[τ]ρ.



Let (K₁,K₂) ∈ K[τ]ρ.
TS: K₁[v₁ v'₁] ↓↓ K₂[v₂ v'₂].

Set K'_i := K₁[• v'_i].
STS: (K'₁,K'₂) ∈ K[σ→τ]ρ.

Let (v''₁,v''₂) ∈ V[σ→τ]ρ.
TS: K'₁[v''₁] ↓↓ K'₂[v''₂]
⇔ K₁[v''₁ v'₁] ↓↓ K₂[v''₂ v'₂].

WK: (v''₁,v''₂) ∈ V[σ→τ]ρ ∧
(v'₁,v'₂) ∈ V[σ]ρ

⇒ (v''₁ v'₁, v''₂ v'₂) ∈ E[τ]ρ.

WK: (K₁,K₂) ∈ K[τ]ρ ∧ (v''₁ v'₁, v''₂ v'₂) ∈ E[τ]ρ
⇒ We're done.

Q.E.D.

— HW: Due next Tuesday.

Prove the coincidence lemmas for product and sum types. (ey aren't
completely trivial and you get some practice with ⊤⊤-closure proofs.)

Suppose
i. ∀v₁,v₂. (v₁,v₂) ∈ E[σ]ρ ⇒ (v₁,v₂) ∈ V[σ]ρ
ii. ∀v₁,v₂. (v₁,v₂) ∈ E[τ]ρ ⇒ (v₁,v₂) ∈ V[τ]ρ

Prove:
1. ∀v₁,v₂. (v₁,v₂) ∈ E[σ×τ]ρ ⇒ (v₁,v₂) ∈ V[σ×τ]ρ
2. ∀v₁,v₂. (v₁,v₂) ∈ E[σ+τ]ρ ⇒ (v₁,v₂) ∈ V[σ+τ]ρ

Recall:
V[σ×τ]ρ := { ((v₁,v'₁), (v₂,v'₂)) | (v₁,v₂) ∈ V[σ]ρ ∧ (v'₁,v'₂) ∈ V[τ]ρ }
V[σ+τ]ρ := { (inj₁ v₁, inj₁ v₂) | (v₁,v₂) ∈ V[σ]ρ }

∪ { (inj₂ v₁, inj₂ v₂) | (v₁,v₂) ∈ V[τ]ρ }

— Counterexamples to coincidence at exisential types.

It's nice to have counterexamples.

Pis' language includes a real void type. Our language has a value
Λα.⊥ : ∀α.α (because our intro form is Λα.e). For reasons that are
unexplained (except for the following example going through), Pis
applies the ML value restriction. His intro form is Λα.v rather than



Λα.e.

We could get the effect of a value restriction by adding a void type
satisfying

V[void]ρ := ∅.

Pis' argument for why this is a counterexample probably depends a
bit on his use of a typed model. We will probably be able to work
around that.

e counterexample: We want two packaged values that are contextually
equivalent. So in the (typed) term relation, they're logically
related. But there will be no relation between their internal data
representations such that the operations preserve it. In other words,
the representation independence property will break down. In other
words, they won't be in the value relation.

τ := ∃α.(α→bool)→bool
v₁ := pack [void,λf.⊥] as τ
v₂ := pack [bool,λf.

if (f true) then
if (f false) then ⊥ else true

else ⊥] as τ

Speaking ML:
v₂ := pack [bool,λf.

((f true) = true andalso
(f false) = false) orelse ⊥] as τ.

Intuition: e context cannot pass in the identity function. e guy
on the right diverges unless it receives the identity function. So the
two are contextually equivalent.

But v₁ and v₂ cannot be in the value relation. We'd have to have a
relation between types void and bool. e only candidate relation
(since void is empty) is the empty relation. If we plug in the empty
relation, then we have to show that the functions
† (λf.⊥,

λf.if (f true) then (if (f false) then ⊥ else true) else ⊥) ∈ 
V[(α→bool)→bool]α↦∅.

We'll suppose † to arrive at a contradiction:
(λx.⊥, λx.x) ∈ V[α→bool]α↦∅.



Vacuously, any two functions of the right type are related at
V[α→bool]α↦∅. But applying the functions in †, you get (diverge, true)
so the terms † are not related.

ere's another counterexample (a real brain teaser) that doesn't
depend on the void type. Consider:

τ = ∃α.(α→α)→bool
v₁ = pack [unit, λf. f() = ()] as τ
v₂ = pack [bool, λf. f true = true ∧ f false = false] as τ

e context has no constructors for type α. It can only produce the
identity and divergent functions as arguments f. In either one, we
call f. If it's divergent, they both diverge. If it's the identity,
they both return true.

Yet, amazingly,
¬(v₁ ≡ v₂ : τ). (Aribution: Summi)

Challenge: Find a distinguishing context.

e point of these example is to show the subtlety of contextual
equivalence. is is the first example Derek came up with (based on
the original example in Pis 2005).

e point: ere are only four possible interpretations of α:
(∅, { ((),true) }, { ((),false) }, { ((),true), ((),false) } }

and none of them work.

Aside: Pis' example is a prey clear proof of why transitivity does
not hold for the untyped logical relation. We can prove that v₁ and v₂
are contextually related by transitively chaining together some
logical relations proofs (that's a useful way to prove contextual
equivalence).


