
Modified: 20121203

— Bind lemma

We'll start with the bind lemma from last time. We'll see how it
simplifies these compatibility proofs.

Here's a statement of the bind lemma at the level of the open logical
relation (rather than at the level of the model). is maers in the
compatibility proofs where we want to reason with open expressions.

Idea: e bind lemmas is a way of showing that the seemingly
complicated structure of these compatibility proofs (eg, application)
can be abstracted away. We can avoid a lot of reasoning directly in
the model.

Lemma (Bind):
If Δ; Γ ⊢ e₁ ≈ e₂ : σ
and Δ; Γ, x:σ ⊢ K₁[x] ≈ K₂[x] : τ
and x ∉ fv(K₁,K₂),
then Δ; Γ ⊢ K₁[e₁] ≈ K₂[e₂] : τ.

Derek wrote this as an inference rule because it's preier:
Δ; Γ ⊢ e₁ ≈ e₂ : σ
Δ; Γ, x:σ ⊢ K₁[x] ≈ K₂[x] : τ
x ∉ fv(K₁,K₂)
—
Δ; Γ ⊢ K₁[e₁] ≈ K₂[e₂] : τ

Idea: e₁ and e₂ represent the term in the evaluation position. Bind a
variable in the second premise that represents the result of
evaluating e₁ and e₂. Enforce the fact that these are in the
evaluation position by puing the variable in contexts.

Proof:
Let ⋯ intros ⋯.

TS: (δ₁γ₁(K₁[e₁]),δ₂γ₂(K₂[e₂])) = (δ₁γ₁K₁[δ₁γ₁e₁],δ₂γ₂K₂[δ₂γ₂e₂]) ∈ E[τ]ρ.

Unfolding E[τ]ρ,
let (K'₁,K'₂) ∈ K[τ]ρ.
TS: K'₁[δ₁γ₁K₁[e₁])] ↓↓ K'₂[δ₂γ₂K₂[e₂])].

From our first premise,

WK: (δ₁γ₁e₁,δ₂γ₂e₂) ∈ E[σ]ρ
⇒ (K'₁[δ₁γ₁K₁])[δ₁γ₁e₁] ↓↓ (K'₂[δ₂γ₂K₂])[δ₂γ₂e₂].

estion: Does the implicit lemmas about evaluation contexts
apply to arbitrary contexts (that capture variables)?
Answer: It's probably fine (if you're careful about hygenic
side-conditions).

STS: (K'₁[δ₁γ₁K₁], K'₂[δ₂γ₂K₂]) ∈ K[σ]ρ.
Let (v₁,v₂) ∈ V[σ]ρ.
TS: (K'₁[δ₁γ₁K₁])[v₁] ↓↓ (K'₂[δ₂γ₂K₂])[v₂].

Idea: We're now in good shape to extend our substitutions and
apply the second premise.

Set γ'_i := γ_i, x↦v_i.
WK: (γ'₁,γ'₂) ∈ G[Γ,x:σ]ρ.

By the second premise and the fact x ∉ fv(K₁,K₂),
WK: ((δ₁γ₁K₁)[v₁], (δ₂γ₂K₂)[v₂]) = (δ₁γ'₁(K₁[x]), δ₂γ'₂(K₂[x])) ∈ E[τ]ρ.

By relatedness of K'₁,K'₂,
WK: K'₁[δ₁γ₁K₁[v₁]] ↓↓ K'₂[δ₂γ₂K₂[v₂]]
⇔ (Rewriting)

(K'₁[δ₁γ₁K₁])[v₁] ↓↓ (K'₂[δ₂γ₂K₂])[v₂].
Q.E.D.

Having shown this bind lemma, we can work with it rather than fuss
with the back-and-forth reasoning between the continuation and term
relations when doing these compatibility proofs. (e bind lemma may
prove useful in proofs using the model, as well.)

— Applying the bind lemma

Let's reprove compatibility for application.
We'll apply bind with K_i := (• e'_i).

(Aside from Dave: Derek presented this by building a derivation
incrementally. at's likely easier to follow than what I write here.)

Our goal:
WK₁ :: Δ; Γ ⊢ e₁ ≈ e₂ : σ → τ
WK₂ :: Δ; Γ ⊢ e'₁ ≈ e'₂ : σ
—

Δ; Γ ⊢ e₁ e'₁ ≈ e₂ e'₂ : τ

Our derivation requires weakening and a lemma:

WK₂ :: Δ; Γ ⊢ e'₁ ≈ e'₂ : σ
A := — (Weakening)

Δ; Γ,x:σ ⊢ e'₁ ≡ e'₂ : σ

— (Lemma)
B := Δ; Γ,x:σ→τ,y:σ ⊢ x y ≈ x y : τ

A
B

C := —
Δ; Γ,x:σ ⊢ x e'₁ ≈ x e'₂ : τ

WK₁ :: Δ; Γ ⊢ e₁ ≈ e₂ : σ → τ
D := C

— (Bind)
Δ; Γ ⊢ e₁ e'₁ ≈ e₂ e'₂ : τ

We needed weakening. e proof of weakening immediately reduces to a
property of closing substitutions. (Weakening is always a trivial
property when working with these “semantic” judgements.)

Lemma:
Δ; Γ,x:σ→τ,y:σ ⊢ x y ≈ x y : τ.

Proof:
is is easy, but not trivial. e Δ and Γ are irrelevant.
antify over substitutions for x, y.
Let ρ ∈ D[Δ]
Let (f₁,f₂) ∈ V[σ→τ]ρ
Let (v₁,v₂) ∈ V[σ]ρ
TS: (f₁ v₁,f₂ v₂) ∈ E[τ]ρ.
is follows by unfolding V[σ→τ]ρ.

Q.E.D.

If you look back at the proofs of the FTLR, there was some redundancy.
We repeatedly quantified over arbitrary values, plugged them in, and
went forward. In those proofs, the bind lemma might have made the
structure clearer.

— Untyped vs Pis-style typed models

If you add the extra assumptions Pis employs, you get an extra
property: Completeness of the logical relation.

Pis adds typing assumptions to the model. (We'll define that in a
second.) As a result, he gets completness of the logical relation: ≈ =
≡ctx.

With our untyped model, we have only soundness: ≈ ⊆ ≡ctx.

We'll find examples that are contextually equivalent but that cannot
be proven so using our untyped model.

estion: Why work with the unpyted model?
Answer:

e short answer is that the untyped model works just fine but
is somewhat simpler. You don't have all these typing side
conditions when you use it. Moreover, the typed model does not
scale to reasoning about languages that are not as
“well-formed”. Example: Relating high- and low-level
languages. On the other hand, it doesn't make sense to talk
about contexutal equivalence in that seing (as the langages
on the le and right differ). In Derek's experience,
completeness is somewhat overrated. Many applications don't
need it.

Today we'll see the delta between our untyped model and Pis-style
typed models and a use of the typed model to prove the following (not
terribly exciting) theorem:

eorem (Pis' 7.7.1(2) “extensionality for values”):
⊢ F ≡ F' : σ → τ
⇔ ∀v. (⊢ v:σ ⇒ ⊢ F v ≡ F' v : τ).

Pis uses the term “extensionality” rather loosely. He calls this an
extensionality theorem. Derek kind of objects to the terminology in
general. (It's fine here.) Eg, part 5 of the same theorem is just the
reperesentation independence principle we talked about a couple weeks
ago. It's not what most people think about when they think about
extensionality.

Proof Idea for “extensionality for values”:

⇒ Easy using our model.

⇐ We could show F, F' equivalent by first showing that related
value arguments go to related results.

Problem: We only have one value, not two related values. It
looks like a potentially weaker assumption than what we need
in the model.

Problem: We only get contextual equivalence, not logical
equivalence from that assumption. If we had completeness, we
could make progress using the logical relations.

e proof in Pis uses something called the closed
instantiation of uses theorem (CIU).

Aside: It's probably not so important that Δ is empty in this theorem.
Pis claims we can generalize these theorems to open terms. Derek is
prey sure we could also prove something like:

α ⊢ e₁ ≡ e₂ : τ
⇔ ∀σ closed. e₁[σ/α] ≡ e₂[σ/α].

(Derek hasn't actually worked it out.)

e point: We'll be able to prove this kind of “extensionality
principle”.

How exciting is this? Well, if your goal in life is to prove
contextual equivalences, then maybe. But it's not a major loss in
Derek's experience.

Semantics folks tend to have a love-hate relationship with contextual
equivalence. It's a very clear criterion, easily defined for many
languages. Everyone gets it. It makes sense. It's very general. It's
transitive: You can transitively compose your contextual equivalence
proofs. OTOH, contextual equivalence is very “fiddley”. It's defined
in terms of the syntax of the language. us there are equivalences
that hold for completely obscure reasons. (We'll see a brain teaser
later to make this point.)

In some sense, the reason Pis' model gives you completeness is
somewhat technical/artificial. Aside from these extensionality
principles, we don't actually get an effective way of proving more

contextual equivalences than we can prove in the untyped model. We
don't get proof techniques, we just get theorems.

All that said, let us look at a Pis-style typed model and this idea
of CIU-equivalence.

— Adding typing assumptions to our model

Where might we add these things?

We want to build our LR from syntactically well-typed terms.

Where before we (implicitly) had sets ERel, KRel, VRel satisfying

E[τ]ρ ∈ ERel, K[τ]ρ ∈ KRel, and V[τ]ρ ∈ VRel

where ERel, KRel, and VRel contained relations on closed terms,
continuations, and values. Now these will contain relations over
typed and closed terms, continuations, and values.

To define KRel, we have to spell out typing for continuations,

Judgement:
Δ; Γ ⊢ K ÷ σ ⇔ ∃τ. Δ; Γ ⊢ K : σ ⇝ τ.

“K div σ”: K expects something of type σ in its hole.

More general judgement, in case we need to compose evaluation
contexts:

Judgement: Δ; Γ ⊢ K : σ ⇝ τ
(Hole type σ, program type τ.)

—
Δ; Γ ⊢ • : τ ⇝ τ

Δ; Γ ⊢ K : σ ⇝ (τ₁ → τ₂)
Δ; Γ ⊢ e : τ₁
—
Δ; Γ ⊢ K e : σ ⇝ τ₂

Δ; Γ ⊢ v : τ₁ → τ₂
Δ; Γ ⊢ K : σ ⇝ τ₁
—
Δ; Γ ⊢ v K : σ ⇝ τ₂

Etcetera

Note how all of these rules treat the hole parametrically. ere's
always some σ.

Interesting:
If you treat contexts as syntactic objects, then the rules for
these K's fall out as a special case of the rules for
well-typed contexts C.
ese rules are simpler because you don't have to worry about
variable hygiene. (Arbitrary contexts are messier than
evaluation contexts.)

If you want to do these things properly, you'll have to prove simple
syntactic properties.

Example:
If Δ; Γ ⊢ K : σ ⇝ τ
and Δ; Γ ⊢ e : σ
then Δ; Γ ⊢ K[e] : τ.
Proof: By induction on the first derivation.

Now we can define our ERel(τ₁,τ₂), KRel(τ₁,τ₂), and VRel(τ₁,τ₂).
Aside: If it weren't for ρ, τ₁ and τ₂ would be the same.

CCont = ⋯ obvious thing analogous to CTyp, etc ⋯

KRel(τ₁,τ₂) = { R ⊆ CCont × CCont |
∀(K₁,K₂) ∈ R.

⊢ K₁ ÷ τ₁ ∧ ⊢ K₂ ÷ τ₂ }
ERel(τ₁,τ₂) = { ⋯ | ⋯ ⊢ e₁ : τ₁ ∧ ⊢ e₂ : τ₂ }

ere are two more (boring) preliminaries to deal with.

Aside: Avoding all of this boring noise is one of the reasons we
started with the untyped models. You don't need all of this stuff for
our initial application, representation independence.

Before, we had:
(VRel = Cand)
D[Δ] = { ρ ∈ Δ → VRel }

Now, we have:
D[Δ] := { ρ ∈ Δ → CType × CType × VRel |

∀α∈Δ. ρ(α) = (τ₁,τ₂,R) ⇒ R ∈ VRel(τ₁,τ₂) }

Minus the hand-waving:
ρ ∈ Δ → Στ₁:Ctype. Στ₂:CType. VRel(τ₁,τ₂).

Notation:
We write

ρ₁(α) = π₁(ρ(α))
ρ₂(α) = π₂(ρ(α))
hat{ρ}(a) = π₃(ρα).

We implicitly li these to arbitrary syntactic classes.

eorem:
If ρ ∈ D[Δ]
and fv(τ) ⊆ dom(ρ),
then V[τ]ρ ∈ VRel(ρ₁τ,ρ₂τ).

We call this a theorem, but we bake it into the model by adding side
conditions. Two examples:

V[σ→τ]ρ := { (v₁,v₂) |
⊢ v₁ : ρ₁(σ→τ) ∧ ⊢ ρ₂(σ→τ) ∧ ⋯ }

K[τ]ρ := { (K₁,K₂) |
⊢ K₁ ÷ ρ₁τ ∧ ⊢ K₂ ÷ ρ₂τ ∧ ⋯ }

Now let's define G[Γ]ρ:

G[Γ]ρ := { (γ₁,γ₂) | ∀(x:τ)∈Γ. (γ₁x,γ₂x) ∈ V[τ]ρ }

Trivial fact we'll need later:
If (γ₁,γ₂) ∈ G[Γ]ρ,
then ⊢ γ₁ : ρ₁Γ
and ⊢ γ₂ : ρ₂Γ.

where ⊢ γ : Γ :⇔ ∀(x:τ)∈Γ. ⊢ γx : τ.

Once slight nice thing: ese ρ₁ and ρ₂ will take the place of δ₁ and

δ₂ in our proofs. (Asdie: Now these syntactic types maer a lile.)

Now let's state the definition of the open logical relation.

Δ; Γ ⊢ e₁ ≈ e₂ : τ :⇔
Δ; Γ ⊢ e₁ : τ ∧
Δ; Γ ⊢ e₂ : τ ∧
∀ρ∈D[Δ]. ∀(γ₁,γ₂)∈G[Γ]ρ.

(ρ₁γ₁e₁, ρ₂γ₂e₂) ∈ E[τ]ρ.

We need a few other small changes to the LR:

V[∀α.τ]ρ := { (v₁,v₂) | ∀σ₁,σ₂ ∈ CTyp. ∀R ∈ VRel(σ₁,σ₂).
⊢ v₁ : ρ₁(∀α.τ) ∧
⊢ v₂ : ρ₂(∀α.τ) ∧
(v₁ σ₁, v₂ σ₂) ∈ E[τ]ρ,α↦(σ₁,σ₂,R) }

V[∃α.τ]ρ := { (pack[σ₁,v₁] as ∃α.τ, pack[σ₂,v₂] as ∃α.τ) |
⊢ pack[σ₁,v₁] as ∃α.τ : ρ₁(∃α.τ) ∧
⊢ pack[σ₂,v₂] as ∃α.τ : ρ₂(∃α.τ) ∧
∃R∈VRel(σ₁,σ₂). (v₁,v₂) ∈ V[τ]ρ,α↦(σ₁,σ₂,R) }

e point: We have to be more careful with the syntactic types.

— CIU equivalence

Compatibility and adequacy give us one direction:
(†) Δ; Γ ⊢ e₁ ≈ e₂ : τ ⇒ Δ; Γ ⊢ e₁ ≡ctx e₂ : τ.

e issue: If we want to go ⇐, we need some intermediate steps. Derek
has not seen a direct proof of that direction. What Pis does is use
an intermediate equivalence relation, ciu-equivalence. It's like ≡
where (roughly) you restrict to evaluation contexts rather than
arbitrary contexts.

We'll denote ciu-equivalence by ≡u. Pis shows

1. Δ; Γ ⊢ e₁ ≡ctx e₂ : τ ⇒ Δ; Γ ⊢ e₁ ≡u e₂ : τ.

Proving this is straightforward since ≡u is roughly a more
restricted form of ≡.

2. Δ; Γ ⊢ e₁ ≡u e₂ : τ ⇒ Δ; Γ ⊢ e₁ ≈ e₂ : τ.

(1) and (2) together with (†) establishes the equivalence of all three
relations.

En passant, Pis establishes the CIU eorem: ≡ctx = ≡u. Originally
this theorem was due to Mason and Talco in the early '90s. (It
predated this work on logical equivalence.) Mason and Talco gave a
proof principle that did not require reasoning about arbitrary
contexts. What's nice about ciu-equivalence: It applies in many
languages.

e acronym is slightly obscure: CIU = closed instantiations of uses.
(You can't make this stuff up.)

As Harper likes to point out, it should be UCI as it's really “uses of
closed instantiations”. (But they're the same.)

We oen use ≡ciu on closed terms. en it's just “uses” hence our
notation ≡u. “Uses” means the equivalence is preserved under arbitrary
evaluation contexts K (rather than arbitrary syntactic contexts C).
You can imagine, intuitively, given how we've set up our model, that
biorthogonality somehow bakes in closure under evaluation contexts.

e “closed instantations” part simply means that you quantify over a
closing γ up front.

With all these intuitions in place, let's define it.

Definition (CIU-equivalence for closed terms, aka “U-equivalence”):
⊢ e₁ ≡u e₂ : τ if

⊢ e₁ : τ ∧
⊢ e₂ : τ ∧
∀K. (⊢ K ÷ τ ⇒ K[e₁] ↓↓ K[e₂]).

Note for closed terms it really is similar to ≡c, but we've replaced
C[–] by K[–]. For open terms, we close up with δ's and γ's.

Definition (CIU-equivalence, aka “UCI-equivalence”):
Δ; Γ ⊢ e₁ ≡u e₂ : τ if

Δ; Γ ⊢ e₁ : τ ∧
Δ; Γ ⊢ e₂ : τ ∧
∀δ,γ.

If ⊢ δ : Δ → Ctyp
and ⊢ γ : δΓ,
then ⊢ δγe₁ ≡u δγe₂ : δτ.

In some sense, this cleanly separates the two things that contexts can
do to terms:
1. close up over free variables of e₁ and e₂ (covered by δ,γ) and
2. do something with these terms (covered by K).

— Next time

Next time, we'll jump into the proof † ⇒ 1 ⇒ 2 ⇒ †.

Incidentally, we may end up covering

Derek's paper on Plotkin-Abadi logic.
It gives a much more abstract presentation of a lot of this stuff.

Logical step-indexed logical relations.
LICS '11. (e journal version.)

— Instructive exercise

Aer class, Derek answered a question by suggesting the following
exercise.

Work out progress and preservation for an abstract machine à
la Pis and Felleisen/Hieb.
If needed, lookup of Felleisen/Hieb's paper (something like
syntactic theory of control operators and state).

Define (K,e) ↦ (K',e').
(We'll need to spell out the full definition of the ⇝ typing
judgement.)

Define ⊢ (K,e) ok if ∃τ. ⊢ e : τ ∧ ⊢ K ÷ τ.

NB: At each reduction, τ might change.

Define ⊢ (K,e) terminal if ⊢ e is a value ∧ K = •.

Prove progress:
If ⊢ (K,e) ok,
then either
1. (K,e) ↦ (K',e') or
2. ⊢ (K,e) terminal.

Prove preservation:
If ⊢ (K,e) ok
and (K,e) ↦ (K',e'),
then ⊢ (K',e') ok.

