
Modified: 20121206

Today we'll talk about ⊤⊤-closure, update the model, and actually
prove what we sketched last time.

Let's motivate one thing that came up in the definition of ⊤⊤-closure
but wasn't motivated.

In the seing of System F, adequacy said that if two things are
logically related, then they're observably equivalent. With recursion,
we can get by with a somewhat simpler notion of observation that
relies only on termination.

Definition (Cotermination):
e₁↓↓e₂ :⇔ (e₁↓ ∧ e₂↓) ∨ (e₁↑ ∧ e₂↑)

Typically, cotermination is the notion of adequacy we'll use in this
course (and researchers use when working with such models).

Adequacy:
If ⊢ e₁ ≈ e₂ : τ,
then e₁ ↓↓ e₂.

Why is looking at cotermination sufficient? It covers all of the
distinguishing contexts you might care about. Suppose there existed
some context C s.t. C[e₁]↓true while C[e₂]↓false. Clearly, they both
terminate. But we can transform C into a context that distinguishes e₁
and e₂. Construct

C' := if C then () else ⊥

where ⊥ := (fix f(x).f(x))(). en C'[e₁]↓ but C'[e₂]↑.

is is nice. We can observe equivalence at all types by just looking
at termination. (Compare to our previous notion of adequacy.)

— Motivating ⊤⊤-closure

Recall what we said last time:

• Two terms are related if they behave the same in related
continuations.

• Two continuations are related if they behave the same when applied



to related values.

• Two values are related in the usual way (but now referring to our
new term relation).

E[τ]ρ := { (e₁,e₂) | ∀(K₁,K₂)∈K[τ]ρ. K₁[e₁] ↓↓ K₂[e₂] }
K[τ]ρ := { (K₁,K₂) | ∀(v₁,v₂)∈V[τ]ρ. K₁[v₁] ↓↓ K₂[v₂] }
V[α]ρ := ρ(α)
V[σ→τ]ρ := { (v₁,v₂) | ∀(v'₁,v'₂) ∈ V[σ]ρ. (v₁ v'₁, v₂ v'₂) ∈ E[τ]ρ }
V[∀α.τ]ρ := { (v₁,v₂) | ∀σ₁,σ₂ ∈ CTyp. ∀R ∈ Cand.

(v₁ σ₁, v₂ σ₂) ∈ E[τ](ρ,α↦R) }
V[τ'×τ'']ρ := { ((v'₁,v''₁), (v'₂,v''₂)) |

(v'₁,v'₂) ∈ V[τ']ρ ∧ (v''₁,v''₂) ∈ V[τ'']ρ }
V[τ'+τ'']ρ := { (inl v₁,inl v₂) | (v₁,v₂) ∈ V[τ']ρ }

∪ { (inr v₁,inr v₂) | (v₁,v₂) ∈ V[τ'']ρ }
V[∃α.τ]ρ := { (pack [σ₁,v₁] as ∃α.τ₁, pack [σ₂,v₂] as ∃α.τ₂) |

∃R∈Cand. (v₁,v₂) ∈ V[τ]ρ,α↦R }

It's not terribly obvious why this definition gives you an admissible
term relation. Why does it help with recursion?

Intuition: It really makes sense in languages where you cannot
understand the behavior of terms separate from their contexts.

Consider a langauge with first-class continuations or
sections. You don't necessarily have a way of doing that.

Consider a language with low-level features: We can relate
high- and low-level (assembler) languages using logical
relations. You need some notion of the whole machine to
understand what's going on at the low-level.

So the idea is to first complete a term to a whole program by plugging
it into a continuation. You can then talk about the program's
observable properties.

From Neel: When you take the union of admissible sets, you don't get
an admissible set. OTOH, ⊤⊤-closed sets are closed under union.

(Derek and Neel will talk about this point and present it for
general consumption. Had we tried to prove the relational
actions of our relations all preserved admissibility, we would
have done fine for ∀ and →, but we'd have failed.)

— Adapting our metatheory



Some of our lemmas remain trivial:
Type substitution (V[τ[σ/α]]ρ = V[τ]ρ,α↦V[σ]ρ).
Irrelevance (V[τ]ρ = V[τ]ρ' if ρ, ρ' match on v(τ)).
Validity (V[τ]ρ ∈ Cand).

Others stop being completely obvious.

Lemma (Value inclusion):
V[τ]ρ ⊆ E[τ]ρ.

Proof:
Let (v₁,v₂)∈V[τ]ρ.
Let (K₁,K₂)∈K[τ]ρ.
TS: K₁[v₁]↓↓K₂[v₂].
Follows by unrolling the definition of K[τ]ρ.

Q.E.D.

Lemma (Divergence):
If e₁↑
and e₂↑,
then (e₁,e₂) ∈ E[τ]ρ.

Proof:
Let (K₁,K₂)∈K[τ]ρ.
TS: K₁[e₁]↓↓K₂[e₂].
By a case analysis on K₁,K₂
STS: e₁↑ ∧ e₂↑.
e point is both e₁ and e₂ are in the respective
evaluation positions, so both programs diverge.

Q.E.D.

Aside: Derek will follow with a comparison with Pis' setup. Derek
thinks its over-complicated.

Lemma (Closure under expansion):
If (e₁,e₂) ∈ E[τ]ρ
and e'₁ ↦∗ e₁
and e'₂ ↦∗ e₂,
then (e'₁,e'₂) ∈ E[τ]ρ.

Proof:
Let Let (K₁,K₂)∈K[τ]ρ.
TS: K₁[e'₁]↓↓K₂[e'₂].

en K₁[e'₁] ↦∗ K₁[e₁]



and K₂[e'₂] ↦∗ K₂[e₂].

STS: K₁[e₁]↓↓K₂[e₂]
⇐ (e₁,e₂) ∈ E[τ]ρ.

Q.E.D.

estion: We're assuming deterministic reduction. Does this setup
scale to non-deterministic reduction?

Answer: Our observation is cotermination. It's fine if you mix
cotermination with the possibility that either term diverges. (You've
less to prove.) A good question: You now have a notion “may be
related”.

Lemma (Adequacy):
If ⊢ e₁ ≈ e₂ : τ,
then e₁ ↓↓ e₂.

Proof:
WK: ⊢ e₁ ≈ e₂ : τ
⇒ (e₁,e₂) ∈ E[τ]∅
⇔ ∀(K₁,K₂)∈K[τ]∅. K₁[e₁] ↓↓ K₂[e₂] }.

STS: (·,·) ∈ K[τ]∅
⇒ ·[e₁] ↓↓ ·[e₂] }
⇔ e₁ ↓↓ e₂.

Let (v₁,v₂)∈V[τ]∅.
TS: ·[v₁] ↓↓ ·[v₂]
⇔ v₁ ↓↓ v₂.

Q.E.D.

We'll have another useful lemma for doing compatibility proofs. ese
should suffice for proving admissibility.

Notation (Unrollings):
For any F = fix f(x).e
satisfying ⊢ F : σ→τ,
write

F₀ := fix f(x).f(x)
F_{n+1} := fix _(x).e[F_n/].

eorem (Admissibility):
If ∀n. (e[F_n/],e'[F'_n/]) ∈ E[τ]ρ,
then (e[F/],e'[F'/]) ∈ E[τ]ρ.



Proof:
Let (K,K')∈K[τ]ρ.
TS: K[e[F/]] ↓↓ K'[e'[F'/]].

WK: ∀n. K[e[F_n/]] ↓↓ K'[e'[F'_n/]].

Consider one direction.
STS: K[e[F/]]↓ ⇒ K'[e'[F'/]]↓.
By the unwinding theorem with K[e],

∃n. K[e[F_n/]]↓.
By our assumption,

K'[e'[F'_n/]]↓.
By the unwinding theorem with K'[e'],

K'[e'[F'/]]↓.
e other direction is analogous.

Q.E.D.

eorem (Unwinding):
e[F/]↓ iff ∃n. e[F_n/]↓.

Put another way:
∃n. e[F/]↓↓e[F_n/].

Proof: HW for next Tuesday.
See Exercise 7.4.5 in Pis' ATTPL chapter.

— Compatibility for fix

We're now ready to prove

Lemma (Compatibility for fix):
If Δ; Γ, f : σ → τ, x:σ ⊢ e₁ ≈ e₂ : τ,
then Δ; Γ ⊢ fix f(x)e₁ ≈ fix f(x).e₂ : σ → τ.

Proof:
Let ρ ∈ D[Δ], (γ₁,γ₂) ∈ G[Γ]ρ, δ₁,δ₂ ∈ Δ → CType.
Set F¹ := fix f(x).δ₁γ₁e₁ and F² := fix f(x).δ₂γ₂e₂.
TS: (δ₁γ₁(fix f(x).e₁),δ₂γ₂(fix f(x).e₂)) ∈ E[σ→τ]ρ
⇔ (fix f(x).δ₁γ₁e₁, fix f(x).δ₂γ₂e₂) ∈ E[σ→τ]ρ
⇐ (Admissibility instantiated with e = f = e' and F=F¹ and
F'=F² and τ=σ→τ.)

∀n.(f[F¹_n/], f[F²_n/]) = (F¹_n,F²_n) ∈ E[σ→τ]ρ
⇐ (Slight strengthening, at least to simplify the induction but
possibly to make it go through.)

∀n.(F¹_n,F²_n) ∈ V[σ→τ]ρ ⊆ E[σ→τ]ρ.



By induction on n.

Case n = 0:
TS: (fix f(x).f(x), fix f(x).f(x)) ∈ V[σ→τ]ρ
⇐ ∀(v₁,v₂) ∈ V[σ]ρ.

((fix f(x).f(x)) v₁, (fix f(x).f(x)) v₂) ∈ E[τ]ρ.
is follows immediately from the divergence lemma.
(“Just by looking at them, ⋯” Heh.)

Case:
TS: (F¹_{n+1}, F²_{n+2}) ∈ V[σ→τ]ρ
⇐ ∀(v₁,v₂) ∈ V[σ]ρ.

((F¹_{n+1}) v₁, (F²_{n+2}) v₂) ∈ E[τ]ρ.

But F¹_{n+1} ↦ δ₁γ₁e₁[F¹_n/]
and F²_{n+1} ↦ δ₂γ₂e₂[F²_n/].
STS: (δ₁γ₁e₁[F¹_n/], δ₂γ₂e₂[F²_n/])) ∈ E[τ]ρ.
By IH,
WK: (F¹_n,F²_n) ∈ V[σ→τ]ρ.
Define γ'_i := γ₁,x↦v_i,f↦F^i_n.
WK: (γ'₁,γ'₂) µo G(Γ,f:σ→τ,x:σ]ρ.
Instantiating the premise we're done.

Q.E.D.

We may not have to strengthen our induction hypotheses in the previous
proof. Suppose we had defined

G[Γ]ρ := { (γ₁,γ₂) ∈ (dom(Γ) → CVal)² | ∀(x:τ) ∈ Γ. (γ₁x, γ₂x) ∈ E[τ]ρ }

Rather than using V[τ]ρ. en it might have worked out. is seems
more intuitive.

— Compatibility for application and the Bind Lemma

Consider the following proof.

Lemma (Compatibility for application):
If Δ; Γ ⊢ e₁ ≡ e₂ : σ → τ
and Δ; Γ ⊢ e'₁ ≡ e'₂ : σ,
then Δ; Γ ⊢ e₁ e'₁ ≡ e₂ e'₂ : τ.

Proof:
is will look a lile painful.
Once we do it, we'll see a way to abstract the pain
so it's less painful in the future.



Let ⋯ intros ⋯
TS: (δ₁γ₁(e₁ e'₁),δ₂γ₂(e₂ e'₂)) ∈ E[τ]ρ.
By IH,
1. (δ₁γ₁e₁,δ₂γ₂e₂) ∈ E[σ→τ]ρ ∧
2. (δ₁γ₁e'₁,δ₂γ₂e'₂) ∈ E[σ]ρ.
Unfolding E[τ]ρ, let (K₁,K₂)∈K[τ]ρ.
TS: K₁[δ₁γ₁(e₁ e'₁)] ↓↓ K₂[δ₂γ₂(e₂ e'₂)].
⇔ K₁[δ₁γ₁e₁ δ₁γ₁e'₁] ↓↓ K₂[δ₂γ₂e₂ δ₂γ₂e'₂].
⇔ K'₁[δ₁γ₁e₁] ↓↓ K'₂[δ₂γ₂e₂]
where K'_i = K_i[• (δ_iγ_ie'_i)].

Instantiating 1,
STS: (K'₁, K'₂) ∈ K[σ→τ]ρ.
Let (v₁,v₂) ∈ V[σ→τ]ρ.
TS: K'₁[v₁] ↓↓ K'₂[v₂]
⇔ K₁[v₁ (δ₁γ₁e'₁)] ↓↓ K₂[v₂ (δ₂γ₂e'₂)].

Set K''_i := K_i[v_i •].

STS: K''₁[δ₁γ₁e'₁] ↓↓ K''₂[δ₂γ₂e'₂].
Instantiating 2,
STS: (K''₁,K''₂) ∈ K[σ]ρ.
Let (v'₁,v'₂) ∈ V[σ]ρ.
TS: K''₁[v'₁] ↓↓ K''₂[v'₂]
⇔ K₁[v₁ v'₁] ↓↓ K₂[v₂ v'₂].

Since (K₁,K₂) ∈ K[τ]ρ,
STS: (v₁ v'₁, v₂ v'₂) ∈ E[τ]ρ
⇐ (v₁,v₂) ∈ V[σ→τ]ρ ∧

(v'₁,v'₂) ∈ V[σ]ρ.
Q.E.D.

Claim (for next time): If you just go through your compatibility
proofs naively, you'll have to jump through such hoops (reasoning
about each subexpression, values, etc).

ere's a simple lemma, called the bind lemma, that does this kind of
reasoning once and for all.

By closing up the term relation so it's admissible, we no longer know
as much about it as we once did. We don't obviously know from just
looking at

(e₁,e₂) ∈ E[τ]ρ



and the definitions, that e₁ and e₂ go to values related by the value
relation. We end up doing this kind of back-and-forth reasoning.

Lemma (Bind lemma):
If (e₁,e₂) ∈ E[τ]ρ
and ∀(v₁,v₂) ∈ V[τ]ρ. (K₁[v₁],K₂[v₂]) ∈ E[τ']ρ',
then (K₁[e₁],K₂[e₂]) ∈ E[τ']ρ'.

is is like a monadic bind/let: To prove (K₁[e₁],K₂[e₂]), you
quantify over any values e₁ and e₂ could have produced.

Intuition: In proving the compatibility lemma for applications, we had
to show (ignoring the δ,γ crap):

(e₁ e'₁,e₂ e'₂) ∈ E[τ]ρ.

Observe this is of the form (K'₁[e₁], K'₂[e₂]) ∈ E[τ]ρ.
So it reduces to showing ∀(v₁,v₂) ∈ V[σ→τ]ρ. (K'₁[v₁],K'₁[v₂]) ∈
E[τ]ρ.
And similarly this reduces to showing ∀(v'₁,v'₂) ∈ V[σ]ρ.
(K''₁[v'₁],K''₂[v'₂]) ∈ E[τ]ρ.
en STS (v₁ v'₁, v₂ v'₂) ∈ E[τ]ρ.

e bind lemma lets you reduce proving the compatibility lemma to
proving it when you zap all the e's to v's.

— Next time.

We'll prove the bind lemma, go through some more compatibility lemmas,
discuss how Pis does things, and discuss how we apply the method to
proving contextual equivalence.

We may try to sketch a variant of what we've done that's a bit closer
to Pis. Pis uses a typed model (built up from syntactically typed
terms). He proves completeness: Contextual equivalence implies logical
equivalence. He gets some extensionality principles out of this
approach. (Overall, it winds up being more complicated for the kinds
of goals Derek is interested in.)

— Aside from Dave: Don't get stuck

We want the definition of cotermination to rule out stuck states in
untyped models. Otherwise, we can't prove things we'd like to prove.



In class, Derek used the alternative
e₁ ↓↓' e₂ := e₁↓ ⇔ e2↓

instead of
e₁ ↓↓e ₂ :⇔ (e₁↓ ∧ e₂↓) ∨ (e₁↑ ∧ e₂↑).

(We never defined e↑. When asked, both Derek and Deepak read “e₁↑” as
ruling out stuck states.)

Either definition works in typed models: Progress and preservation
ensure that the e_i don't get “stuck”. In untyped models, the former
says two e_i coteriminate if they are stuck.


