
Recall recursion:

Syntax:
e ::= ⋯ | fix f(x).e
v ::= ⋯ | fix f(x).e

λx.e ≈ fix f(x).e where f ∉ fv(e).

Statics:

Δ; Γ, f :σ→τ, x:σ ⊢ e : τ
—
Δ; Γ ⊢ fix f(x).e : σ → τ

Dynamics:

(fix f(x).e) v ↦ e[fix f(x).e/][v/x]

Alternative Dynamics:
fix x.e ↦ e[fix x.e/x]

— We cannot prove compatibility for fix

Here's the compatibility lemma for fix:

Δ; Γ, f : σ → τ, x:σ ⊢ e₁ ≈ e₂ : τ
—
Δ; Γ ⊢ fix f(x)e₁ ≈ fix f(x).e₂ : σ → τ

e straight-forward proof breaks down.

Let ρ ∈ D[Δ], (γ₁,γ₂) ∈ G[Γ]ρ, δ₁,δ₂ ∈ Δ → CType.
TS: (δ₁γ₁(fix f(x)e₁), δ₂γ₂(fix f(x)e₂)) ∈ E[σ→τ]ρ.
⇐ (δ₁γ₁(fix f(x)e₁), δ₂γ₂(fix f(x)e₂)) ∈ V[σ→τ]ρ.

Let (v₁,v₂) ∈ V[σ]ρ.
TS: (δ₁γ₁(fix f(x)e₁) v₁, δ₂γ₂(fix f(x)e₂) v₂) ∈ V[τ]ρ.

By closure under expansion,
STS: (δ₁γ₁e₁[F₁/][v₁/x]), δ₂γ₂e₂[F₂/][v₂/x]) ∈ E[τ]ρ
where

F_i := δ_iγ_ifix f(x).e_i.

To make progress, we must show



(F₁,F₂) ∈ E[σ→τ]ρ.
But that's exactly our goal.

— Admissibility in domain theory

Pis uses something called ⊤⊤-closure. We won't start with that
general concept. We'll start with the property we need to make the
previous proof go through.

We'll refer to domain theory. We need the concept of /Admissibility/
to make such recursive proofs go through.

We could encode admissibility directly as a property of syntax. (We'll
state a property of syntax that gives us what we need in this case.)
at turns out not to be the cleanest, most direct way for our
purpose. Instead, we'll use Pis' more general notion of ⊤⊤-closure.

estion: Does admissibility scale, like ⊤⊤-closure, to more
interesting models.

Answer (Derek/Neel): Syntactically and semantically, admissibility is
uglier. Admissibility doesn't work very well semantically. Problems
come up with admissibility when you try to express properties about
disjunctions and existentials. ⊤⊤-closure doesn't so suck.

In the following, we refer to Pis' lecture notes (see the paramore
web page).

Sco's Fixed Point Induction Principle [Slide 40, p46]

Let f : D → D be a continuous function on a domain D. For any
/admissible/ subset (aka property) S ⊆ D, to prove that the
least fixed point of f is in S:

fix() ∈ S
⇐ ∀d∈D (d∈S ⇒ f(d) ∈ S).

e (admissible) property S we care about is “things are in the
logical relation”.

Here's the analogy:
ink of d as the variable f in our failed proof.
ink of the function f as λf.λx.e in our failed proof.
ink of S as the LR.



We'll return to this slide and prove the principle once we've defined
all the relevant terms.

[Slide 15, p14]:
A /partially ordered set/ (D,⊑) is reflexive, transitive, and
antisymmetric.

[Slide 22, p21]:
A /chain complete poset/, or cpo for short, is a poset (D,⊑)
in which all countable increasing chains

d₀ ⊑ d₁ ⊑ d₁ ⋯
have least upper bounds ⊔(n≥0) d_n.

Idea: ink of the chain d_i as an ordering on definedness.
d₀ gives you no answers
d₁ gives you some answers before diverging.
etc.
d_n gives you answers for n unrollings, then diverges.
e fixed point never diverges. It will always give you the
answer you need.

You want least upper bounds so you can talk about limits of these
chains.

[Slide 22, p21]:
A /domain/ is a cpo that possesses a least element ⊥.

Idea: ink of ⊥ as the function that diverges immediately.

Continuity and strictness [Slide 18, p15; Slide 28, p27]:
If D and E are cpo's, the function f : D → E is /continuous/
iff it is monotone and preserves least upper bounds of chains:
• ∀d,d' ∈ D. d ⊑ d' ⇒ f(d) ⊑ f(d').
• For all chains d₀ ⊑ d₁ ⊑ ⋯ in D, we have

f(⊔(n≥0)d_n) = ⊔(n≥0)f(d_n) in E.

Idea: Somehow the behavior of the fixed point is approximated
correctly by its finite approximations.

Kleene's fixed point theorem (not Tarski's) [Slide 29, p29]:
Let f : D → D be a continuous function on a domain D. en f
possesses a least fixed point given by



fix() = ⊔(n≥0) f^n(⊥).

Idea: ink of D as the partial function space σ→τ.
is theorem says the fixed point is the limit of this chain
of finite approximations.

Chain-closed and admissible subsets [Slide 39, p45]:
Let D be a cpo. A subset S ⊆ D is called /chain-closed/ iff
for all chains d₀ ⊑ d₁ ⊑ ⋯ in D

(∀n≥0. d_n ∈ S) ⇒ (⊔(n≥0)d_n) ∈ S.

If D is a domain, S ⊆ D is called /admissible/ iff it is
a chain-closed subset of D and ⊥ ∈ S.

Idea: For us, S will be the logically related elements.
We'll say the subset is admissible if it contains ⊥ and it's
chain-closed.
If the property of interest (ie, logical approximation) holds for all
finite approximations, then it holds at the limit.

We have two things to show:
Our LR is admissible (so it has this property).
Use admissibility to prove an analog of the Sco induction.

Now that we've defined all the terms, we can return to Sco's Fixed
Point Induction Principle [Slide 40, p.46]

5-Slides 7–10 Proof of the Sco Induction Principle.

[Derek flipped through some other slides by Pis offering a
proof of the princple.]

— Admissibility in our seing

Back to our seing: How do we set things up so we get exactly the
same kind of argument Pis used in Slides 7–10 to prove the Sco
Induction Principle?

(We'll end up using Sco induction as a reasoning principle. We are
NOT using the domain theory directly, we're being inspired by it.)

We want to define a notion of admissibility in our operational
seing. To do that, we have to define how to translate this idea of ⊥
and all the elements of the chain f^n.



Definition:
For i∈1..2, we'll define F^n_i and F_i.

F^0_i = fix f(x).f(x) (= “⊥”)
F^{n+1}_i = λx.hat{e_i}[F^n_i/]

F_i = fix f(x).hat(e_i).

Where hat{e_i} will either be our original e_i or just closed
e_i (we want to deal with the δ_i's and γ_i's but it's not
obvious at a glance how).

e idea is that F^n_i, when applied, unrolls F_i at most n times,
then diverges.

Idea: Our [σ⇀τ] = “the domain D”.

e property we will seek to prove is:

Admissibility:
If ∀n.(t₁[F₁^n/],t₂[F₂^n/]) ∈ E[τ]ρ,
then (t₁[F₁/],t₂[F₂/]) ∈ E[τ]ρ.

We'll have to adjust our model to make the proof of admissibility go
through.

But suppose we had admissibility. en we can make progress in our
stalled compatibility proof.

For now, we can see how our failed compatibility proof might go
through. ink of it as the Sco Induction case, since that's what
we'll follow. What we want to do is instantiate the admissibility
theorem where t₁, t₂ are both just the variable f.

Lemma (Compatibility for fix, assuming admissibility holds)
Δ; Γ, f : σ → τ, x:σ ⊢ e₁ ≈ e₂ : τ
—
Δ; Γ ⊢ fix f(x)e₁ ≈ fix f(x).e₂ : σ → τ

Note that since we're presenting these ideas incrementally, we'll have
to come back and fix this proof when we change the model. (e new
model will have a different definition of the term relation.)



handwave: Proof:
Let ρ ∈ D[Δ], (γ₁,γ₂) ∈ G[Γ]ρ, δ₁,δ₂ ∈ Δ → CType.
TS: (fix f(x).δ₁γ₁e₁, fix f(x).δ₂γ₂e₂) ∈ E[σ→τ]ρ.
Instantiating admissibility with t₁=f=t₂
and hat{e_i} = δ_iγ_ie_i,
STS: ∀n.(F₁^n, F₂^n) ∈ E[σ→τ]ρ.

(Aside: We've reduced the problem to reasoning only about
finite approximations of the chain.)

Proof by induction on n.

Case n = 0:
STS: (fix f(x).f(x), fix f(x).f(x)) ∈ E[σ→τ]ρ
⇐ (fix f(x).f(x), fix f(x).f(x)) ∈ V[σ→τ]ρ
⇐ ∀(v₁,v₂) ∈ V[σ]ρ.

(F₁⁰ v₁, F₂⁰ v₂) ∈ E[τ]ρ.

Idea: Both F₁⁰ v₁↑ and F₂⁰ v₂↑.
So our new E[] relation must relate diverging terms.

Case n+1:
TS: (F^{n+1}₁, F^{n+1}₂) ∈ E[σ→τ]ρ
⇐ (F^{n+1}₁, F^{n+1}₂) ∈ V[σ→τ]ρ
⇐ ∀(v₁,v₂) ∈ V[σ]ρ.

(F₁^{n+1} v₁, F₂{n+1} v₂) ∈ E[τ]ρ
⇐ (Closure under expansion.)

(hat{e₁}[F₁^n/][v₁/x], hat{e₂}[F₂^n][v₂/x]) ∈ E[τ]ρ.
Observe: By IH (F₁^n, F₂^n) ∈ E[σ→τ]ρ.

Define γ'_i := γ_i[x↦v_i][f↦F_i^n].
en (γ'₁,γ'₂) ∈ G[Γ,f:σ→τ,x:σ]ρ.
By our premise (Δ; Γ, f : σ → τ, x:σ ⊢ e₁ ≈ e₂ : τ),
we have

(δ₁γ'₁e₁,δ₂γ'₂e₂) ∈ E[τ]ρ
⇒ ((δ₁γ₁e₁)[v₁/x][F₁^n/], (δ₂γ₂e₂)[v₂/x][F₂^n/]) ∈ E[τ]ρ.

handwave: Q.E.D.

You get the picture.

— Modifying the logical relation

We won't have time today to both give the new model and complete these
proofs. We'll write down the new term relation, discuss intuitions,



and sketch future work.

To make this proof work, we can consider some alternatives.

First, an alternative approach.

One blindingly obvious (but klutzy) way to define E[τ]ρ such that it
relates divergent computations and is admissible: Just extend E[τ]ρ to
relate divergent computations.

E[τ]ρ = { (e₁,e₂) | e₁↑ ∧ e₂↑ } ∪
{ (e₁,e₂) | ∃v₁,v₂. e₁ ↓ v₁ ∧ e₂ ↓ v₂ ∧ (v₁,v₂) ∈ V[τ]ρ }

is leads to a difficulty with admissibility:

When we go to prove admissibility, a property of the logical
relation, we want to use induction on τ.

When we get to the base case V[α]ρ, we're trying to show the
admissibility property holds for an arbitrary R ∈ Cand.

So we have to bake admissibility into our notion of candidate
relation.

(Aside: Derek thinks we can simplify the notion of admissibility used
in the preceding hand-waving proof. We only use it in a degenerate
way. Derek will discuss next time.)

Derek and Georg worked this out a few years ago and Derek concluded it
was rather painful (but doable). ere are a couple reasons. First,
it's painful to prove admissibility at arbitrary τ. Second, when you
want to use the LR and you pick some relation R to represent some type
α, you have to show R admissible. (Even the statement of (our
syntactic variant o) admissibility is nasty. It's not always obvious
how to show it.)

Instead, we'll use biorthogonality. It's completely different. It's a
really cool idea, but very non-obvious.

— ⊤⊤-closure aka ⊥⊥-closure aka biorthogonality

Introduced in an accessible fashion in (Pis and Stark, 1998). (We'll
get to this paper.)



It handles a number of things. e original paper lacks a very clear
explanation of the power of the technique.

Here's the definition (ideas will follow):

Terms are related if they behave (well and) in related ways
under related evaluation contexts.

E[τ]ρ = { (e₁,e₂) | ∀(K₁,K₂)∈K[τ]ρ. K₁[e₁]↓ ⇔ K₂[e₂]↓ }

For all observations of interest, termination suffices. We can
always fiddle continuations to get programs, say, evaluating
to the same values.

K[τ]ρ = { (K₁,K₂) | ∀(v₁,v₂)∈V[τ]ρ. K₁[v₁]↓ ⇔ K₂[v₂]↓ }.

Next time we'll discuss ideas and begin to work out the new
metatheory. (We can stick with our old Cand.)


