
ere is a lot more we could talk about wrt free theorems and
parametricity in the seing of System F and results of the kind we
worked on.

We'll move on.

Later, we might have students prepare talks on specific advanced
topics. One that would be very interesting is the work by Andrew
Kennedy (POPL'97) on unary parametricity for units of measure. ere's
a paper coming up in POPL'13 that extends Kennedy's work.

We'll start today with representation independence. e idea is to
reason about program correctness in a modular way, using
parametricity. is will be a recurring theme throughout the course.

Today, we'll clarify these ideas with an example and then extend the
langauge with recursion.

Much of the material from this and the next several lectures is
covered by Pis' chapter in Pierce's ATTPL (2005). We'll do things
differently, but Pis is a good source.

What are the standard rules for existential types? (Aside: Such types
are encodable in System F.)

What reasoning principle for representation indepdendence do we want?

— Adding existentials to the langauge

For at least the next several lectures, we'll work with System F
extended with ∃α.τ. (Church encodings cease being faithful once we
switch to richer languages, so we'll have to start adding primitive
types eventually.)

Syntax:

τ ::= ⋯ | ∃α.τ
e ::= ⋯ | pack [σ,e] as ∃α.τ | unpack_σ e as [α,x] in e'
v ::= ⋯ | pack [σ,v] as ∃α.τ 
K ::= ⋯ | pack [σ,K] as ∃α.τ | unpack_σ K as [α,x] in e'

Some people write unpack e as [α,x] in (e':σ). In
examples, we'll oen omit types.

Statics:



v(σ) ⊆ Δ
Δ; Γ ⊢ e : τ[σ/α]
—
Δ; Γ ⊢ pack [σ,e] as ∃α.τ : ∃α.τ

v(σ) ⊆ Δ
Δ; Γ ⊢ e : ∃α.τ
Δ, α; Γ, x:τ ⊢ e' : σ
—
Δ; Γ ⊢ unpack_σ e as [α,x] in e' : σ

Dynamics:

unpack_σ' (pack [σ,v] as ∃α.τ) as [α,x] in e' ↦ e'[σ/α][v/x]

— Church encoding for existentials

Recall:

∃α.τ := ∀β.(∀α.τ → β) → β
pack [σ,e] as ∃α.τ := Λβ.λk.k[σ]e
unpack_σ' e as [α,x] in e' := e σ' (Λα.λx.e').

(ink of ∀α.τ → β as the type of the pack constructor. at's one way
to think of all these Church encodings.)

We could prove the relevant β and η properties.

— Representation independence example

We'll motivate representation independence using our encoding of
existentials.

Idea: If we have two modules that both have the same interface (eg,
two existential packages with the same existential type), then we want
to show them contextually equivalent so long as we can change one to
the other in a “coherent way”.

Concrete example (Pis, Ex 7.3.5):

Suppose we've encoded integers, products, booleans, and some
operations.



Sem := ∃α.α × (α → α) × (α → bool)

(Idea: α represents a bit. e first operation flips the bit.
e second operation tells you if the bit is set.)

sem₁ := pack [bool, <true, λx.not x, λx.x>] as Sem
sem₂ := pack [int, <1, λx.0 - 2*x, λx.x≥0>] as Sem

Idea: sem₁ ≡ sem₂ : Sem.

at is, no well-typed context expecting a Sem can observe a
difference between sem₁ and sem₂.

We want “the implementation of the operations are logically
related at the type of the operations”.

Idea (representation independence principle):
Suppose R ∈ Cand s.t.

(v₁,v₂) ∈ V[τ]α → R
then (pack[σ₁,v₁] as ∃α.τ, pack[σ₂,v₂] as ∃α.τ) ∈ V[∃α.τ]
then, by soundness of the LR, we'd have

pack[σ₁,v₁] as ∃α.τ ≡ pack[σ₁,v₂] as ∃α.τ : ∃α.τ

Here's a loose R we might try:

R := { (true,n) | n > 0 } ∪ { (false,n) | n < 0 }

Pis offers the tighter

R' := { (true,m) | m = (-2)ⁿ for some even n ≥ 0 } ∪
{ (false,m) | m = (-2)ⁿ for some odd n ≥ 0 }.

TS: (e₁,e₂) ∈ E[τ]α↦R
where

e₁ = <true, λx.not x, λx.x>
e₂ = <1, λx.0 - 2*x, λx.x≥0>
τ = α × (α → α) × (α → bool).

While we haven't covered proof principles for showing things
in the LR at product types, once we do, we'll know
STS: (true,1) ∈ V[α]α↦R ∧

(λx.not x,λx.0-2*x) ∈ V[α→α]α↦R ∧
(λx.x, λx.x≥0) ∈ V[α→bool]α↦R.



(Completing such a proof is now routine. Interestingly, our
interpretation for α expects booleans on the le and integers
on the right.)

— Reasoning principles for products and existentials

Let's validate the reasoning princples for pair and existential types.

Lemma (Pairs):
If (v'₁,v'₂) ∈ V[τ']ρ
and (v''₁,v''₂) ∈ V[τ'']ρ,
then (<v'₁,v''₁>,<v'₂,v''₂>) ∈ V[τ'×τ'']ρ.

Recall:
σ×τ := ∀α.(σ→τ→α)→α
<v₁,v₂> := Λα.λk.k v₁ v₂.

Proof:
TS: (λα.λk.k v'₁ v''₂, λα.λk.k v''₁ v''₂) ∈ V[∀α.(τ'→τ''→α)→α]ρ

Let R ∈ Cand, (σ₁,σ₂) ∈ CTyp, (k₁,k₂) ∈ V[τ'→τ''→α]ρ,α↦R.
TS: (k₁ v'₁ v''₂, k₂ v'₂ v''₂) ∈ E[α]ρ,α↦R
⇐ (v'₁,v'₂) ∈ V[τ']ρ ∧ (v''₁,v''₂) ∈ V[τ'']ρ.

Q.E.D.

is principle, along with the obvious encoding of triples in terms of
pairs, justifies one step in our example.

Lemma (Existentials):
If R ∈ Cand
and (v₁,v₂) ∈ V[τ]ρ,α → R,
then (pack[σ₁,v₁] as ∃α.τ, pack[σ₂,v₂] as ∃α.τ) ∈ V[∃α.τ]ρ.

Proof:
TS: (Λβ.λk.k σ₁ v₁, Λβ.λk.k σ₂ v₂) ∈ V[∀β.(∀α.τ→β)→β]ρ.

Let S ∈ Cand, (k₁,k₂) ∈ V[∀α.τ→β]ρ,β↦S.
TS: (k σ₁ v₁, k σ₂ v₂) ∈ E[β]ρ,β↦S.

Unfolding V[∀α.τ→β]ρ,β↦S, picking R as the representation of
α, and using irrelevance,
STS: (v₁,v₂) ∈ V[τ]ρ,α↦R.

Q.E.D.



— What these principles don't give us

What we've proven for each type is, in some sense, a one-way
principle. We can show two values are related by the existential type
or the pair type. Our principles don't tell us what happens if we're
given values related at those types.

One issue: When you're working with Church encodings, you cannot
inspect the structure of values.

In other words, we'd like to be able to show
If (v₁,v₂) ∈ V[τ'×τ'']ρ,
then v₁ = <v'₁,v''₁>
and v₂ = <v'₂,v''₂>
and (v'₁,v'₂) ∈ V[τ']ρ
and (v''₁,v''₂) ∈ V[τ'']ρ.

is is NOT TRUE. Just because things are logically related, we don't
know they necessarily have predictable syntactic forms.

In reality (ie, for the purpose of verifcation), we don't really care
that these values are syntactically of this pair form. All we can do
is use them; that is, project their components.

We CAN show:
If (v₁,v₂) ∈ V[τ'×τ'']ρ,
then (π₁ v₁, π₁ v₂) ∈ E[τ']ρ
and (π₂ v₁, π₂ v₂) ∈ E[τ'']ρ.

A similar story holds for existentials. (It's a lile more annoying
to state.)

Once we have (read: need) a language with pairs, sums, existentials,
etc as primitive types, we can just define the LR to do exactly what
we want.

— Adding pairs, sums, and existentials

From now on, make pairs, sums, and existentials primitive.

V[τ'×τ'']ρ := { ((v'₁,v''₁), (v'₂,v''₂)) |
(v'₁,v'₂) ∈ V[τ']ρ ∧ (v''₁,v''₂) ∈ V[τ'']ρ }



V[τ'+τ'']ρ := { (inl v₁,inl v₂) | (v₁,v₂) ∈ V[τ']ρ }
∪ { (inr v₁,inr v₂) | (v₁,v₂) ∈ V[τ'']ρ }

V[∃α.τ]ρ := { (pack[σ₁,v₁] as ∃α.τ₁, pack[σ₂,v₂] as ∃α.τ₂) |
∃R∈Cand. (v₁,v₂) ∈ V[τ]ρ,α↦R }

Note we've baked in the principles we've just proven. at doesn't
mean we've wasted effort. When we extend the metatheory for the
logical relation to these new cases, we'll use the same reasoning.

Aside: We'll leave off extending the metatheory for now. Next time,
we'll have to change the term relation to deal with recursion. We'll
deal with these base types and with recursion in one batch of
homework.

— Adding recurison

(Foreshadowing our next lecture.)

Syntax:
e ::= ⋯ | fix f(x).e
v ::= ⋯ | fix f(x).e

We'll drop λx.e in favor of the encoding
λx.e := fix f(x).e where f ∉ fv(e).

Statics:

Δ; Γ, f :σ→τ, x:σ ⊢ e : τ
—
Δ; Γ ⊢ fix f(x).e : σ → τ

Dynamics:

(fix f(x).e) v ↦ e[fix f(x).e/][v/x]

Alternative approach:
We might treat

fix x.e
as a (recursive) expression satisfying

fix x.e ↦ e[fix x.e/x].

We can perfectly well define substitution e[term/var] instead



of e[val/var].

Once we add µα.τ, we'll be able to encode fix using µ and plain old λ.


