
What do we do next?

We could work on a few more types. It gets hairy. e encoding of
inductive types is not that complicated, but the encoding of the intro
and elim forms requires you to define a functorial map over arbitrary
types. Interesting, but far afield.

So instead, we'll wrap up this first section of the course. We've been
looking at System F's polymorphic types, proving interesting theorems
about their inhabitants.

So you can encode a variety of types in System F. What does this give
you?

Today, we'll look for useful theorems that might be applicable to
doing things with “real” programs. Today, we'll got a lile deeper
into the study of polymorphic types. en we'll move on to other uses
of relational parametricity.

We'll discuss this idea of free theorems.

• (Wadler, FPCA '89. eorems for Free!.) (Aside FPCA = Functional
Programming and Computer Architecture was a precurser to ICFP.)

Before discussing Wadler's paper, we'll extend the language and model
we've defined to include some concrete types (ie, some base types).
Derek finds one thing unsatisfying about Wadler's paper: It gives you
theorems but doesn't tell you what to do with them.

• (Gill-Launchbury-Peyton Jones, FPCA '93. A short-cut to
deforestation.)

is paper validates an optimization. It's actually a very nice paper.
ey give a proof of one of the free theorems, very much in the style
of what we did last time.

— Adding lists to CBV System F

Of course, we can Church-encode lists. We'll see it's actually useful
to go between encoded lists and built-in lists.

Syntax:
τ ::= ⋯ | list(τ)
e, L ::= ⋯ | nil | cons(e,e') | fold(e₁,e₂,e₃)

v ::= nil | cons(v,v')
K ::= ⋯ cons(K,e) | cons(v,K) | fold(K,e,e') | fold(v,K,e) | fold(v,v',K)

(Aside: You could work with just one form of continuations:
K ::= let x = K in e

and restrict all elimination forms to values; eg, applications have
the form v₁ v₂. It's called A-normal form. You can then encode the
more general elim forms.)

Fold will be “foldr”; its arguments are what to do with nil, what to
do with cons, and the list to fold over.

Statics:

Γ ⊢ nil : list(τ)

Γ ⊢ e : τ
Γ ⊢ L : list(τ)
—
Γ ⊢ cons(e,L) : list(τ)

Γ ⊢ L : list(τ)
Γ ⊢ n : σ
Γ ⊢ c : τ → σ → σ
—
Γ ⊢ fold(n,c,L) : σ

Dynamics:

fold(v_n, v_c, nil) ↦ v_n

fold(v_n, v_c, cons(v,v_L)) ↦ v_c v (fold(v_n,v_c,v_L))

Binary model:

V[list(τ)]ρ = { (v₁,v₂) |
v₁ = v₂ = nil ∨
v₁ = cons(u₁,L₁) ∧ cons(u₂,L₂) ∧ (u₁,u₂) ∈ V[τ]ρ ∧ (L₁,L₂) ∈ V[list(τ)]ρ }

Note the recursive use of V[list(τ)] occurs in a strictly postive
position. So the recursion is no problem: We're really talking about
the least fixed point of all sets satisfying this equation.

Another way is to use the very formal “⋯” notation:

V[list(τ)]ρ = { ([v₁,⋯,v_n], [v'₁,⋯,v'_n]) |
∀i∈1..n. (v_i,v'_i) ∈ V[τ]ρ }

It's necessary (but not hard, so omied) to prove that the
fundamental theorem survives this extension.

— Wadler's paper

[Derek projected the paper and talked. I did not aempt to record
stuff from Wadler's paper.]

Wadler's theorems are free in the sense that they fall out from FTLR.
(As we've seen, they're not exactly free. You have to know what you're
doing to prove them.)

Compared to what we've done, Wadler asks what happens when you have
polymorphic functions over list types. What properties do you get?

Since you don't know the type of the elements, you can't do anything
with them or that depends on what they are.

Rather than try to characterize polymorphic functions intensionally,
Wadler did so using commutation properties.

(Aside: Deepak asked if you can state open versions of Wadler's
theorems. Derek thinks so.)

e free theorems are nice, but so what?

e crucial bit in the paper is at the end of Section 3.1: “A more
convenient version can be derived by specialising to the case where
the relation ⋯”. Here, Wadler picks a useful candidate set.

In our notation, he's picking the following interpretation of
curly{A}:

curly{Α} = { (v₁,v₂) | a v₁ ↓ v₂ }.

So that
curly{A*} = V[list(α)]α ↦ curly{A}.

If (xs,xs') ∈ curly{A*}

(meaning a* xs = xs'),
then you'll get the values are component-wise related.

We did a similar thing last time.

Recall our proof of the η property for τ₁×τ₂. When we picked

S := { (v₁,v₂) | (v₁[σ₂]k₂,v₂]) ∈ [R] }

to instantiate α, it didn't look like we were working with any kind of
“map” function. However, we picked a relation ≈S defined by

v₁ ≈S v₂ iff a v₁ ≈R v₂
where a = λx.x[σ₁]k₁.

— Gill's et al paper.

e point of short-cut fusion is to rewrite functions over lists in a
“canonical” style (à la a Church encoding for list(τ)) and observe
that it's unnecessary to construct the temporary list.

Eg (sum (from a b)) builds a list only to fold over it. We can switch
to the Church encoding-inspired implementation from'. e theorem (aka
foldr/build rule)

foldr k z (build g) = g k z

states you might as well use the Church-encoded thing directly rather
than foldr/build.

(Aside from Deepak: Gill's from' is just a specialization of the fold
function to the list (from a b).)

We can prove their theorem (end of Section 3).

NB the theorem can only be stated if we have both a concrete type
list(τ) and a Church-encoded type Chlist(τ).

eorem:
If ⊢ f : Chlist(τ)
and ⊢ n : σ
and ⊢ c : τ → σ → σ,
then fold(n,c,build) ≡ f n c : σ.

where

build f := f nil cons
cons := λx.λy.Cons(x,y) (a function wrapping the primitive)
Chlist(τ) := ∀α.α → (τ → α → α) → α (the church encoding)
Chnil := Λα.λn.λc.n
Chcons := λx.λL.Λα.λn.λc.c x L.

Proof:
TS: fold(n,c,f nil cons) ≡ f n c : σ.
By parametricity,

(f,) ∈ [Chlist(τ)].
Pick R := { (v₁,v₂) | (fold(n,c,v₁),v₂) ∈ [σ] }
to interpret α.

Aside from Dave: Note that R satisfies
(†) ∀e₁,e₂. (e₁,e₂) ∈ R ⇔ (fold(n,c,e₁),e₂) ∈ [σ].
Without observing (†), you'll find this proof quickly becomes
mired in explicit reasoning about particular values,
expansions, and reductions.

We get
(f[·], f[·]) ∈ [R → (τ → R → R) → R].

Show
(nil,n) ∈ [R] ∧
(cons,c) ∈ [τ→R→R]

So,
(f[·]nil cons, f[·]n c) ∈ [R]

⇒ (fold(n,c,f[·]nil cons, f[·]n c) ∈ [σ].

STS: (nil,n) ∈ R ∧ (cons,c) ∈ [τ→R→R].

— HW: Complete the proof.

— History

ere have been a number of follow-up papers related to free theorems
and short-cut fusion.

See Patricia Johann's publications. One great thing: She's very
pedantic. Two nice examples:

(JFP'98. Short Cut Fusion is Correct.)
(POPL'04. Free theorems in the presences of seq.)

