Aside from Dave: I arrived to class just before Derek proved canonical
forms for pairs. Derek later told me what he had covered and I
reconstructed the first few topics. Please check the video: I am sure
Derek motivated those topics better than me and his proofs may be
easier to follow.

— Adequacy of the LR for open terms

We're not done proving the FTLR. Two things remain. First, we must
show that contextual equivalence is well-defined; that is, there

exists a largest type-respecting binary relation that is a congruence
and adequate. Derek might eventually simplify and present Pitts'
proof. For the moment, please refer to the “finicky” proof in ATTPL
and consider =ctx well-defined. Second, we must show that our logical
relation on open terms is adequate.

Lemma (Determinacy):
If e >+ v,
and e +>« v,,
then v, = v,.
Proof: Immediate: The rules for — are deterministic.

Proposition:
~ is adequate.
Proof:
WK: e, = e, : bool
< I e;:bool A e;:bool A (ey,e;) € E[bool]
< Fe;:boolAFe,:boolA
3V1,Va. €1 V1 A €2 Vs A (V1,v,) € V[bool].
TS: v,=KLv,
= (VT v|T).

The proof is symmetric. We prove only one direction.
WK: v, [bool] true false | true.
TS: v, [bool] true false | true.

Set R € Cand := { (true,true), (false,false) }.
: (V4,v2) € V[bool]
(vy bool, v, bool) € E[a—a—a]a—R
(v1 bool true, v, bool true) € E[a—a]a—R
(v1 bool true false, v, bool true false) € E[a]Ja—R
V',V
v, bool true false | v'; A
v, bool true false | v', A

I



(v'y,v';) € V[a]Ja—R = R.
Since evaluation is deterministic, we have v'; = true.

By the definition of R, we have v'; = true.
Q.ED.

— Convenient lemmas and notation

We want to use the LR to prove some theorems. In those proofs, we want
to mitigate the tedium of bouncing between V and E. The following
lemmas and notation help.

Lemma (Term applications):
(er,e;) EE[c—t]piff el nell A
(1) v(e';,e';) € E[o]p. (e; €1, e, €'5) € E[T]p.

Proof:

(=) WK: 3v,,v,. e1| vy A e,l v, A (V,v2) € V[o—1]p.
Thus, e,| and e,].
TS: v(e'1,e';) € E[o]p. (e; €1, e, €'5) € E[T]p.

\N l( HV'l,V'z. e'llV'l N e'zlvlz N (V'l,v'z) € V[G]p

WK: (v,v;) € V[o—1]p A (V'1,V'2) € V[o]p
= I,V (Vi VOV A (Ve V)V A (VLVT,) € VTP,

\N l( (S 6'1 —* Vi e'l % Vy V'l > V”1 AN
e, e, vye, o vV Vi o VI, A

(v',v"z) € V[t]p.

(:) WK: 3V1,Vz. ellV1 AN elez.
STS. (Vl,Vz) E V[G—)’[]p

Let (v'1,v';) € V[o]p be given.
TS: (v, v'y, Vo V') EE[T]p
= (e;Vv', e, v, €EE[T]p

=(1)(v'1,v'2) €E[o]p
= (v',V'y) € V[o]p.
Q.E.D.

Lemma (Type applications):
(er,e;) € E[Vout] iff ;] A e, A
Vo,,0, € CTyp. VR € Cand. (e, 034, €; 0,) € E[t](p,t—R).

Proof: Omitted.



Notation:
Rather than write E[--o-]Jo—R,
we now write simply [--R-].

Notes:
« These lemmas (especially when applied implicitly) /do/ let you avoid
routine (and distracting) jumps between E[t] and V[t] during proofs.

They generate routine (and distracting) termination side-conditions.

« The termination side-conditions matter but seem to fall out
naturally during proofs.

« If we want to formalize our new notation, we might bake (identifers
for) candidates into the syntax for types.

— Canonical forms theorems

We can use the logical relation to show that closed terms of certain
types are contextually equivalent to their canonical forms.

We'll write e = e' for contextual equivalence.
Theorem (Canonical forms for pairs):

If e: T1 X Ty,

then e = <v,,v,>: 1T, X T,

for some vy, v, : T4, T,.

The idea is to prove this in two steps.

1 (e's n-expansion at type t,xT, evaluates to a canonical
form).

e [T1xT.] pair | <vy,vy>
for some vy, v,

Recall that we proved this using the unary LR; see ./20121013.
2. (e is contextually equivalent to its n-expansion).
e =e [T.XT;] pair: T, x T,

< (FTLR)
e ~ e [T,XT;] pair : T, X T,.



Notes:
« We're working with closed terms for simplicity. The more general
form for open terms is perfectly fine.

« We can do such things for a variety of types. The plan is to start
with this proof today, do one for homework, and see what we can do in
the future.

— Canonical forms for pairs

Relying implicitly on the preceding “convenience” lemmas, we'll not
spell out E vs V. Using the preceding notation, we'll inline the
relations.

Lemma:
If —e: T1 X Ty,
then (e,e [t,xT,] pair) € [1,x1,].

Recall that t,x1, = Vou(T,;—T,—0)— L.

Proof:
Since e and e [t,xT,] pair are both well-typed, they
terminate. We'll ignore the termination side-conditions until
the end of the proof.

Let 6,,0, € CTyp, ReCand, (k,.k;)€[t,—T,—R].
TS: (e[o4]ky, (e[T1xT:]pair)[o.]k,) € [R].

WK: (e,e) € [Tlxrz].
(Aside: WK = “we know”.)

Plan (this plan will recur):
1. Pick S = {(v,,v;) | -~ } to instantiate c.
2. Show (kj,pair) € [T,—1,—S].
3. By parametricity, obtain
(*)  (e[oi]ks, e[TixT,]pair) € [S].
4. Hence,
(e[o1]kye[TixT,]pair[o.]k,) € [R].
Our goal with this proof plan, then, is to choose S such that

()= ().

Pick S :={ (v,v,) | (vi,v2[02]k:]) € [R] }.
Aside from Dave: Observe that
(er,e;) € [S] = (es,ex[0,]k:) € [R].



STS: (ky,pair) € [T,—1,—S].

Let (v',v',) € [t4] and (v"',v";) € [1,]
TS: (k, vy v"y, pair v', v'"3) € [S]
= (k, V', V", pair v'; V"', [0,] k;) € [R].

WK: paII‘ V'z V”z [Gz] kz —>* kz V'z V”z.
By assumption,
(kl V'l an, kz —>* kz V'z Vnz) € [R].

We're not quite done. We implicitly used the convenient lemmas
with termination side-conditions. To show (k,,pair) €
[tT:—71,—S], we also have to show the intermediate steps
terminate.

For example, to show (k, v';, pair v';) € [T, — S], we have to
show k; v'; and pair v', terminate.

WK: (k],kz) € [T1_>Tz_>R]
= (k, v'y, ky v',) € [T,—R].
=k, V']

WK: pair v', | (by the definition).
QED.

Why the subtle termination conditions?

Here's one reason: Our model is untyped. (Aside: Such models are
sometimes called “realizability models”.) Had we built our model from
syntactically well-typed terms (a la Pitts), we would automatically

get “M in the LR” = “M syntactically well-typed” = “M terminates”.

Why did we build an untyped model? The advantage of the untyped model:
We never have to worry about syntactic typing side-conditions. (In

Derek's experience, they create a lot of uninteresting proof

obligations.)

— Canonical forms theorems for other types

Derek has proven similar results for existential and sum types.

Some relevant papers:



« Logic for parametric polymorhpism. Plotkin and Abadi, TLCA 1993.
They work in a logic for reasoning about the model rather than in the
model. They go through the statements of these theorems, but not the
proofs.

« Categorical models for Abadi and Plotkin's logic for parametricity.
Birkedal and Magelberg, MSCS 2005. They give detailed proofs in the
logic for the Plotkin/Abadi theorems.

— Canonical forms for natural numbers

Let's try the same thing for natural numbers.

Lemma:

If - e : nat,

then (e, e [nat] zero succ) € [nat]
where

nat := Vo.oo — (a—a) — o
zero : nat = Ao.Az.As.z
succ : nat — nat = An.AaAz.As.s(n o z s).

Proof:
Let 0,,0, € CTyp, Re€Cand, (z,,2,)€[R], (s1,52)E[R—R].
TS: (e o, z, s1, € nat zero zucc o, z, S;) € [R].

WK: (e,e) € [nat].
Plan:
1. Pick S := { (vy,v5) | (V1,v2 02 22 8;) € [R] } to
instantiate o.
1%. Aside from Dave: Observe
(e,e;) € [S] & (ene2 022, 8,) € [R].
2. Show (z,,zero) € S A (sy,succ) € [S — S].
3. Obtain (e o, z; s, € nat zero zucc) € [S].
4. Hence (e o, z, s;, € nat zero zucc o, z, S;) € [R].

STS: (z,,zero) € [S] A (sy,succ) € [S — S].

(First conjunct):
TS: (zi,zero o, z,s,) € [R]
B-reduce zero. Conclude (z,,zero 6, z, s;) € [R].

(Second conjunct):
Let (v,,v,) € [S].
TS: (s; vy, succ v,) € [S].



STS: (s; vy, succ v, 0, Z; S3) € [R].

B-reduce succ. Obtain (s; v4, s5(vs[02] 22 s5)) € [R].

STS: (v,v, 0, 2, 8,) € [R] &= (v4,v3) € [S].

The proof is great modulo possible bugs wrt

termination conditions. (There should be no difficult ones).
Q.E.D.
— Homework for Thursday
Do one of these proofs (eg, for sum types):

e:T,+ T, = (e, e [1,+T,] inj, inj,) € [T4+T,].

— Aside from Dave

In our proof procedure for these canonical forms lemmas, we picked a
candidate

S:={(vy,v2) | P(vy,v2) }

where the predicate P is a predicate on pairs of expressions (rather
than values). We then implicitly used the lemma

(ese;) € [S] < P(ese,).
Such lemmas should be made explicit in case we later attempt to

“reuse” our proof in a more complicated model. It's not immediately
obvious they'd continue to hold in, say, a step-indexed model.



