Aside from Dave: I arrived to class just before Derek proved canonical forms for pairs. Derek later told me what he had covered and I reconstructed the first few topics. Please check the video: I am sure Derek motivated those topics better than me and his proofs may be easier to follow.

- Adequacy of the LR for open terms

We're not done proving the FTLR. Two things remain. First, we must show that contextual equivalence is well-defined; that is, there exists a largest type-respecting binary relation that is a congruence and adequate. Derek might eventually simplify and present Pitts' proof. For the moment, please refer to the "finicky" proof in ATTPL and consider \equiv ctx well-defined. Second, we must show that our logical relation on open terms is adequate.

Lemma (Determinacy):
If $\mathrm{e} \mapsto * \mathrm{~V}_{1}$
and $\mathrm{e} \mapsto * \mathrm{~V}_{2}$,
then $\mathrm{v}_{1}=\mathrm{v}_{2}$.
Proof: Immediate: The rules for \mapsto are deterministic.

Proposition:
\approx is adequate.
Proof:
WK: $\vdash \mathrm{e}_{1} \approx \mathrm{e}_{2}$: bool
$\Leftrightarrow \vdash \mathrm{e}_{1}$: bool $\wedge \vdash \mathrm{e}_{2}$: bool $\wedge\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right) \in \mathrm{E}[$ bool $]$
$\Longleftrightarrow \vdash \mathrm{e}_{1}:$ bool $\wedge \vdash \mathrm{e}_{2}:$ bool \wedge
$\exists \mathrm{v}_{1}, \mathrm{v}_{2} . \mathrm{e}_{1} \downarrow \mathrm{v}_{1} \wedge \mathrm{e}_{2} \downarrow \mathrm{v}_{2} \wedge\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{V}[$ bool $]$.
TS: $\quad v_{1} \equiv K L v_{2}$
$\Leftrightarrow \quad\left(\mathrm{v}_{1} \downarrow \top \Longleftrightarrow \mathrm{v}_{2} \downarrow T\right)$.
The proof is symmetric. We prove only one direction.
WK: v_{1} [bool] true false \downarrow true.
TS: $\quad \mathrm{v}_{2}$ [bool] true false \downarrow true.
Set $R \in$ Cand := $\{$ (true, true), (false,false) $\}$.
WK: $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{V}[$ bool $]$
$\Rightarrow \quad\left(\mathrm{v}_{1}\right.$ bool, v_{2} bool $) \in \mathrm{E}[\alpha \rightarrow \alpha \rightarrow \alpha] \alpha \mapsto \mathrm{R}$
$\Rightarrow \quad\left(\mathrm{v}_{1}\right.$ bool true, v_{2} bool true $) \in \mathrm{E}[\alpha \rightarrow \alpha] \alpha \mapsto \mathrm{R}$
$\Rightarrow \quad\left(v_{1}\right.$ bool true false, v_{2} bool true false $) \in \mathrm{E}[\alpha] \alpha \rightarrow \mathrm{R}$
$\Leftrightarrow \quad \exists \mathrm{v}^{\prime}{ }_{1}, \mathrm{v}^{\prime}{ }_{2}$.
v_{1} bool true false $\downarrow \mathrm{v}^{\prime}{ }_{1} \wedge$
v_{2} bool true false $\downarrow \mathrm{v}^{\prime}{ }_{2} \wedge$

$$
\left(\mathrm{v}^{\prime}, \mathrm{v}_{2}^{\prime}\right) \in \mathrm{V}[\alpha] \alpha \mapsto \mathrm{R}=\mathrm{R} .
$$

Since evaluation is deterministic, we have $\mathrm{v}^{\prime}{ }_{1}=$ true.
By the definition of R , we have $\mathrm{v}_{2}^{\prime}=$ true.
Q.E.D.

- Convenient lemmas and notation

We want to use the LR to prove some theorems. In those proofs, we want to mitigate the tedium of bouncing between V and E . The following lemmas and notation help.

Lemma (Term applications):

$$
\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right) \in \mathrm{E}[\sigma \rightarrow \tau] \rho \text { iff } \mathrm{e}_{1} \downarrow \wedge \mathrm{e}_{2} \downarrow \wedge
$$

$$
\forall\left(\mathrm{e}_{1}^{\prime}, \mathrm{e}_{2}^{\prime}\right) \in \mathrm{E}[\sigma] \rho .\left(\mathrm{e}_{1} \mathrm{e}_{1}^{\prime}, \mathrm{e}_{2} \mathrm{e}_{2}^{\prime}\right) \in \mathrm{E}[\tau] \rho .
$$

Proof:
(\Rightarrow) WK: $\exists \mathrm{v}_{1}, \mathrm{v}_{2} . \mathrm{e}_{1} \downarrow \mathrm{v}_{1} \wedge \mathrm{e}_{2} \downarrow \mathrm{v}_{2} \wedge\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{V}[\sigma \rightarrow \tau] \rho$.
Thus, $\mathrm{e}_{1} \downarrow$ and $\mathrm{e}_{2} \downarrow$.
TS: $\forall\left(\mathrm{e}_{1}^{\prime}, \mathrm{e}_{2}^{\prime}\right) \in \mathrm{E}[\sigma] \rho .\left(\mathrm{e}_{1} \mathrm{e}^{\prime}{ }_{1}, \mathrm{e}_{2} \mathrm{e}^{\prime}{ }_{2}\right) \in \mathrm{E}[\tau] \rho$.
WK: $\exists \mathrm{v}^{\prime}{ }_{1}, \mathrm{v}_{2}^{\prime}$. $\mathrm{e}^{\prime}{ }_{1} \downarrow \mathrm{v}^{\prime}{ }_{1} \wedge \mathrm{e}^{\prime} \downarrow \downarrow \mathrm{v}_{2}^{\prime} \wedge\left(\mathrm{v}^{\prime}, \mathrm{v}^{\prime}{ }_{2}\right) \in \mathrm{V}[\sigma] \rho$.
WK: $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{V}[\sigma \rightarrow \tau] \rho \wedge\left(\mathrm{v}^{\prime}, \mathrm{v}_{2}^{\prime}\right) \in \mathrm{V}[\sigma] \rho$
$\Rightarrow \quad \exists \mathrm{v}^{\prime \prime}{ }_{1}, \mathrm{v}^{\prime \prime}{ }_{2} \cdot\left(\mathrm{v}_{1} \mathrm{v}^{\prime}\right) \downarrow \mathrm{v}^{\prime \prime}{ }_{1} \wedge\left(\mathrm{v}_{2} \mathrm{v}^{\prime}\right) \downarrow \mathrm{v}^{\prime \prime}{ }_{2} \wedge\left(\mathrm{v}^{\prime \prime}{ }_{1}, \mathrm{v}^{\prime \prime}{ }_{2}\right) \in \mathrm{V}[\tau] \rho$.
WK: $\mathrm{e}_{1} \mathrm{e}_{1}{ }_{1} \mapsto^{*} \mathrm{v}_{1} \mathrm{e}^{\prime}{ }_{1} \mapsto * \mathrm{v}_{1} \mathrm{v}^{\prime} \mapsto * \mathrm{v}^{\prime \prime}{ }_{1} \wedge$

$$
\mathrm{e}_{2} \mathrm{e}_{2}^{\prime} \mapsto * \mathrm{v}_{2} \mathrm{e}_{2}^{\prime} \mapsto * \mathrm{v}_{2} \mathrm{v}_{2}^{\prime} \mapsto * \mathrm{v}_{2}^{\prime \prime} \wedge
$$

$$
\left(\mathrm{v}^{\prime}{ }_{1}, \mathrm{v}^{\prime \prime}\right) \in \mathrm{V}[\tau] \rho .
$$

(\Leftarrow) WK: $\exists \mathrm{v}_{1}, \mathrm{v}_{2} . \mathrm{e}_{1} \downarrow \mathrm{v}_{1} \wedge \mathrm{e}_{2} \downarrow \mathrm{v}_{2}$.
STS: $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{V}[\sigma \rightarrow \tau] \rho$.
Let $\left(\mathrm{v}^{\prime}, \mathrm{v}_{2}^{\prime}\right) \in \mathrm{V}[\sigma] \rho$ be given.
TS: $\left(\mathrm{v}_{1} \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2} \mathrm{v}_{2}^{\prime}\right) \in \mathrm{E}[\tau] \rho$
$\Leftarrow\left(\mathrm{e}_{1} \mathrm{v}^{\prime}{ }_{1}, \mathrm{e}_{2} \mathrm{v}^{\prime}{ }_{2}\right) \in \mathrm{E}[\tau] \rho$
$\Leftarrow(\dagger)\left(\mathrm{v}^{\prime}, \mathrm{v}^{\prime}{ }_{2}\right) \in \mathrm{E}[\sigma] \rho$
$\Leftrightarrow \quad\left(\mathrm{v}^{\prime}, \mathrm{v}^{\prime}{ }_{2}\right) \in \mathrm{V}[\sigma] \rho$.
Q.E.D.

Lemma (Type applications):

$$
\begin{aligned}
& \left(\mathrm{e}_{1}, \mathrm{e}_{2}\right) \in \mathrm{E}[\forall \alpha . \tau] \text { iff } \mathrm{e}_{\downarrow} \downarrow \wedge \mathrm{e}_{2} \downarrow \wedge \\
& \forall \sigma_{1}, \sigma_{2} \in \mathrm{CTyp} . \forall \mathrm{R} \in \operatorname{Cand} .\left(\mathrm{e}_{1} \sigma_{1}, \mathrm{e}_{2} \sigma_{2}\right) \in \mathrm{E}[\tau](\rho, \alpha \mapsto \mathrm{R}) .
\end{aligned}
$$

Proof: Omitted.

Notation:
Rather than write $\mathrm{E}[\cdots \alpha \cdots] \alpha \mapsto \mathrm{R}$, we now write simply [$\cdots \mathrm{R} \cdots]$.

Notes:

- These lemmas (especially when applied implicitly) /do/ let you avoid routine (and distracting) jumps between $\mathrm{E}[\tau]$ and $\mathrm{V}[\tau]$ during proofs. They generate routine (and distracting) termination side-conditions.
- The termination side-conditions matter but seem to fall out naturally during proofs.
- If we want to formalize our new notation, we might bake (identifers for) candidates into the syntax for types.
- Canonical forms theorems

We can use the logical relation to show that closed terms of certain types are contextually equivalent to their canonical forms.

We'll write $\mathrm{e} \equiv \mathrm{e}^{\prime}$ for contextual equivalence.
Theorem (Canonical forms for pairs):
If $\vdash \mathrm{e}: \tau_{1} \times \tau_{2}$,
then $\mathrm{e} \equiv<\mathrm{V}_{1}, \mathrm{~V}_{2}>: \tau_{1} \times \tau_{2}$
for some $\mathrm{v}_{1}, \mathrm{v}_{2}: \tau_{1}, \tau_{2}$.
The idea is to prove this in two steps.
1 (e's η-expansion at type $\tau_{1} \times \tau_{2}$ evaluates to a canonical form).

$$
\vdash \mathrm{e}\left[\tau_{1} \times \tau_{2}\right] \text { pair } \downarrow<\mathrm{V}_{1}, \mathrm{~V}_{2}>
$$

for some $\mathrm{v}_{1}, \mathrm{v}_{2}$

Recall that we proved this using the unary LR; see ./20121013.
2. (e is contextually equivalent to its η-expansion).

$$
\begin{aligned}
& \quad \vdash \mathrm{e} \equiv \mathrm{e}\left[\tau_{1} \mathrm{x} \tau_{2}\right] \text { pair : } \tau_{1} \times \tau_{2} \\
& \Leftarrow(\mathrm{FTLR}) \\
& \quad \vdash \mathrm{e} \approx \mathrm{e}\left[\tau_{1} \mathrm{x} \tau_{2}\right] \text { pair }: \tau_{1} \times \tau_{2} .
\end{aligned}
$$

Notes:

- We're working with closed terms for simplicity. The more general form for open terms is perfectly fine.
- We can do such things for a variety of types. The plan is to start with this proof today, do one for homework, and see what we can do in the future.
- Canonical forms for pairs

Relying implicitly on the preceding "convenience" lemmas, we'll not spell out E vs V. Using the preceding notation, we'll inline the relations.

Lemma:

$$
\begin{aligned}
& \text { If } \vdash \mathrm{e}: \tau_{1} \times \tau_{2} \text {, } \\
& \text { then }\left(\mathrm{e}, \mathrm{e}\left[\tau_{1} \times \tau_{2}\right] \text { pair }\right) \in\left[\tau_{1} \times \tau_{2}\right] \text {. }
\end{aligned}
$$

Recall that $\tau_{1} \times \tau_{2}=\forall \alpha .\left(\tau_{1} \rightarrow \tau_{2} \rightarrow \alpha\right) \rightarrow \alpha$.
Proof:
Since e and e $\left[\tau_{1} \times \tau_{2}\right]$ pair are both well-typed, they
terminate. We'll ignore the termination side-conditions until the end of the proof.

Let $\sigma_{1}, \sigma_{2} \in$ CTyp, R \in Cand, $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \in\left[\tau_{1} \rightarrow \tau_{2} \rightarrow \mathrm{R}\right]$.
TS: $\quad\left(\mathrm{e}\left[\sigma_{1}\right] \mathrm{k}_{1},\left(\mathrm{e}\left[\tau_{1} \times \tau_{2}\right]\right.\right.$ pair $\left.)\left[\sigma_{2}\right] \mathrm{k}_{2}\right) \in[\mathrm{R}]$.
WK: $(\mathrm{e}, \mathrm{e}) \in\left[\tau_{1} \times \tau_{2}\right]$.
(Aside: WK = "we know".)
Plan (this plan will recur):

1. Pick $S=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \mid \cdots\right\}$ to instantiate α.
2. Show (k_{1}, pair) $\in\left[\tau_{1} \rightarrow \tau_{2} \rightarrow \mathrm{~S}\right]$.
3. By parametricity, obtain
(*) $\quad\left(\mathrm{e}\left[\sigma_{1}\right] \mathrm{k}_{1}, \mathrm{e}\left[\tau_{1} \times \tau_{2}\right]\right.$ pair $) \in[\mathrm{S}]$.
4. Hence,

$$
\left(\mathrm{e}\left[\sigma_{1}\right] \mathrm{k}_{1}, \mathrm{e}\left[\tau_{1} \times \tau_{2}\right] \text { pair }\left[\sigma_{2}\right] \mathrm{k}_{2}\right) \in[\mathrm{R}] .
$$

Our goal with this proof plan, then, is to choose S such that
$\left(^{*}\right) \Rightarrow(4)$.
Pick $\left.S:=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \mid\left(\mathrm{v}_{1}, \mathrm{v}_{2}\left[\sigma_{2}\right] \mathrm{k}_{2}\right]\right) \in[\mathrm{R}]\right\}$.
Aside from Dave: Observe that

$$
\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right) \in[\mathrm{S}] \Longleftrightarrow\left(\mathrm{e}_{1}, \mathrm{e}_{2}\left[\sigma_{2}\right] \mathrm{k}_{2}\right) \in[\mathrm{R}] .
$$

STS: $\left(\mathrm{k}_{1}\right.$, pair $) \in\left[\tau_{1} \rightarrow \tau_{2} \rightarrow\right.$ S $]$.
Let $\left(\mathrm{v}^{\prime}, \mathrm{v}^{\prime}{ }_{2}\right) \in\left[\tau_{1}\right]$ and $\left(\mathrm{v}^{\prime \prime}{ }_{1}, \mathrm{v}^{\prime \prime}{ }_{2}\right) \in\left[\tau_{2}\right]$
$\mathrm{TS}: \quad\left(\mathrm{k}_{1} \mathrm{v}^{\prime}{ }_{1} \mathrm{v}^{\prime \prime}{ }_{1}\right.$, pair $\left.\mathrm{v}_{2} \mathrm{v}^{\prime \prime}{ }_{2}\right) \in[\mathrm{S}]$
$\Leftarrow \quad\left(\mathrm{k}_{1} \mathrm{v}^{\prime}{ }_{1} \mathrm{v}^{\prime \prime}{ }_{1}\right.$, pair $\left.\mathrm{v}^{\prime}{ }_{2} \mathrm{v}^{\prime \prime}{ }_{2}\left[\sigma_{2}\right] \mathrm{k}_{2}\right) \in[\mathrm{R}]$.
WK: pair $\mathrm{v}^{\prime}{ }_{2} \mathrm{v}^{\prime \prime}{ }_{2}\left[\sigma_{2}\right] \mathrm{k}_{2} \mapsto * \mathrm{k}_{2} \mathrm{v}^{\prime}{ }_{2} \mathrm{v}^{\prime \prime}{ }_{2}$.
By assumption,

$$
\left(\mathrm{k}_{1} \mathrm{v}^{\prime}{ }_{1} \mathrm{v}^{\prime \prime}{ }_{1}, \mathrm{k}_{2} \mapsto * \mathrm{k}_{2} \mathrm{v}^{\prime}{ }_{2} \mathrm{v}^{\prime \prime}{ }_{2}\right) \in[\mathrm{R}] .
$$

We're not quite done. We implicitly used the convenient lemmas with termination side-conditions. To show (k_{1}, pair) \in [$\tau_{1} \rightarrow \tau_{2} \rightarrow \mathrm{~S}$], we also have to show the intermediate steps terminate.

For example, to show $\left(\mathrm{k}_{1} \mathrm{v}^{\prime}\right.$, pair $\left.\mathrm{v}^{\prime}{ }_{2}\right) \in\left[\tau_{1} \rightarrow \mathrm{~S}\right]$, we have to show $\mathrm{k}_{1} \mathrm{v}^{\prime}{ }_{1}$ and pair v^{\prime} terminate.

WK: $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \in\left[\tau_{1} \rightarrow \tau_{2} \rightarrow \mathrm{R}\right]$
$\Rightarrow \quad\left(\mathrm{k}_{1} \mathrm{v}^{\prime}{ }_{1}, \mathrm{k}_{2} \mathrm{v}^{\prime}{ }_{2}\right) \in\left[\tau_{2} \longrightarrow \mathrm{R}\right]$.
$\Rightarrow \quad \mathrm{k}_{1} \mathrm{v}^{\prime} \downarrow \downarrow$.
WK: pair $\mathrm{v}^{\prime}{ }_{2} \downarrow$ (by the definition).
Q.E.D.

Why the subtle termination conditions?
Here's one reason: Our model is untyped. (Aside: Such models are sometimes called "realizability models".) Had we built our model from syntactically well-typed terms (à la Pitts), we would automatically get " M in the $L R$ " \Rightarrow " M syntactically well-typed" \Rightarrow " M terminates".

Why did we build an untyped model? The advantage of the untyped model:
We never have to worry about syntactic typing side-conditions. (In
Derek's experience, they create a lot of uninteresting proof obligations.)

- Canonical forms theorems for other types

Derek has proven similar results for existential and sum types.
Some relevant papers:

- Logic for parametric polymorhpism. Plotkin and Abadi, TLCA 1993. They work in a logic for reasoning about the model rather than in the model. They go through the statements of these theorems, but not the proofs.
- Categorical models for Abadi and Plotkin's logic for parametricity. Birkedal and Møgelberg, MSCS 2005. They give detailed proofs in the logic for the Plotkin/Abadi theorems.
- Canonical forms for natural numbers

Let's try the same thing for natural numbers.
Lemma:
If $\vdash \mathrm{e}:$ nat, then (e, e [nat] zero succ) \in [nat]
where

$$
\begin{aligned}
& \text { nat }:=\forall \alpha . \alpha \rightarrow(\alpha \rightarrow \alpha) \rightarrow \alpha \\
& \text { zero }: \text { nat }=\Lambda \alpha \cdot \lambda z . \lambda s . z \\
& \text { succ }: \text { nat } \rightarrow \text { nat }=\lambda \text { n. } \Lambda \alpha \cdot \lambda z . \lambda s . s(\mathrm{n} \alpha \mathrm{z} \mathrm{~s}) .
\end{aligned}
$$

Proof:

Let $\sigma_{1}, \sigma_{2} \in$ CTyp, R \in Cand, $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \in[\mathrm{R}],\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \in[\mathrm{R} \rightarrow \mathrm{R}]$.
TS: (e $\sigma_{1} \mathrm{Z}_{1} \mathrm{~S}_{1}$, e nat zero zucc $\left.\sigma_{2} \mathrm{Z}_{2} \mathrm{~S}_{2}\right) \in[\mathrm{R}]$.
WK: $(\mathrm{e}, \mathrm{e}) \in[\mathrm{nat}]$.
Plan:

1. Pick $S:=\left\{\left(\mathrm{v}_{1}, \mathrm{~V}_{2}\right) \mid\left(\mathrm{v}_{1}, \mathrm{~V}_{2} \sigma_{2} \mathrm{Z}_{2} \mathrm{~s}_{2}\right) \in[\mathrm{R}]\right\}$ to instantiate α.
$1 \frac{1}{2}$. Aside from Dave: Observe

$$
\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right) \in[\mathrm{S}] \Longleftrightarrow\left(\mathrm{e}_{1}, \mathrm{e}_{2} \sigma_{2} \mathrm{z}_{2} \mathrm{~s}_{2}\right) \in[\mathrm{R}] .
$$

2. Show $\left(z_{1}\right.$, zero $) \in S \wedge\left(s_{1}\right.$, succ $) \in[S \rightarrow S]$.
3. Obtain (e $\sigma_{1} \mathrm{z}_{1} \mathrm{~S}_{1}$, e nat zero zucc) $\in[\mathrm{S}]$.
4. Hence (e $\sigma_{1} z_{1} s_{1}$, e nat zero zucc $\left.\sigma_{2} Z_{2} s_{2}\right) \in[R]$.

STS: $\left(z_{1}\right.$, zero $) \in[S] \wedge\left(s_{1}\right.$, succ $) \in[S \rightarrow S]$.
(First conjunct):
TS: $\quad\left(\mathrm{z}_{1}\right.$, zero $\left.\sigma_{2} \mathrm{z}_{2} \mathrm{~s}_{2}\right) \in[\mathrm{R}]$
β-reduce zero. Conclude (z_{1}, zero $\sigma_{2} \mathrm{z}_{2} \mathrm{~s}_{2}$) $\in[\mathrm{R}]$.
(Second conjunct):
Let $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in[\mathrm{S}]$.
TS: $\quad\left(\mathrm{s}_{1} \mathrm{v}_{1}\right.$, succ $\left.\mathrm{v}_{2}\right) \in[\mathrm{S}]$.

STS: $\left(\mathrm{s}_{1} \mathrm{v}_{1}\right.$, succ $\left.\mathrm{v}_{2} \sigma_{2} \mathrm{Z}_{2} \mathrm{~s}_{2}\right) \in[\mathrm{R}]$.
β-reduce succ. Obtain $\left(s_{1} \mathrm{v}_{1}, \mathrm{~s}_{2}\left(\mathrm{v}_{2}\left[\sigma_{2}\right] \mathrm{z}_{2} \mathrm{~s}_{2}\right)\right) \in[R]$.
STS: $\left(\mathrm{v}_{1}, \mathrm{v}_{2} \sigma_{2} \mathrm{Z}_{2} \mathrm{~S}_{2}\right) \in[\mathrm{R}] \Longleftarrow\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in[\mathrm{S}]$.

The proof is great modulo possible bugs wrt termination conditions. (There should be no difficult ones).
Q.E.D.

- Homework for Thursday

Do one of these proofs (eg, for sum types):

$$
\vdash \mathrm{e}: \tau_{1}+\tau_{2} \Rightarrow\left(\mathrm{e}, \mathrm{e}\left[\tau_{1}+\tau_{2}\right] \mathrm{inj}_{1} \mathrm{inj}_{2}\right) \in\left[\tau_{1}+\tau_{2}\right] .
$$

- Aside from Dave

In our proof procedure for these canonical forms lemmas, we picked a candidate

$$
\mathrm{S}:=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \mid \mathrm{P}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right\}
$$

where the predicate P is a predicate on pairs of expressions (rather than values). We then implicitly used the lemma

$$
\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right) \in[\mathrm{S}] \Longleftrightarrow \mathrm{P}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)
$$

Such lemmas should be made explicit in case we later attempt to "reuse" our proof in a more complicated model. It's not immediately obvious they'd continue to hold in, say, a step-indexed model.

