
Aside from Dave: I arrived to class just before Derek proved canonical
forms for pairs. Derek later told me what he had covered and I
reconstructed the first few topics. Please check the video: I am sure
Derek motivated those topics beer than me and his proofs may be
easier to follow.

— Adequacy of the LR for open terms

We're not done proving the FTLR. Two things remain. First, we must
show that contextual equivalence is well-defined; that is, there
exists a largest type-respecting binary relation that is a congruence
and adequate. Derek might eventually simplify and present Pis'
proof. For the moment, please refer to the “finicky” proof in ATTPL
and consider ≡ctx well-defined. Second, we must show that our logical
relation on open terms is adequate.

Lemma (Determinacy):
If e ↦∗ v₁
and e ↦∗ v₂,
then v₁ = v₂.

Proof: Immediate: e rules for ↦ are deterministic.

Proposition:
≈ is adequate.

Proof:
WK: ⊢ e₁ ≈ e₂ : bool
⇔ ⊢ e₁ : bool ∧ ⊢ e₂ : bool ∧ (e₁,e₂) ∈ E[bool]
⇔ ⊢ e₁ : bool ∧ ⊢ e₂ : bool ∧

∃v₁,v₂. e₁↓v₁ ∧ e₂↓v₂ ∧ (v₁,v₂) ∈ V[bool].
TS: v₁ ≡KL v₂
⇔ (v₁↓⊤ ⇔ v₂↓⊤).

e proof is symmetric. We prove only one direction.
WK: v₁ [bool] true false ↓ true.
TS: v₂ [bool] true false ↓ true.

Set R ∈ Cand := { (true,true), (false,false) }.
WK: (v₁,v₂) ∈ V[bool]
⇒ (v₁ bool, v₂ bool) ∈ E[α→α→α]α↦R
⇒ (v₁ bool true, v₂ bool true) ∈ E[α→α]α↦R
⇒ (v₁ bool true false, v₂ bool true false) ∈ E[α]α→R
⇔ ∃v'₁,v'₂.

v₁ bool true false ↓ v'₁ ∧
v₂ bool true false ↓ v'₂ ∧



(v'₁,v'₂) ∈ V[α]α↦R = R.
Since evaluation is deterministic, we have v'₁ = true.
By the definition of R, we have v'₂ = true.

Q.E.D.

— Convenient lemmas and notation

We want to use the LR to prove some theorems. In those proofs, we want
to mitigate the tedium of bouncing between V and E. e following
lemmas and notation help.

Lemma (Term applications):
(e₁,e₂) ∈ E[σ→τ]ρ iff e₁↓ ∧ e₂↓ ∧

(†) ∀(e'₁,e'₂) ∈ E[σ]ρ. (e₁ e'₁, e₂ e'₂) ∈ E[τ]ρ.

Proof:
(⇒) WK: ∃v₁,v₂. e₁↓v₁ ∧ e₂↓v₂ ∧ (v₁,v₂) ∈ V[σ→τ]ρ.

us, e₁↓ and e₂↓.
TS: ∀(e'₁,e'₂) ∈ E[σ]ρ. (e₁ e'₁, e₂ e'₂) ∈ E[τ]ρ.

WK: ∃v'₁,v'₂. e'₁↓v'₁ ∧ e'₂↓v'₂ ∧ (v'₁,v'₂) ∈ V[σ]ρ.

WK: (v₁,v₂) ∈ V[σ→τ]ρ ∧ (v'₁,v'₂) ∈ V[σ]ρ
⇒ ∃v''₁,v''₂. (v₁ v'₁)↓v''₁ ∧ (v₂ v'₂)↓v''₂ ∧ (v''₁,v''₂) ∈ V[τ]ρ.

WK: e₁ e'₁ ↦* v₁ e'₁ ↦∗ v₁ v'₁ ↦∗ v''₁ ∧
e₂ e'₂ ↦∗ v₂ e'₂ ↦∗ v₂ v'₂ ↦∗ v''₂ ∧
(v''₁,v''₂) ∈ V[τ]ρ.

(⇐) WK: ∃v₁,v₂. e₁↓v₁ ∧ e₂↓v₂.
STS: (v₁,v₂) ∈ V[σ→τ]ρ.

Let (v'₁,v'₂) ∈ V[σ]ρ be given.
TS: (v₁ v'₁, v₂ v'₂) ∈ E[τ]ρ
⇐ (e₁ v'₁, e₂ v'₂) ∈ E[τ]ρ
⇐(†)(v'₁,v'₂) ∈ E[σ]ρ
⇔ (v'₁,v'₂) ∈ V[σ]ρ.

Q.E.D.

Lemma (Type applications):
(e₁,e₂) ∈ E[∀α.τ] iff e₁↓ ∧ e₂↓ ∧

∀σ₁,σ₂ ∈ CTyp. ∀R ∈ Cand. (e₁ σ₁, e₂ σ₂) ∈ E[τ](ρ,α↦R).

Proof: Omied.



Notation:
Rather than write E[⋯α⋯]α↦R,
we now write simply [⋯R⋯].

Notes:
• ese lemmas (especially when applied implicitly) /do/ let you avoid
routine (and distracting) jumps between E[τ] and V[τ] during proofs.
ey generate routine (and distracting) termination side-conditions.

• e termination side-conditions maer but seem to fall out
naturally during proofs.

• If we want to formalize our new notation, we might bake (identifers
for) candidates into the syntax for types.

— Canonical forms theorems

We can use the logical relation to show that closed terms of certain
types are contextually equivalent to their canonical forms.

We'll write e ≡ e' for contextual equivalence.

eorem (Canonical forms for pairs):
If ⊢ e : τ₁ × τ₂,
then e ≡ <v₁,v₂> : τ₁ × τ₂
for some v₁, v₂ : τ₁, τ₂.

e idea is to prove this in two steps.

1 (e's η-expansion at type τ₁×τ₂ evaluates to a canonical
form).

⊢ e [τ₁×τ₂] pair ↓ <v₁,v₂>
for some v₁, v₂

Recall that we proved this using the unary LR; see ./20121013.

2. (e is contextually equivalent to its η-expansion).

⊢ e ≡ e [τ₁xτ₂] pair : τ₁ × τ₂
⇐ (FTLR)

⊢ e ≈ e [τ₁xτ₂] pair : τ₁ × τ₂.



Notes:
• We're working with closed terms for simplicity. e more general
form for open terms is perfectly fine.

• We can do such things for a variety of types. e plan is to start
with this proof today, do one for homework, and see what we can do in
the future.

— Canonical forms for pairs

Relying implicitly on the preceding “convenience” lemmas, we'll not
spell out E vs V. Using the preceding notation, we'll inline the
relations.

Lemma:
If ⊢ e : τ₁ × τ₂,
then (e,e [τ₁×τ₂] pair) ∈ [τ₁×τ₂].

Recall that τ₁×τ₂ = ∀α.(τ₁→τ₂→α)→α.

Proof:
Since e and e [τ₁×τ₂] pair are both well-typed, they
terminate. We'll ignore the termination side-conditions until
the end of the proof.

Let σ₁,σ₂ ∈ CTyp, R∈Cand, (k₁,k₂)∈[τ₁→τ₂→R].
TS: (e[σ₁]k₁, (e[τ₁×τ₂]pair)[σ₂]k₂) ∈ [R].

WK: (e,e) ∈ [τ₁×τ₂].
(Aside: WK = “we know”.)

Plan (this plan will recur):
1. Pick S = { (v₁,v₂) | ⋯ } to instantiate α.
2. Show (k₁,pair) ∈ [τ₁→τ₂→S].
3. By parametricity, obtain
(*) (e[σ₁]k₁, e[τ₁×τ₂]pair) ∈ [S].
4. Hence,

(e[σ₁]k₁,e[τ₁×τ₂]pair[σ₂]k₂) ∈ [R].
Our goal with this proof plan, then, is to choose S such that

(*) ⇒ (4).

Pick S := { (v₁,v₂) | (v₁,v₂[σ₂]k₂]) ∈ [R] }.
Aside from Dave: Observe that

(e₁,e₂) ∈ [S] ⇔ (e₁,e₂[σ₂]k₂) ∈ [R].



STS: (k₁,pair) ∈ [τ₁→τ₂→S].

Let (v'₁,v'₂) ∈ [τ₁] and (v''₁,v''₂) ∈ [τ₂]
TS: (k₁ v'₁ v''₁, pair v'₂ v''₂) ∈ [S]
⇐ (k₁ v'₁ v''₁, pair v'₂ v''₂ [σ₂] k₂) ∈ [R].

WK: pair v'₂ v''₂ [σ₂] k₂ ↦∗ k₂ v'₂ v''₂.
By assumption,

(k₁ v'₁ v''₁, k₂ ↦∗ k₂ v'₂ v''₂) ∈ [R].

We're not quite done. We implicitly used the convenient lemmas
with termination side-conditions. To show (k₁,pair) ∈
[τ₁→τ₂→S], we also have to show the intermediate steps
terminate.

For example, to show (k₁ v'₁, pair v'₂) ∈ [τ₁ → S], we have to
show k₁ v'₁ and pair v'₂ terminate.

WK: (k₁,k₂) ∈ [τ₁→τ₂→R]
⇒ (k₁ v'₁, k₂ v'₂) ∈ [τ₂→R].
⇒ k₁ v'₁↓.

WK: pair v'₂ ↓ (by the definition).
Q.E.D.

Why the subtle termination conditions?

Here's one reason: Our model is untyped. (Aside: Such models are
sometimes called “realizability models”.) Had we built our model from
syntactically well-typed terms (à la Pis), we would automatically
get “M in the LR” ⇒ “M syntactically well-typed” ⇒ “M terminates”.

Why did we build an untyped model? e advantage of the untyped model:
We never have to worry about syntactic typing side-conditions. (In
Derek's experience, they create a lot of uninteresting proof
obligations.)

— Canonical forms theorems for other types

Derek has proven similar results for existential and sum types.

Some relevant papers:



• Logic for parametric polymorhpism. Plotkin and Abadi, TLCA 1993.
ey work in a logic for reasoning about the model rather than in the
model. ey go through the statements of these theorems, but not the
proofs.

• Categorical models for Abadi and Plotkin's logic for parametricity.
Birkedal and Møgelberg, MSCS 2005. ey give detailed proofs in the
logic for the Plotkin/Abadi theorems.

— Canonical forms for natural numbers

Let's try the same thing for natural numbers.

Lemma:
If ⊢ e : nat,
then (e, e [nat] zero succ) ∈ [nat]

where
nat := ∀α.α → (α→α) → α
zero : nat = Λα.λz.λs.z
succ : nat → nat = λn.Λα.λz.λs.s(n α z s).

Proof:
Let σ₁,σ₂ ∈ CTyp, R∈Cand, (z₁,z₂)∈[R], (s₁,s₂)∈[R→R].
TS: (e σ₁ z₁ s₁, e nat zero zucc σ₂ z₂ s₂) ∈ [R].

WK: (e,e) ∈ [nat].
Plan:
1. Pick S := { (v₁,v₂) | (v₁,v₂ σ₂ z₂ s₂) ∈ [R] } to
instantiate α.
1½. Aside from Dave: Observe

(e₁,e₂) ∈ [S] ⇔ (e₁,e₂ σ₂ z₂ s₂) ∈ [R].
2. Show (z₁,zero) ∈ S ∧ (s₁,succ) ∈ [S → S].
3. Obtain (e σ₁ z₁ s₁, e nat zero zucc) ∈ [S].
4. Hence (e σ₁ z₁ s₁, e nat zero zucc σ₂ z₂ s₂) ∈ [R].

STS: (z₁,zero) ∈ [S] ∧ (s₁,succ) ∈ [S → S].

(First conjunct):
TS: (z₁,zero σ₂ z₂ s₂) ∈ [R]
β-reduce zero. Conclude (z₁,zero σ₂ z₂ s₂) ∈ [R].

(Second conjunct):
Let (v₁,v₂) ∈ [S].
TS: (s₁ v₁, succ v₂) ∈ [S].



STS: (s₁ v₁, succ v₂ σ₂ z₂ s₂) ∈ [R].
β-reduce succ. Obtain (s₁ v₁, s₂(v₂[σ₂] z₂ s₂)) ∈ [R].
STS: (v₁,v₂ σ₂ z₂ s₂) ∈ [R] ⇐ (v₁,v₂) ∈ [S].

e proof is great modulo possible bugs wrt
termination conditions. (ere should be no difficult ones).

Q.E.D.

— Homework for ursday

Do one of these proofs (eg, for sum types):

⊢ e : τ₁ + τ₂ ⇒ (e, e [τ₁+τ₂] inj₁ inj₂) ∈ [τ₁+τ₂].

— Aside from Dave

In our proof procedure for these canonical forms lemmas, we picked a
candidate

S := { (v₁,v₂) | P(v₁,v₂) }

where the predicate P is a predicate on pairs of expressions (rather
than values). We then implicitly used the lemma

(e₁,e₂) ∈ [S] ⇔ P(e₁,e₂).

Such lemmas should be made explicit in case we later aempt to
“reuse” our proof in a more complicated model. It's not immediately
obvious they'd continue to hold in, say, a step-indexed model.


