— Overview

Spelling out exactly what it means to “encode a type” in a purely
operational way is non-obvious.

Today we'll define Reynold's relational parametricity. We'll also
cover contextual equivalence, the standard operational way of dealing
with such encodings.

We want to show things like

bool ~ Va.a—a—a.
TyXT, = Vou(T; — T, — ) — .
T14T, = Vou(1; = o) — (T, = o) — o

but what is this ~?
(Aside: We'll go through more interesting types next time.)
For each of these types, we have canonical forms.

Consider Bool:
true = Ao Ax.Ay.x
false = A Ax.Ay.y

We want to show
If —v :bool,
then v =ctx true v v =ctx false.

The relation =ctx, called contextual equivalence, is the notion of
equivalence we get from looking at the operational semantics.
Informally, if v =ctx true, then putting v in any program is “the
same” as putting true in that program.

Informally, we want to show that such Church encodings are /full/ and
/faithful/. They are full in the sense that we can encode all the
canonical forms we expect (as elements of the type) and faithful in

the sense that there are no extra inhabitants of the type that don't
behave like one of the canonical forms; that is, no junk.

Today we'll define contextual equivalence, talk about why Derek wanted
to avoid it, talk about Reynold's idea of relational parametricity,
and how Reynold's method compares to Girard's method.



(Aside: The hard part, for Derek, is finding a way to motivate
“Reynold's method”.)

— What “encoding a type” means

Here's the general pattern. For some type 1 defined via a Church
encoding, we want to prove

Vv:T. v =ctx n-expansion(v) | canonical(t).

Last time, we saw that the second conjunct—that the n-expansion of v
evaluates to one of the canonical forms of type t—can be proven with
the unary model. We saw we need something else for the fact that v is
contextually equivalent to its n-expansion.

For bool, we'll show
Vv : bool. v =ctx v [bool] true false | v' € {true,false}.

It turns out that the second conjunct is also a contextual equivalence
(since all =ctx can do is evaluate stuff):

vv : bool. v =ctx v [bool] true false =ctx v' € {true,false}.
— Observations without base types

Derek didn't want to introduce =ctx because you have to talk about
“distinguishing different results” (observations) and client programs
(contexts). In many languages, you can use termination as observation.
In System F, all programs terminate. So what do you observe? The usual
thing people do is work with a language with some kind of base type
and build observations up from that. We didn't bake in a built in,

say, unit or boolean type in System F.

Derek thinks you can define contextual equivalence perfectly well,

just with System F. We'll use our Church encoding of bool and the fact
that n-expansion reduces to true or false (provable with Girard's
method) to define our observations.

— Motivating relational parametricity

Back to our story. Let's spell out what contextual equivalence means
for bool.



vf:bool.
(Vo,vi,vo.fo vivy | Vi) v
(Vo,vy,vo. To vy vy | V).

That's roughly Vf:bool. f =ctx true v f =ctx false.

Question: Wouldn't it be asounding (given our notion of observations)
if this didn't work for bool?

Answer: Derek offered a counterexample based on an extension
to the langauge. The idea is to break parametricity. Add, say,

a typecase operation and build a value around it. Here's our
really stupid extension:

iftypeisbool(t) then e, else e,

We have more things of type bool than true and false. We also
have:

v := Aa.AX,.AX,.iftypeisbool(a) then x, else x,.

So v [bool] true false | true.
But if T # bool, then v [t] v, v, | va.

We have not broken the n-expansion property. But we have
broken contextual equivalence to true/false.

Idea: We know f [c] v, v, | v' € {vy,va}.
Suppose we get v,.
TS: Vo', v', v flo'] vii vy | Ve

To clear this up, we'll set up a relation r s.t. if (v,,v';) € r and
(Vo,V'y) €1, then (V',v',) € 1; that is, we'll show that if f is

given related arguments, then it produces related results.
That's the motivation/intuition for Reynold's relational
parametricity. We'll return to this example once we define the
relational model.

— Relational parametricity

Recall Girard's model:

Cand := Sub(CVal)



[tlp:={e|3v.e | vAavEV[t]p}

[ap = p(o)

[c—=t]p:={v ]|V € V[o]p.vVv' €E[t]p}

[Vo.t]p :={v | Vo € CTyp. VS € Cand. v o € E[t](p, ot — S) }

[A] :={p €A — Cand}
Minor tweak: Our earlier definition was { p € Tyvar —
Cand | A € dom(p) }.

G[T]p :={y € Var — CVal | v(x:1) € I. y(x) € V[7]p }

(Aside from Dave: We should tweak both D[] and G[] or
neither.)

o<<<dH

Let's adjust it, a line at a time. Everywhere you see one thing, you
turn it into two things.

Cand := Sub(CVal x CVal)

E[t]p :={(enes) | Ivi,ve. €1 | Vine, | va A (vi,v,) € V[T]p }

Vlalp := p(o)

This case doesn't change: We'll adjust p.

Vlc—1]p :={ (vy,v2) | V(V'1,V'5) € V[o]p. (Vi V', Vo V'y) €E[T]p }

V[va.t]p :={(v,V,) | Vo4, 6, € CTyp. VR € Cand. (v, 04, v, 6,) € E[7]
(p.a—R) }

D[A] :={p €A — Cand}

GITTp = { (yay2) | ¥(x) € T. (ysx, y:%) € V[elp }

This generalization from unary to binary was *non-obvious* and the key
to Reynold's work.

Reynold's worked in a denotational model and proved a lovely result.
Aside: He worked in a model that didn't actually exist, but the result
mattered.

FTLR (Reynolds, “Abstraction Theorem”, 1983):
IfA;THe:nm,
then VpeD[A]. V(y1,Y,)EG[I']p. ¥8.,0; : A — CTyp.
(d1Y1€, 8,,2€) € E[1]p.

Compare this to the FTLR with Girard's method. We've just doubled
things.

(We'll prove this in a slightly more general form later on.)
Corollary:

Ife:mr,
then (e,e) € E[1].



We'll use the corollary to prove our result about bool.

—f: bool

Suppose f [c] v, v, | hat{v}.

TS: Vo',v',v,. £ [6'] v'y v, | hat{v'}.
(f,f) € V[bool].

R :={(v,v'y), (Vo,V'2)}.

(fo,v, vy, fo, vy v',) €E[a]o — R
(hat{v},hat{v'}) € R.

Thus, either hat{v} = v; A hat{v'} = v/,
or hat{v} = v, A hat{v'} = v',.

— Logical relation on open terms, FTLR, and soundness

(Aside from Dave: Derek started this section using the phrase “logical
equivalence” but later noted the relation isn't transitive.)

Let's restate the FTLR in terms of the following type-respecting
binary relation.

Definition (Logical relation on open terms):

ATHe ~ey: 1=
AT He:TA
A;THe,:TA
VpED[A]. Y(y1,Y2)EG[I']p. ¥84,8, : A — CTyp.
(81Y1€1, 02,Y2€2) € E[T]p.

This is a standard approach: We quantify over all closing
substitutions and use the logical relation for closed terms.

FTLR (Abstraction Theorem aka Fundamental Property aka Reflexivity):
IfA;THe:nm,
then A;THe=e:T.

(In its generalized form, the FTLR for binary logical relations boils
down to “it's reflexive on well-typed terms”.)

Our ~ is generally useful. We'll show ~ C =ctx. (That's soundness of
the logical relation.) Thus, we can use ~ as a proof technique for

=ctx.

We haven't established that » is an equivalence relation. (It isn't an



equivalence relation. It's probably symmetric. It's not transitive.)

Question: Do these techniques let us talk about more general things
than contextual equivalence?

Answer: We focus on contextual equivalence and contextual
approximation (or refinement).

(Aside from Dave: Derek started writing = for contextual equivalence
at this point. In future notes, I will do so. For now, let's stick

with =ctx, leaving = available for arbitrary “type-respecting binary
relations”.)

We'll aim for the following
Soundness theorem:
IfA;THe ~e,: 1T
then A;T e, =ctx e, : T.

Aside: We'll define =ctx so that the fundamental property falls out
from soundness.

— Defining contextual equivalence via contexts
How do we define =ctx?
There are several ways.
Traditional way: Define well-formed contexts C (ie, a term with a
hole). To do this properly, you have to define a context typing
judgement

FC: (AT 1) — (AT 1)

“typing context for hole” — “typing for C[-]”

It's tedious. There are opportunities for errors. The whole point is
you want variable capture, so this is hard to mechanize.

Informally, we use contextual equivalence because its something we can
all agree on. But it's technical and annoying to do. You end up having
to prove a lemma that amounts to the following (slightly more direct)
approach.



Once you have this notion of contexts with holes, you say something
like

A; T e, =ctx e, : T <=(vague)
vC : (A;I';t) — (+5+;bool).
Cle.]|true iff C[e,]|true.

— Defining contextual equivalence via congruence relations

(We're following Pitts' chapter on “Typed Operational Reasoning” in
Pierce's ATTPL. Pitts said he followed Andrew Gordon and Seren
Lassen.)

Our goal is to define =ctx as the largest, adequate congruence on
well-typed terms.

What is adequate? What is a congruence? Together, they tease out the
two things we sought informally: “quantification over the client
context” and “closed programs produce true/false together”.

(Aside from Dave: Derek didn't bother with the following definition in
class. I think it helps to have the universe from =ctx is drawn.)

Definition (Type respecting binary relations):
RAtom := {(AT,ee,t) | A;THe:tAA; T e, T}
TRBR := Sub(Ratom).

Informally, a type-respecting binary relation = € TRBR is a
relation on terms e; and e, that are well-typed wrt a common
context and type.

We write A; T - e; = e, : T when (A,l,e,,e,1) € =.

Idea: We care about relations = € TRBR that are “adequate for
observing termination”.

Definition (Adequacy):
Let = € TRBR.
= is /adequate/ if
‘e, =e,:bool= e, | vine, | vonv,=KLv,.

Definition (Kleene equivalence at type bool):
Let v,, v, € CVal.
Vi EI(I_4\72 1f(V1 l T < Vo l T)



where v | T if v [bool] true false | true
(and v | L if v [bool] true false | false).

Idea: The n-expansion approach spits out the canonical form.

Idea: Kleene equivalence and adequacy are well-defined because of
Girard's method. We use Kleene equivalence to canonize v, and v, into
comparable forms.

Definition (Congruence):
Let = € TRBR.
= is a /congruence/ if = is an equivalence relation
(reflexive, symmetric, and transitive) that is compatible.

(Aside from Dave: We might spell out how to lift reflexivity,
symmetry, and transitivity from ExpxExp to RAtom. Not even I want to
be that pedantic.)

Idea: A compatible relation = € TRBR is “closed under the
term-formation rules of the language”.

To define compatibility, we'll follow the typing rules and double them
up, much as we did for the logical relations.

Definition (Compatibility):
Let = € TRBR.
= is /compatible/ if it is closed under the following axioms
and rules.

xt €l

ATHx=x:1

AT, xoFej=e,: T
Xgrkkx.els?\x.ezzc—)r
AN;THe=e'i:0—>1
A;THey=e,:0

A;THee,=¢€e'1€e'5: T

Ao T'He =e,: T



A; T+ Aoe, = Aace, : Vot

AThHe =e,: Vot
ftv(o) C A

AN;THe o=e,0:1t[0/A]

We pick the same ¢ on both sides. You could imagine picking o,
and o, if the language had a notion of type equivalence. (But
it doesn't.)

Idea: To prove a relation = € TRBR compatible, you prove a lemma for
each compatibility rule.

Question from Deepak: Why does “the” largest adequate congruence
exist? That's not obvious at all.

Answer: We'll claim it for now. At some point, Derek will
explain. (The proof in Pitts' chapter is kinda fiddley. Derek
wants a more direct presentation.)

Idea: Rather than define =ctx, we'll (eventually) prove it exists.
Claim (=ctx, channeling Pitts):
There exists a largest type-respecting binary relation between
System F terms that is a congruence and adequate.
We call it contextual equivalence and write it =ctx.
Proof: Sorry. Derek will prove this later.
If you want to use contextual equivalence with C[-], you have to cough
up a context. Here, we essentially build up that context using these

compatibility rules.

Somehow the traditional definition is clearly well-defined. Whereas
here, we have to argue there's a “largest”.

Our notion of compatibility corresponds to multi-holed contextual
equivalence. Consider the application rule: There are two subterms and
we may have equivalent things in either the function or argument
position.

The work we have to do is to show that multi-hole contextual



equivalence boils down to single-hole contextual equivalence. (That
can fail to be true.) Of course, you can define multi-hole contextual
equivalence, but it's ugly.

Once you prove a largest, adequate congruence exists, you obtain a
more direct proof method.

(Aside from Dave: One example “multi-holed contextual
equivalence” in the wild: Birkedal and Harper, 1&C'99.
Relational interpretations of recursive types in an
operational setting.

If you read that paper, don't worry too much about the
details: Derek can teach us a better way to deal with
recursive types.)

— Soundness of the logical relation on open terms

Theorem (Soundness):
~ C =ctx.

It suffices to show that ~ is adequate and compatible. (Recall, ~ is
not an equivalence hence not a congruence.)

The idea is to take the symmetric, transitive closure of ~ and show
it's adequate and a congruence. We've just closed up over the missing
rules, so its clearly a congruence. But we have to show that we've
preserved adequacy and compatiblity.

In the traditional approach, you have to prove “~ is adequate and
compatible”, anyway.

We'll prove ~ is adequate and compatible.

To show compatibility for ~, we'll prove a lemma for each of the
compatibility rules.

Once we've done those things, we'll know soundness for the LR. But
then the FTLR follows from the easy lemma (see Pitts):

Lemma (see Pitts):
Let = € TRBR.
If = is compatibile,
then = is reflexive.



Proof: Easy induction on D :: A; T I e : 7. In defining the “term
formation rules”, we doubled up the typing rules.

— Compatibility of ~

Our proof of compatiblity is just the “binarification” of our proof of
Girard's method.

HW: Prove the compatiblity lemmas:

xt €T

ATHx=x:1
AT, xoFe ~e,: T
A;THAXe ~ AX.€,:0 — T

AN;THeze'i:0—1
A; T Heyze'y: o

AN;THe e,~e'je'y: T

ANoI'He,~e,: T

A; T+ Aa.e, = Aate, : Vot

AT He ~e,: Vot
ftv(o) C A

A;THe o~e,o0:1[o/A]
— Things we've yet to prove
Claim (=ctx, channeling Pitts):
There exists a largest type-respecting binary relation between

System F terms that is a congruence and adequate.

Claim (Adequacy of »):
~ is adequate.



